Search results for: regression models drone
7390 Discrete Swarm with Passive Congregation for Cost Minimization of the Multiple Vehicle Routing Problem
Authors: Tarek Aboueldahab, Hanan Farag
Abstract:
Cost minimization of Multiple Vehicle Routing Problem becomes a critical issue in the field of transportation because it is NP-hard optimization problem and the search space is complex. Many researches use the hybridization of artificial intelligence (AI) models to solve this problem; however, it can not guarantee to reach the best solution due to the difficulty of searching the whole search space. To overcome this problem, we introduce the hybrid model of Discrete Particle Swarm Optimization (DPSO) with a passive congregation which enable searching the whole search space to compromise between both local and global search. The practical experiment shows that our model obviously outperforms other hybrid models in cost minimization.Keywords: cost minimization, multi-vehicle routing problem, passive congregation, discrete swarm, passive congregation
Procedia PDF Downloads 987389 Long Memory and ARFIMA Modelling: The Case of CPI Inflation for Ghana and South Africa
Authors: A. Boateng, La Gil-Alana, M. Lesaoana; Hj. Siweya, A. Belete
Abstract:
This study examines long memory or long-range dependence in the CPI inflation rates of Ghana and South Africa using Whittle methods and autoregressive fractionally integrated moving average (ARFIMA) models. Standard I(0)/I(1) methods such as Augmented Dickey-Fuller (ADF), Philips-Perron (PP) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests were also employed. Our findings indicate that long memory exists in the CPI inflation rates of both countries. After processing fractional differencing and determining the short memory components, the models were specified as ARFIMA (4,0.35,2) and ARFIMA (3,0.49,3) respectively for Ghana and South Africa. Consequently, the CPI inflation rates of both countries are fractionally integrated and mean reverting. The implication of this result will assist in policy formulation and identification of inflationary pressures in an economy.Keywords: Consumer Price Index (CPI) inflation rates, Whittle method, long memory, ARFIMA model
Procedia PDF Downloads 3697388 Patient-Specific Modeling Algorithm for Medical Data Based on AUC
Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper
Abstract:
Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.Keywords: approach instance-based, area under the ROC curve, patient-specific decision path, clinical predictions
Procedia PDF Downloads 4797387 General Mathematical Framework for Analysis of Cattle Farm System
Authors: Krzysztof Pomorski
Abstract:
In the given work we present universal mathematical framework for modeling of cattle farm system that can set and validate various hypothesis that can be tested against experimental data. The presented work is preliminary but it is expected to be valid tool for future deeper analysis that can result in new class of prediction methods allowing early detection of cow dieseaes as well as cow performance. Therefore the presented work shall have its meaning in agriculture models and in machine learning as well. It also opens the possibilities for incorporation of certain class of biological models necessary in modeling of cow behavior and farm performance that might include the impact of environment on the farm system. Particular attention is paid to the model of coupled oscillators that it the basic building hypothesis that can construct the model showing certain periodic or quasiperiodic behavior.Keywords: coupled ordinary differential equations, cattle farm system, numerical methods, stochastic differential equations
Procedia PDF Downloads 1457386 Fault Analysis of Induction Machine Using Finite Element Method (FEM)
Authors: Wiem Zaabi, Yemna Bensalem, Hafedh Trabelsi
Abstract:
The paper presents a finite element (FE) based efficient analysis procedure for induction machine (IM). The FE formulation approaches are proposed to achieve this goal: the magnetostatic and the non-linear transient time stepped formulations. The study based on finite element models offers much more information on the phenomena characterizing the operation of electrical machines than the classical analytical models. This explains the increase of the interest for the finite element investigations in electrical machines. Based on finite element models, this paper studies the influence of the stator and the rotor faults on the behavior of the IM. In this work, a simple dynamic model for an IM with inter-turn winding fault and a broken bar fault is presented. This fault model is used to study the IM under various fault conditions and severity. The simulation results are conducted to validate the fault model for different levels of fault severity. The comparison of the results obtained by simulation tests allowed verifying the precision of the proposed FEM model. This paper presents a technical method based on Fast Fourier Transform (FFT) analysis of stator current and electromagnetic torque to detect the faults of broken rotor bar. The technique used and the obtained results show clearly the possibility of extracting signatures to detect and locate faults.Keywords: Finite element Method (FEM), Induction motor (IM), short-circuit fault, broken rotor bar, Fast Fourier Transform (FFT) analysis
Procedia PDF Downloads 3017385 Influence of Building Orientation and Post Processing Materials on Mechanical Properties of 3D-Printed Parts
Authors: Raf E. Ul Shougat, Ezazul Haque Sabuz, G. M. Najmul Quader, Monon Mahboob
Abstract:
Since there are lots of ways for building and post processing of parts or models in 3D printing technology, the main objective of this research is to provide an understanding how mechanical characteristics of 3D printed parts get changed for different building orientations and infiltrates. Tensile, compressive, flexure, and hardness test were performed for the analysis of mechanical properties of those models. Specimens were designed in CAD software, printed on Z-printer 450 with five different build orientations and post processed with four different infiltrates. Results show that with the change of infiltrates or orientations each of the above mechanical property changes and for each infiltrate the highest tensile strength, flexural strength, and hardness are found for such orientation where there is the lowest number of layers while printing.Keywords: 3D printing, building orientations, infiltrates, mechanical characteristics, number of layers
