Search results for: logistic regression model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18895

Search results for: logistic regression model

16915 Artificial Neural Network to Predict the Optimum Performance of Air Conditioners under Environmental Conditions in Saudi Arabia

Authors: Amr Sadek, Abdelrahaman Al-Qahtany, Turkey Salem Al-Qahtany

Abstract:

In this study, a backpropagation artificial neural network (ANN) model has been used to predict the cooling and heating capacities of air conditioners (AC) under different conditions. Sufficiently large measurement results were obtained from the national energy-efficiency laboratories in Saudi Arabia and were used for the learning process of the ANN model. The parameters affecting the performance of the AC, including temperature, humidity level, specific heat enthalpy indoors and outdoors, and the air volume flow rate of indoor units, have been considered. These parameters were used as inputs for the ANN model, while the cooling and heating capacity values were set as the targets. A backpropagation ANN model with two hidden layers and one output layer could successfully correlate the input parameters with the targets. The characteristics of the ANN model including the input-processing, transfer, neurons-distance, topology, and training functions have been discussed. The performance of the ANN model was monitored over the training epochs and assessed using the mean squared error function. The model was then used to predict the performance of the AC under conditions that were not included in the measurement results. The optimum performance of the AC was also predicted under the different environmental conditions in Saudi Arabia. The uncertainty of the ANN model predictions has been evaluated taking into account the randomness of the data and lack of learning.

Keywords: artificial neural network, uncertainty of model predictions, efficiency of air conditioners, cooling and heating capacities

Procedia PDF Downloads 74
16914 Dynamic Investigation of Brake Squeal Problem in The Presence of Kinematic Nonlinearities

Authors: Shahroz Khan, Osman Taha Şen

Abstract:

In automotive brake systems, brake noise has been a major problem, and brake squeal is one of the critical ones which is an instability issue. The brake squeal produces an audible sound at high frequency that is irritating to the human ear. To study this critical problem, first a nonlinear mathematical model with three degree of freedom is developed. This model consists of a point mass that simulates the brake pad and a sliding surface that simulates the brake rotor. The model exposes kinematic and clearance nonlinearities, but no friction nonlinearity. In the formulation, the friction coefficient is assumed to be constant and the friction force does not change direction. The nonlinear governing equations of the model are first obtained, and numerical solutions are sought for different cases. Second, a computational model for the squeal problem is developed with a commercial software, and computational solutions are obtained with two different types of contact cases (solid-to-solid and sphere-to-plane). This model consists of three rigid bodies and several elastic elements that simulate the key characteristics of a brake system. The response obtained from this model is compared with numerical solutions in time and frequency domain.

Keywords: contact force, nonlinearities, brake squeal, vehicle brake

Procedia PDF Downloads 246
16913 Development of a Wind Resource Assessment Framework Using Weather Research and Forecasting (WRF) Model, Python Scripting and Geographic Information Systems

Authors: Jerome T. Tolentino, Ma. Victoria Rejuso, Jara Kaye Villanueva, Loureal Camille Inocencio, Ma. Rosario Concepcion O. Ang

Abstract:

Wind energy is rapidly emerging as the primary source of electricity in the Philippines, although developing an accurate wind resource model is difficult. In this study, Weather Research and Forecasting (WRF) Model, an open source mesoscale Numerical Weather Prediction (NWP) model, was used to produce a 1-year atmospheric simulation with 4 km resolution on the Ilocos Region of the Philippines. The WRF output (netCDF) extracts the annual mean wind speed data using a Python-based Graphical User Interface. Lastly, wind resource assessment was produced using a GIS software. Results of the study showed that it is more flexible to use Python scripts than using other post-processing tools in dealing with netCDF files. Using WRF Model, Python, and Geographic Information Systems, a reliable wind resource map is produced.

Keywords: wind resource assessment, weather research and forecasting (WRF) model, python, GIS software

Procedia PDF Downloads 442
16912 The Process of Crisis: Model of Its Development in the Organization

Authors: M. Mikušová

Abstract:

The main aim of this paper is to present a clear and comprehensive picture of the process of a crisis in the organization which will help to better understand its possible developments. For a description of the sequence of individual steps and an indication of their causation and possible variants of the developments, a detailed flow diagram with verbal comment is applied. For simplicity, the process of the crisis is observed in four basic phases called: symptoms of the crisis, diagnosis, action and prevention. The model highlights the complexity of the phenomenon of the crisis and that the various phases of the crisis are interweaving.