Procedia PDF Downloads 2807384 An Investigation on Electric Field Distribution around 380 kV Transmission Line for Various Pylon Models
Authors: C. F. Kumru, C. Kocatepe, O. Arikan
Abstract:
In this study, electric field distribution analyses for three pylon models are carried out by a Finite Element Method (FEM) based software. Analyses are performed in both stationary and time domains to observe instantaneous values along with the effective ones. Considering the results of the study, different line geometries is considerably affecting the magnitude and distribution of electric field although the line voltages are the same. Furthermore, it is observed that maximum values of instantaneous electric field obtained in time domain analysis are quite higher than the effective ones in stationary mode. In consequence, electric field distribution analyses should be individually made for each different line model and the limit exposure values or distances to residential buildings should be defined according to the results obtained.Keywords: electric field, energy transmission line, finite element method, pylon
Procedia PDF Downloads 7287383 A Grey-Box Text Attack Framework Using Explainable AI
Authors: Esther Chiramal, Kelvin Soh Boon Kai
Abstract:
Explainable AI is a strong strategy implemented to understand complex black-box model predictions in a human-interpretable language. It provides the evidence required to execute the use of trustworthy and reliable AI systems. On the other hand, however, it also opens the door to locating possible vulnerabilities in an AI model. Traditional adversarial text attack uses word substitution, data augmentation techniques, and gradient-based attacks on powerful pre-trained Bidirectional Encoder Representations from Transformers (BERT) variants to generate adversarial sentences. These attacks are generally white-box in nature and not practical as they can be easily detected by humans e.g., Changing the word from “Poor” to “Rich”. We proposed a simple yet effective Grey-box cum Black-box approach that does not require the knowledge of the model while using a set of surrogate Transformer/BERT models to perform the attack using Explainable AI techniques. As Transformers are the current state-of-the-art models for almost all Natural Language Processing (NLP) tasks, an attack generated from BERT1 is transferable to BERT2. This transferability is made possible due to the attention mechanism in the transformer that allows the model to capture long-range dependencies in a sequence. Using the power of BERT generalisation via attention, we attempt to exploit how transformers learn by attacking a few surrogate transformer variants which are all based on a different architecture. We demonstrate that this approach is highly effective to generate semantically good sentences by changing as little as one word that is not detectable by humans while still fooling other BERT models.Keywords: BERT, explainable AI, Grey-box text attack, transformer
Procedia PDF Downloads 1377382 Evaluation Metrics for Machine Learning Techniques: A Comprehensive Review and Comparative Analysis of Performance Measurement Approaches
Authors: Seyed-Ali Sadegh-Zadeh, Kaveh Kavianpour, Hamed Atashbar, Elham Heidari, Saeed Shiry Ghidary, Amir M. Hajiyavand
Abstract:
Evaluation metrics play a critical role in assessing the performance of machine learning models. In this review paper, we provide a comprehensive overview of performance measurement approaches for machine learning models. For each category, we discuss the most widely used metrics, including their mathematical formulations and interpretation. Additionally, we provide a comparative analysis of performance measurement approaches for metric combinations. Our review paper aims to provide researchers and practitioners with a better understanding of performance measurement approaches and to aid in the selection of appropriate evaluation metrics for their specific applications.Keywords: evaluation metrics, performance measurement, supervised learning, unsupervised learning, reinforcement learning, model robustness and stability, comparative analysis
Procedia PDF Downloads 737381 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records
Authors: Sara ElElimy, Samir Moustafa
Abstract:
Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).Keywords: big data analytics, machine learning, CDRs, 5G
Procedia PDF Downloads 1397380 The Influence of Minority Stress on Depression among Thai Lesbian, Gay, Bisexual, and Transgender Adults
Authors: Priyoth Kittiteerasack, Alana Steffen, Alicia K. Matthews
Abstract:
Depression is a leading cause of the worldwide burden of disability and disease burden. Notably, lesbian, gay, bisexual, and transgender (LGBT) populations are more likely to be a high-risk group for depression compared to their heterosexual and cisgender counterparts. To date, little is known about the rates and predictors of depression among Thai LGBT populations. As such, the purpose of this study was to: 1) measure the prevalence of depression among a diverse sample of Thai LGBT adults and 2) determine the influence of minority stress variables (discrimination, victimization, internalized homophobia, and identity concealment), general stress (stress and loneliness), and coping strategies (problem-focused, avoidance, and seeking social support) on depression outcomes. This study was guided by the Minority Stress Model (MSM). The MSM posits that elevated rates of mental health problems among LGBT populations stem from increased exposures to social stigma due to their membership in a stigmatized minority group. Social stigma, including discrimination and violence, represents unique sources of stress for LGBT individuals and have a direct impact on mental health. This study was conducted as part of a larger descriptive study of mental health among Thai LGBT adults. Standardized measures consistent with the MSM were selected and translated into the Thai language by a panel of LGBT experts using the forward and backward translation technique. The psychometric properties of translated instruments were tested and acceptable (Cronbach’s alpha > .8 and Content Validity Index = 1). Study participants were recruited using convenience and snowball sampling methods. Self-administered survey data were collected via an online survey and via in-person data collection conducted at a leading Thai LGBT organization. Descriptive statistics and multivariate analyses using multiple linear regression models were conducted to analyze study data. The mean age of participants (n = 411) was 29.5 years (S.D. = 7.4). Participants were primarily male (90.5%), homosexual (79.3%), and cisgender (76.6%). The mean score for depression of study participant was 9.46 (SD = 8.43). Forty-three percent of LGBT participants reported clinically significant levels of depression as measured by the Beck Depression Inventory. In multivariate models, the combined influence of demographic, stress, coping, and minority stressors explained 47.2% of the variance in depression scores (F(16,367) = 20.48, p < .001). Minority stressors independently associated with depression included discrimination (β = .43, p < .01) victimization (β = 1.53, p < .05), and identity concealment (β = -.54, p < .05). In addition, stress (β = .81, p < .001), history of a chronic disease (β = 1.20, p < .05), and coping strategies (problem-focused coping β = -1.88, p < .01, seeking social support β = -1.12, p < .05, and avoidance coping β = 2.85, p < .001) predicted depression scores. The study outcomes emphasized that minority stressors uniquely contributed to depression levels among Thai LGBT participants over and above typical non-minority stressors. Study findings have important implications for nursing practice and the development of intervention research.Keywords: depression, LGBT, minority stress, sexual and gender minority, Thailand
Procedia PDF Downloads 1277379 Improved Approach to the Treatment of Resistant Breast Cancer
Authors: Lola T. Alimkhodjaeva, Lola T. Zakirova, Soniya S. Ziyavidenova
Abstract:
Background: Breast cancer (BC) is still one of the urgent oncology problems. The essential obstacle to the full anti-tumor therapy implementation is drug resistance development. Taking into account the fact that chemotherapy is main antitumor treatment in BC patients, the important task is to improve treatment results. Certain success in overcoming this situation has been associated with the use of methods of extracorporeal blood treatment (ECBT), plasmapheresis. Materials and Methods: We examined 129 women with resistant BC stages 3-4, aged between 56 to 62 years who had previously received 2 courses of CAF chemotherapy. All patients additionally underwent 2 courses of CAF chemotherapy but against the background ECBT with ultrasonic exposure. We studied the following parameters: 1. The highlights of peripheral blood before and after therapy. 2. The state of cellular immunity and identification of activation markers CD23 +, CD25 +, CD38 +, CD95 + on lymphocytes was performed using monoclonal antibodies. Evaluation of humoral immunity was determined by the level of main classes of immunoglobulins IgG, IgA, IgM in serum. 3. The degree of tumor regression was assessed by WHO recommended 4 gradations. (complete - 100%, partial - more than 50% of initial size, process stabilization–regression is less than 50% of initial size and tumor advance progressing). 4. Medical pathomorphism in the tumor was determined by Lavnikova. 5. The study of immediate and remote results, up to 3 years and more. Results and Discussion: After performing extracorporeal blood treatment anemia occurred in 38.9%, leukopenia in 36.8%, thrombocytopenia in 34.6%, hypolymphemia in 26.8%. Studies of immunoglobulin fractions in blood serum were able to establish a certain relationship between the classes of immunoglobulin A, G, M and their functions. The results showed that after treatment the values of main immunoglobulins in patients’ serum approximated to normal. Analysis of expression of activation markers CD25 + cells bearing receptors for IL-2 (IL-2Rα chain) and CD95 + lymphocytes that were mediated physiological apoptosis showed the tendency to increase, which apparently was due to activation of cellular immunity cytokines allocated by ultrasonic treatment. To carry out ECBT on the background of ultrasonic treatment improved the parameters of the immune system, which were expressed in stimulation of cellular immunity and correcting imbalances in humoral immunity. The key indicator of conducted treatment efficiency is the immediate result measured by the degree of tumor regression. After ECBT performance the complete regression was 10.3%, partial response - 55.5%, process stabilization - 34.5%, tumor advance progressing no observed. Morphological investigations of tumor determined therapeutic pathomorphism grade 2 in 15%, in 25% - grade 3 and therapeutic pathomorphism grade 4 in 60% of patients. One of the main criteria for the effect of conducted treatment is to study the remission terms in the postoperative period (up to 3 years or more). The remission terms up to 3 years with ECBT was 34.5%, 5-year survival was 54%. Carried out research suggests that a comprehensive study of immunological and clinical course of breast cancer allows the differentiated approach to the choice of methods for effective treatment.Keywords: breast cancer, immunoglobulins, extracorporeal blood treatment, chemotherapy
Procedia PDF Downloads 2747378 Classifying Affective States in Virtual Reality Environments Using Physiological Signals
Authors: Apostolos Kalatzis, Ashish Teotia, Vishnunarayan Girishan Prabhu, Laura Stanley
Abstract:
Emotions are functional behaviors influenced by thoughts, stimuli, and other factors that induce neurophysiological changes in the human body. Understanding and classifying emotions are challenging as individuals have varying perceptions of their environments. Therefore, it is crucial that there are publicly available databases and virtual reality (VR) based environments that have been scientifically validated for assessing emotional classification. This study utilized two commercially available VR applications (Guided Meditation VR™ and Richie’s Plank Experience™) to induce acute stress and calm state among participants. Subjective and objective measures were collected to create a validated multimodal dataset and classification scheme for affective state classification. Participants’ subjective measures included the use of the Self-Assessment Manikin, emotional cards and 9 point Visual Analogue Scale for perceived stress, collected using a Virtual Reality Assessment Tool developed by our team. Participants’ objective measures included Electrocardiogram and Respiration data that were collected from 25 participants (15 M, 10 F, Mean = 22.28 4.92). The features extracted from these data included heart rate variability components and respiration rate, both of which were used to train two machine learning models. Subjective responses validated the efficacy of the VR applications in eliciting the two desired affective states; for classifying the affective states, a logistic regression (LR) and a support vector machine (SVM) with a linear kernel algorithm were developed. The LR outperformed the SVM and achieved 93.8%, 96.2%, 93.8% leave one subject out cross-validation accuracy, precision and recall, respectively. The VR assessment tool and data collected in this study are publicly available for other researchers.Keywords: affective computing, biosignals, machine learning, stress database