Keywords: crisis, management, model, organization

Procedia PDF Downloads 291
16911 Classification Based on Deep Neural Cellular Automata Model

Authors: Yasser F. Hassan

Abstract:

Deep learning structure is a branch of machine learning science and greet achievement in research and applications. Cellular neural networks are regarded as array of nonlinear analog processors called cells connected in a way allowing parallel computations. The paper discusses how to use deep learning structure for representing neural cellular automata model. The proposed learning technique in cellular automata model will be examined from structure of deep learning. A deep automata neural cellular system modifies each neuron based on the behavior of the individual and its decision as a result of multi-level deep structure learning. The paper will present the architecture of the model and the results of simulation of approach are given. Results from the implementation enrich deep neural cellular automata system and shed a light on concept formulation of the model and the learning in it.

Keywords: cellular automata, neural cellular automata, deep learning, classification

Procedia PDF Downloads 198
16910 Determinants of Maternal Near-Miss among Women in Public Hospital Maternity Wards in Northern Ethiopia: A Facility Based Case-Control Study

Authors: Dejene Ermias Mekango, Mussie Alemayehu, Gebremedhin Berhe Gebregergs, Araya Abrha Medhanye, Gelila Goba

Abstract:

Background: Maternal near miss (MNM) can be used as a proxy indicator of maternal mortality ratio. There is a huge gap in life time risk between Sub-Saharan Africa and developed countries. In Ethiopia, a significant number of women die each year from complications during pregnancy, childbirth and the post-partum period. Besides, a few studies have been performed on MNM, and little is known regarding determinant factors. This study aims to identify determinants of MNM among women in Tigray region, Northern Ethiopia. Methods: a case-control study in hospital found in Tigray region, Ethiopia was conducted from January 30 - March 30, 2016. The sample included 103 cases and 205 controls recruited from women seeking obstetric care at six public hospitals. Clients having a life-threatening obstetric complication including haemorrhage, hypertensive diseases of pregnancy, dystocia, infections, and anemia or clinical signs of severe anemia in women without haemorrhage were taken as cases and those with normal obstetric outcomes were considered as controls. Cases were selected based on proportional to size allocation while systematic sampling was employed for controls. Data were analyzed using SPSS version 20.0. Binary and multiple variable logistic regression (odds ratio) analyses were calculated with 95% CI. Results: The largest proportion of cases and controls was among the ages of20–29 years, accounting for37.9 %( 39) of cases and 31.7 %( 65) of controls. Roughly 90% of cases and controls were married. About two-thirds of controls and 45.6 %( 47) of cases had gestational age between 37-41 weeks. History of chronic medical conditions was reported in 55.3 %(57) of cases and 33.2%(68) of controls. Women with no formal education [AOR=3.2;95%CI:1.24, 8.12],being less than 16 years old at first pregnancy [AOR=2.5; 95%CI:1.12,5.63],induced labor[AOR=3; 95%CI:1.44, 6.17], history of Cesarean section (C-section) [AOR=4.6; 95%CI: 1.98, 7.61] or chronic medical disorder[AOR=3.5;95%CI:1.78, 6.93], and women who traveled more than 60 minutes before reaching their final place of care[AOR=2.8;95% CI: 1.19,6.35] all had higher odds of experiencing MNM. Conclusions: The Government of Ethiopia should continue its effort to address the lack of road and health facility access as well as education, which will help reduce MNM. Work should also be continued to educate women and providers about common predictors of MNM like the history of C-section, chronic illness, and teenage pregnancy. These efforts should be carried out at the facility, community, and individual levels. The targeted follow-up to women with a history of chronic disease and C-section could also be a practical way to reduce MNM.

Keywords: maternal near miss, severe obstetric hemorrhage, hypertensive disorder, c-section, Tigray, Ethiopia

Procedia PDF Downloads 222
16909 Optimization of Scheduling through Altering Layout Using Pro-Model

Authors: Zouhair Issa Ahmed, Ahmed Abdulrasool Ahmed, Falah Hassan Abdulsada

Abstract:

This paper presents a layout of a factory using Pro-Model simulation by choosing the best layout that gives the highest productivity and least work in process. The general problem is to find the best sequence in which jobs pass between the machines which are compatible with the technological constraints and optimal with respect to some performance criteria. The best simulation with Pro-Model program increased productivity and reduced work in process by balancing lines of production compared with the current layout of factory when productivity increased from 45 products to 180 products through 720 hours.