Procedia PDF Downloads 1427377 Development of IDF Curves for Precipitation in Western Watershed of Guwahati, Assam
Authors: Rajarshi Sharma, Rashidul Alam, Visavino Seleyi, Yuvila Sangtam
Abstract:
The Intensity-Duration-Frequency (IDF) relationship of rainfall amounts is one of the most commonly used tools in water resources engineering for planning, design and operation of water resources project, or for various engineering projects against design floods. The establishment of such relationships was reported as early as in 1932 (Bernard). Since then many sets of relationships have been constructed for several parts of the globe. The objective of this research is to derive IDF relationship of rainfall for western watershed of Guwahati, Assam. These relationships are useful in the design of urban drainage works, e.g. storm sewers, culverts and other hydraulic structures. In the study, rainfall depth for 10 years viz. 2001 to 2010 has been collected from the Regional Meteorological Centre Borjhar, Guwahati. Firstly, the data has been used to construct the mass curve for duration of more than 7 hours rainfall to calculate the maximum intensity and to form the intensity duration curves. Gumbel’s frequency analysis technique has been used to calculate the probable maximum rainfall intensities for a period of 2 yr, 5 yr, 10 yr, 50 yr, 100 yr from the maximum intensity. Finally, regression analysis has been used to develop the intensity-duration-frequency (IDF) curve. Thus, from the analysis the values for the constants ‘a’,‘b’ &‘c’ have been found out. The values of ‘a’ for which the sum of the squared deviation is minimum has been found out to be 40 and when the corresponding value of ‘c’ and ‘b’ for the minimum squared deviation of ‘a’ are 0.744 and 1981.527 respectively. The results obtained showed that in all the cases the correlation coefficient is very high indicating the goodness of fit of the formulae to estimate IDF curves in the region of interest.Keywords: intensity-duration-frequency relationship, mass curve, regression analysis, correlation coefficient
Procedia PDF Downloads 2447376 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores
Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay
Abstract:
Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.Keywords: retail stores, faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition
Procedia PDF Downloads 1567375 A Multi-Release Software Reliability Growth Models Incorporating Imperfect Debugging and Change-Point under the Simulated Testing Environment and Software Release Time
Authors: Sujit Kumar Pradhan, Anil Kumar, Vijay Kumar
Abstract:
The testing process of the software during the software development time is a crucial step as it makes the software more efficient and dependable. To estimate software’s reliability through the mean value function, many software reliability growth models (SRGMs) were developed under the assumption that operating and testing environments are the same. Practically, it is not true because when the software works in a natural field environment, the reliability of the software differs. This article discussed an SRGM comprising change-point and imperfect debugging in a simulated testing environment. Later on, we extended it in a multi-release direction. Initially, the software was released to the market with few features. According to the market’s demand, the software company upgraded the current version by adding new features as time passed. Therefore, we have proposed a generalized multi-release SRGM where change-point and imperfect debugging concepts have been addressed in a simulated testing environment. The failure-increasing rate concept has been adopted to determine the change point for each software release. Based on nine goodness-of-fit criteria, the proposed model is validated on two real datasets. The results demonstrate that the proposed model fits the datasets better. We have also discussed the optimal release time of the software through a cost model by assuming that the testing and debugging costs are time-dependent.Keywords: software reliability growth models, non-homogeneous Poisson process, multi-release software, mean value function, change-point, environmental factors
Procedia PDF Downloads 747374 Non-Linear Assessment of Chromatographic Lipophilicity and Model Ranking of Newly Synthesized Steroid Derivatives
Authors: Milica Karadzic, Lidija Jevric, Sanja Podunavac-Kuzmanovic, Strahinja Kovacevic, Anamarija Mandic, Katarina Penov Gasi, Marija Sakac, Aleksandar Okljesa, Andrea Nikolic
Abstract:
The present paper deals with chromatographic lipophilicity prediction of newly synthesized steroid derivatives. The prediction was achieved using in silico generated molecular descriptors and quantitative structure-retention relationship (QSRR) methodology with the artificial neural networks (ANN) approach. Chromatographic lipophilicity of the investigated compounds was expressed as retention factor value logk. For QSRR modeling, a feedforward back-propagation ANN with gradient descent learning algorithm was applied. Using the novel sum of ranking differences (SRD) method generated ANN models were ranked. The aim was to distinguish the most consistent QSRR model that can be found, and similarity or dissimilarity between the models that could be noticed. In this study, SRD was performed with average values of retention factor value logk as reference values. An excellent correlation between experimentally observed retention factor value logk and values predicted by the ANN was obtained with a correlation coefficient higher than 0.9890. Statistical results show that the established ANN models can be applied for required purpose. This article is based upon work from COST Action (TD1305), supported by COST (European Cooperation in Science and Technology).Keywords: artificial neural networks, liquid chromatography, molecular descriptors, steroids, sum of ranking differences
Procedia PDF Downloads 3197373 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite
Authors: F. Lazzeri, I. Reiter
Abstract:
Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.
Keywords: time-series, features engineering methods for forecasting, energy demand forecasting, Azure Machine Learning
Procedia PDF Downloads 2977372 Equilibrium and Kinetic Studies of Lead Adsorption on Activated Carbon Derived from Mangrove Propagule Waste by Phosphoric Acid Activation
Authors: Widi Astuti, Rizki Agus Hermawan, Hariono Mukti, Nurul Retno Sugiyono
Abstract:
The removal of lead ion (Pb2+) from aqueous solution by activated carbon with phosphoric acid activation employing mangrove propagule as precursor was investigated in a batch adsorption system. Batch studies were carried out to address various experimental parameters including pH and contact time. The Langmuir and Freundlich models were able to describe the adsorption equilibrium, while the pseudo first order and pseudo second order models were used to describe kinetic process of Pb2+ adsorption. The results show that the adsorption data are seen in accordance with Langmuir isotherm model and pseudo-second order kinetic model.Keywords: activated carbon, adsorption, equilibrium, kinetic, lead, mangrove propagule
Procedia PDF Downloads 1677371 Housing Delivery in Nigeria: Repackaging for Sustainable Development
Authors: Funmilayo L. Amao, Amos O. Amao
Abstract:
It has been observed that majority of the people are living in poor housing quality or totally homeless in urban center despite all governmental policies to provide housing to the public. On the supply side, various government policies in the past have been formulated towards overcoming the huge shortage through several Housing Reform Programmes. Despite these past efforts, housing continues to be a mirage to ordinary Nigerian. Currently, there are various mass housing delivery programmes such as the affordable housing scheme that utilize the Public Private Partnership effort and several Private Finance Initiative models could only provide for about 3% of the required stock. This suggests the need for a holistic solution in approaching the problem. The aim of this research is to find out the problems hindering the delivery of housing in Nigeria and its effects on housing affordability. The specific objectives are to identify the causes of housing delivery problems, to examine different housing policies over years and to suggest a way out for sustainable housing delivery. This paper also reviews the past and current housing delivery programmes in Nigeria and analyses the demand and supply side issues. It identifies the various housing delivery mechanisms in current practice. The objective of this paper, therefore, is to give you an insight into the delivery option for the sustainability of housing in Nigeria, given the existing delivery structures and the framework specified in the New National Housing Policy. The secondary data were obtained from books, journals and seminar papers. The conclusion is that we cannot copy models from other nations, but should rather evolve workable models based on our socio-cultural background to address the huge housing shortage in Nigeria. Recommendations are made in this regard.Keywords: housing, sustainability, housing delivery, housing policy, housing affordability
Procedia PDF Downloads 2967370 Implementation of Lean Production in Business Enterprises: A Literature-Based Content Analysis of Implementation Procedures
Authors: P. Pötters, A. Marquet, B. Leyendecker
Abstract:
The objective of this paper is to investigate different implementation approaches for the implementation of Lean production in companies. Furthermore, a structured overview of those different approaches is to be made. Therefore, the present work is intended to answer the following research question: What differences and similarities exist between the various systematic approaches and phase models for the implementation of Lean Production? To present various approaches for the implementation of Lean Production discussed in the literature, a qualitative content analysis was conducted. Within the framework of a qualitative survey, a selection of texts dealing with lean production and its introduction was examined. The analysis presents different implementation approaches from the literature, covering the descriptive aspect of the study. The study also provides insights into similarities and differences among the implementation approaches, which are drawn from the analysis of latent text contents and author interpretations. In this study, the focus is on identifying differences and similarities among systemic approaches for implementing Lean Production. The research question takes into account the main object of consideration, objectives pursued, starting point, procedure, and endpoint of the implementation approach. The study defines the concept of Lean Production and presents various approaches described in literature that companies can use to implement Lean Production successfully. The study distinguishes between five systemic implementation approaches and seven phase models to help companies choose the most suitable approach for their implementation project. The findings of this study can contribute to enhancing transparency regarding the existing approaches for implementing Lean Production. This can enable companies to compare and contrast the available implementation approaches and choose the most suitable one for their specific project.Keywords: implementation, lean production, phase models, systematic approaches
Procedia PDF Downloads 1047369 The Effects of the Interaction between Prenatal Stress and Diet on Maternal Insulin Resistance and Inflammatory Profile
Authors: Karen L. Lindsay, Sonja Entringer, Claudia Buss, Pathik D. Wadhwa
Abstract:
Maternal nutrition and stress are independently recognized as among the most important factors that influence prenatal biology, with implications for fetal development and poor pregnancy outcomes. While there is substantial evidence from non-pregnancy human and animal studies that a complex, bi-directional relationship exists between nutrition and stress, to the author’s best knowledge, their interaction in the context of pregnancy has been significantly understudied. The aim of this study is to assess the interaction between maternal psychological stress and diet quality across pregnancy and its effects on biomarkers of prenatal insulin resistance and inflammation. This is a prospective longitudinal study of N=235 women carrying a healthy, singleton pregnancy, recruited from prenatal clinics of the University of California, Irvine Medical Center. Participants completed a 4-day ambulatory assessment in early, middle and late pregnancy, which included multiple daily electronic diary entries using Ecological Momentary Assessment (EMA) technology on a dedicated study smartphone. The EMA diaries gathered moment-level data on maternal perceived stress, negative mood, positive mood and quality of social interactions. The numerical scores for these variables were averaged across each study time-point and converted to Z-scores. A single composite variable for 'STRESS' was computed as follows: (Negative mood+Perceived stress)–(Positive mood+Social interaction quality). Dietary intakes were assessed by three 24-hour dietary recalls conducted within two weeks of each 4-day assessment. Daily nutrient and food group intakes were averaged across each study time-point. The Alternative Healthy Eating Index adapted for pregnancy (AHEI-P) was computed for early, middle and late pregnancy as a validated summary measure of diet quality. At the end of each 4-day ambulatory assessment, women provided a fasting blood sample, which was assayed for levels of glucose, insulin, Interleukin (IL)-6 and Tumor Necrosis Factor (TNF)-α. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) was computed. Pearson’s correlation was used to explore the relationship between maternal STRESS and AHEI-P within and between each study time-point. Linear regression was employed to test the association of the stress-diet interaction (STRESS*AHEI-P) with the biological markers HOMA-IR, IL-6 and TNF-α at each study time-point, adjusting for key covariates (pre-pregnancy body mass index, maternal education level, race/ethnicity). Maternal STRESS and AHEI-P were significantly inversely correlated in early (r=-0.164, p=0.018) and mid-pregnancy (-0.160, p=0.019), and AHEI-P from earlier gestational time-points correlated with later STRESS (early AHEI-P x mid STRESS: r=-0.168, p=0.017; mid AHEI-P x late STRESS: r=-0.142, p=0.041). In regression models, the interaction term was not associated with HOMA-IR or IL-6 at any gestational time-point. The stress-diet interaction term was significantly associated with TNF-α according to the following patterns: early AHEI-P*early STRESS vs early TNF-α (p=0.005); early AHEI-P*early STRESS vs mid TNF-α (p=0.002); early AHEI-P*mid STRESS vs mid TNF-α (p=0.005); mid AHEI-P*mid STRESS vs mid TNF-α (p=0.070); mid AHEI-P*late STRESS vs late TNF-α (p=0.011). Poor diet quality is significantly related to higher psychosocial stress levels in pregnant women across gestation, which may promote inflammation via TNF-α. Future prenatal studies should consider the combined effects of maternal stress and diet when evaluating either one of these factors on pregnancy or infant outcomes.Keywords: diet quality, inflammation, insulin resistance, nutrition, pregnancy, stress, tumor necrosis factor-alpha
Procedia PDF Downloads 2007368 Validation and Fit of a Biomechanical Bipedal Walking Model for Simulation of Loads Induced by Pedestrians on Footbridges
Authors: Dianelys Vega, Carlos Magluta, Ney Roitman
Abstract:
The simulation of loads induced by walking people in civil engineering structures is still challenging It has been the focus of considerable research worldwide in the recent decades due to increasing number of reported vibration problems in pedestrian structures. One of the most important key in the designing of slender structures is the Human-Structure Interaction (HSI). How moving people interact with structures and the effect it has on their dynamic responses is still not well understood. To rely on calibrated pedestrian models that accurately estimate the structural response becomes extremely important. However, because of the complexity of the pedestrian mechanisms, there are still some gaps in knowledge and more reliable models need to be investigated. On this topic several authors have proposed biodynamic models to represent the pedestrian, whether these models provide a consistent approximation to physical reality still needs to be studied. Therefore, this work comes to contribute to a better understanding of this phenomenon bringing an experimental validation of a pedestrian walking model and a Human-Structure Interaction model. In this study, a bi-dimensional bipedal walking model was used to represent the pedestrians along with an interaction model which was applied to a prototype footbridge. Numerical models were implemented in MATLAB. In parallel, experimental tests were conducted in the Structures Laboratory of COPPE (LabEst), at Federal University of Rio de Janeiro. Different test subjects were asked to walk at different walking speeds over instrumented force platforms to measure the walking force and an accelerometer was placed at the waist of each subject to measure the acceleration of the center of mass at the same time. By fitting the step force and the center of mass acceleration through successive numerical simulations, the model parameters are estimated. In addition, experimental data of a walking pedestrian on a flexible structure was used to validate the interaction model presented, through the comparison of the measured and simulated structural response at mid span. It was found that the pedestrian model was able to adequately reproduce the ground reaction force and the center of mass acceleration for normal and slow walking speeds, being less efficient for faster speeds. Numerical simulations showed that biomechanical parameters such as leg stiffness and damping affect the ground reaction force, and the higher the walking speed the greater the leg length of the model. Besides, the interaction model was also capable to estimate with good approximation the structural response, that remained in the same order of magnitude as the measured response. Some differences in frequency spectra were observed, which are presumed to be due to the perfectly periodic loading representation, neglecting intra-subject variabilities. In conclusion, this work showed that the bipedal walking model could be used to represent walking pedestrians since it was efficient to reproduce the center of mass movement and ground reaction forces produced by humans. Furthermore, although more experimental validations are required, the interaction model also seems to be a useful framework to estimate the dynamic response of structures under loads induced by walking pedestrians.Keywords: biodynamic models, bipedal walking models, human induced loads, human structure interaction
Procedia PDF Downloads 1327367 Personal Characteristics and Personality Traits as Predictors of Compassion Fatigue among Counselors from Dominican Schools in the Philippines
Authors: Neil Jordan M. Uy, Fe Pelilia V. Hernandez
Abstract:
A counselor is always regarded as a professional who embodies the willingness to help others through the process of counseling. He is knowledgeable and skillful of the different theories, tools, and techniques that are useful in aiding the client to cope with their dilemmas. The negative experiences of the clients that are shared during the counseling session can affect the professional counselor. Compassion fatigue, a professional impairment, is characterized by the decline of one’s productivity and the feeling of anxiety and stress brought about as the counselor empathizes, listens, and cares for others. This descriptive type of research aimed to explore variables that are predictors of compassion fatigue utilizing three research instruments; Demographic Profile Sheet, Professional Quality of Life Scale, and Neo-Pi-R. The 52 respondents of this study were counselors from the different Dominican schools in the Philippines. Generally, the counselors have low level of compassion fatigue across personal characteristics (age, gender, years of service, highest educational attainment, and professional status) and personality traits (extraversion, agreeableness, conscientiousness, openness, and neuroticism). ANOVA validated the findings of this that among the personal characteristics and personality traits, extraversion with f-value of 3.944 and p-value of 0.026, and conscientiousness, with f-value of 4.125 and p-value of 0.022 were found to have significant difference in the level of compassion fatigue. A very significant difference was observed with neuroticism with f-value of 6.878 and p-value 0.002. Among the personal characteristics and personal characteristics, only neuroticism was found to predict compassion fatigue. The computed r2 value of 0.204 using multiple regression analysis suggests that 20.4 percent of compassion fatigue can be predicted by neuroticism. The predicting power of neuroticism can be computed from the regression model Y=0.156x+26.464; where x is the number of neuroticism.Keywords: big five personality traits, compassion fatigue, counselors, professional quality of life scale
Procedia PDF Downloads 3787366 Evaluation of Environmental Disclosures on Financial Performance of Quoted Industrial Goods Manufacturing Sectors in Nigeria (2011 – 2020)
Authors: C. C. Chima, C. J. M. Anumaka
Abstract:
This study evaluates environmental disclosures on the financial performance of quoted industrial goods manufacturing sectors in Nigeria. The study employed a quasi-experimental research design to establish the relationship that exists between the environmental disclosure index and financial performance indices (return on assets - ROA, return on equity - ROE, and earnings per share - EPS). A purposeful sampling technique was employed to select five (5) industrial goods manufacturing sectors quoted on the Nigerian Stock Exchange. Secondary data covering 2011 to 2020 financial years were extracted from annual reports of the study sectors using a content analysis method. The data were analyzed using SPSS, Version 23. Panel Ordinary Least Squares (OLS) regression method was employed in estimating the unknown parameters in the study’s regression model after conducting diagnostic and preliminary tests to ascertain that the data set are reliable and not misleading. Empirical results show that there is an insignificant negative relationship between the environmental disclosure index (EDI) and the performance indices (ROA, ROE, and EPS) of the industrial goods manufacturing sectors in Nigeria. The study recommends that: only relevant information which increases the performance indices should appear on the disclosure checklist; environmental disclosure practices should be country-specific; and company executives in Nigeria should increase and monitor the level of investment (resources, time, and energy) in order to ensure that environmental disclosure has a significant impact on financial performance.Keywords: earnings per share, environmental disclosures, return on assets, return on equity
Procedia PDF Downloads 857365 Research on Residential Block Fabric: A Case Study of Hangzhou West Area
Abstract:
Residential block construction of big cities in China began in the 1950s, and four models had far-reaching influence on modern residential block in its development process, including unit compound and residential district in 1950s to 1980s, and gated community and open community in 1990s to now. Based on analysis of the four models’ fabric, the article takes residential blocks in Hangzhou west area as an example and carries on the studies from urban structure level and block special level, mainly including urban road network, land use, community function, road organization, public space and building fabric. At last, the article puts forward semi-open sub-community strategy to improve the current fabric.Keywords: Hangzhou west area, residential block model, residential block fabric, semi-open sub-community strategy
Procedia PDF Downloads 4177364 An Analysis of Socio-Demographics, Living Conditions, and Physical and Emotional Child Abuse Patterns in the Context of the 2010 Haiti Earthquake
Authors: Sony Subedi, Colleen Davison, Susan Bartels
Abstract:
Objective: The aim of this study is to i) investigate the socio-demographics and living conditions of households in Haiti pre- and post 2010 earthquake, ii) determine the household prevalence of emotional and physical abuse in children (aged 2-14) after the earthquake, and iii) explore the association between earthquake-related loss and experience of emotional and physical child abuse in the household while considering potential confounding variables and the interactive effects of a number of social, economic, and demographic factors. Methods: A nationally representative sample of Haitian households from the 2005/6 and 2012 phases of the Demographic and Health Surveys (DHS) was used. Descriptive analysis was summarized using frequencies and measures of central tendency. Chi-squared and independent t-tests were used to compare data that was available pre-earthquake and post-earthquake. The association between experiences of earthquake-related loss and emotional and physical child abuse was assessed using log-binomial regression models. Results: Comparing pre-post-earthquake, noteworthy improvements were observed in the educational attainment of the household head (9.1% decrease in “no education” category) and in possession of the following household items: electricity, television, mobile-phone, and radio post-earthquake. Approximately 77.0% of children aged 2-14 experienced at least one form of physical abuse and 78.5% of children experienced at least one form of emotional abuse one month prior to the 2012 survey period. Analysis regarding the third objective (association between experiences of earthquake-related loss and emotional and physical child abuse) is in progress. Conclusions: The extremely high prevalence of emotional and physical child abuse in Haiti indicates an immediate need for improvements in the enforcement of existing policies and interventions aimed at decreasing child abuse in the household.Keywords: Haiti earthquake, physical abuse, emotional abuse, natural disasters, children
Procedia PDF Downloads 1847363 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier
Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh
Abstract:
This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems
Procedia PDF Downloads 447362 Effects of Cacao Agroforestry and Landscape Composition on Farm Biodiversity and Household Dietary Diversity
Authors: Marlene Yu Lilin Wätzold, Wisnu Harto Adiwijoyo, Meike Wollni
Abstract:
Land-use conversion from tropical forests to cash crop production in the form of monocultures has drastic consequences for biodiversity. Meanwhile, high dependence on cash crop production is often associated with a decrease in other food crop production, thereby affecting household dietary diversity. Additionally, deforestation rates have been found to reduce households’ dietary diversity, as forests often offer various food sources. Agroforestry systems are seen as a potential solution to improve local biodiversity as well as provide a range of provisioning ecosystem services, such as timber and other food crops. While a number of studies have analyzed the effects of agroforestry on biodiversity, as well as household livelihood indicators, little is understood between potential trade-offs or synergies between the two. This interdisciplinary study aims to fill this gap by assessing cacao agroforestry’s role in enhancing local bird diversity, as well as farm household dietary diversity. Additionally, we will take a landscape perspective and investigate in what ways the landscape composition, such as the proximity to forests and forest patches, are able to contribute to the local bird diversity, as well as households’ dietary diversity. Our study will take place in two agro-ecological zones in Ghana, based on household surveys of 500 cacao farm households. Using a subsample of 120 cacao plots, we will assess the degree of shade tree diversity and density using drone flights and a computer vision tree detection algorithm. Bird density and diversity will be assessed using sound recordings that will be kept in the cacao plots for 24 hours. Landscape compositions will be assessed via remote sensing images. The results of our study are of high importance as they will allow us to understand the effects of agroforestry and landscape composition in improving simultaneous ecosystem services.Keywords: agroforestry, biodiversity, landscape composition, nutrition
Procedia PDF Downloads 1137361 Debriefing Practices and Models: An Integrative Review
Authors: Judson P. LaGrone
Abstract:
Simulation-based education in curricula was once a luxurious component of nursing programs but now serves as a vital element of an individual’s learning experience. A debriefing occurs after the simulation scenario or clinical experience is completed to allow the instructor(s) or trained professional(s) to act as a debriefer to guide a reflection with a purpose of acknowledging, assessing, and synthesizing the thought process, decision-making process, and actions/behaviors performed during the scenario or clinical experience. Debriefing is a vital component of the simulation process and educational experience to allow the learner(s) to progressively build upon past experiences and current scenarios within a safe and welcoming environment with a guided dialog to enhance future practice. The aim of this integrative review was to assess current practices of debriefing models in simulation-based education for health care professionals and students. The following databases were utilized for the search: CINAHL Plus, Cochrane Database of Systemic Reviews, EBSCO (ERIC), PsycINFO (Ovid), and Google Scholar. The advanced search option was useful to narrow down the search of articles (full text, Boolean operators, English language, peer-reviewed, published in the past five years). Key terms included debrief, debriefing, debriefing model, debriefing intervention, psychological debriefing, simulation, simulation-based education, simulation pedagogy, health care professional, nursing student, and learning process. Included studies focus on debriefing after clinical scenarios of nursing students, medical students, and interprofessional teams conducted between 2015 and 2020. Common themes were identified after the analysis of articles matching the search criteria. Several debriefing models are addressed in the literature with similarities of effectiveness for participants in clinical simulation-based pedagogy. Themes identified included (a) importance of debriefing in simulation-based pedagogy, (b) environment for which debriefing takes place is an important consideration, (c) individuals who should conduct the debrief, (d) length of debrief, and (e) methodology of the debrief. Debriefing models supported by theoretical frameworks and facilitated by trained staff are vital for a successful debriefing experience. Models differed from self-debriefing, facilitator-led debriefing, video-assisted debriefing, rapid cycle deliberate practice, and reflective debriefing. A reoccurring finding was centered around the emphasis of continued research for systematic tool development and analysis of the validity and effectiveness of current debriefing practices. There is a lack of consistency of debriefing models among nursing curriculum with an increasing rate of ill-prepared faculty to facilitate the debriefing phase of the simulation.Keywords: debriefing model, debriefing intervention, health care professional, simulation-based education
Procedia PDF Downloads 142