Keywords: scheduling, Pro-Model, simulation, balancing lines of production, layout planning, WIP

Procedia PDF Downloads 636
16908 The Comparative Analysis of International Financial Reporting Standart Adoption through Earnings Response Coefficient and Conservatism Principle: Case Study in Jakarta Islamic Index 2010 – 2014

Authors: Dwi Wijiastutik, Tarjo, Yuni Rimawati

Abstract:

The purpose of this empirical study is to analyse how to the market reaction and the conservative degree changes on the adoption of International Financial Reporting Standart (IFRS) through Jakarta Islamic Index. The study also has given others additional analysis on the profitability, capital structure and size company toward IFRS adoption. The data collection methods used in this study reveals as secondary data and deep analysis to the company’s annual report and daily price stock at yahoo finance. We analyse 40 companies listed on Jakarta Islamic Index from 2010 to 2014. The result of the study concluded that IFRS has given a different on the depth analysis to the two of variance analysis: Moderated Regression Analysis and Wilcoxon Signed Rank to test developed hypotheses. Our result on the regression analysis shows that market response and conservatism principle is not significantly after IFRS Adoption in Jakarta Islamic Index. Furthermore, in addition, analysis on profitability, capital structure, and company size show that significantly after IFRS adoption. The findings of our study help investor by showing the impact of IFRS for making decided investment.

Keywords: IFRS, earnings response coefficient, conservatism principle

Procedia PDF Downloads 273
16907 Potential Effects of Green Infrastructures on the Land Surface Temperatures in Arid Areas

Authors: Adila Shafqat

Abstract:

Climate change and urbanization has changed the face of many cities in developing countries. Urbanization is linked with land use and land cover change, that is further intensify by the effects of changing climates. Green infrastructures provide numerous ecosystem services which effect the physical set up of the cities in the long run. Land surface temperatures is considered as defining parameter in the studies of the thermal impact on the land cover. Current study is conducted in the semi-arid urban areas of the Bahawalpur region. Accordingly, Land Surface Temperatures and land cover maps are derived from Landsat image through remote sensing techniques. The cooling impact of green infrastructure is determined by calculating land surface temperature of buffered zones around green infrastructures. A regression model is applied for results. It is seen that land surface temperature around green infrastructures in 1 to 3 degrees lower than the built up surroundings. The result indicates that the urban green infrastructures should be planned according to the local needs and characteristics of landuse so that they can effectively tackle land surface temperatures of urban areas.

Keywords: climate change, surface temperatures, green spaces, urban planning

Procedia PDF Downloads 120
16906 Analysing Causal Effect of London Cycle Superhighways on Traffic Congestion

Authors: Prajamitra Bhuyan

Abstract:

Transport operators have a range of intervention options available to improve or enhance their networks. But often such interventions are made in the absence of sound evidence on what outcomes may result. Cycling superhighways were promoted as a sustainable and healthy travel mode which aims to cut traffic congestion. The estimation of the impacts of the cycle superhighways on congestion is complicated due to the non-random assignment of such intervention over the transport network. In this paper, we analyse the causal effect of cycle superhighways utilising pre-innervation and post-intervention information on traffic and road characteristics along with socio-economic factors. We propose a modeling framework based on the propensity score and outcome regression model. The method is also extended to doubly robust set-up. Simulation results show the superiority of the performance of the proposed method over existing competitors. The method is applied to analyse a real dataset on the London transport network, and the result would help effective decision making to improve network performance.

Keywords: average treatment effect, confounder, difference-in-difference, intelligent transportation system, potential outcome

Procedia PDF Downloads 240
16905 Commercial Automobile Insurance: A Practical Approach of the Generalized Additive Model

Authors: Nicolas Plamondon, Stuart Atkinson, Shuzi Zhou

Abstract:

The insurance industry is usually not the first topic one has in mind when thinking about applications of data science. However, the use of data science in the finance and insurance industry is growing quickly for several reasons, including an abundance of reliable customer data, ferocious competition requiring more accurate pricing, etc. Among the top use cases of data science, we find pricing optimization, customer segmentation, customer risk assessment, fraud detection, marketing, and triage analytics. The objective of this paper is to present an application of the generalized additive model (GAM) on a commercial automobile insurance product: an individually rated commercial automobile. These are vehicles used for commercial purposes, but for which there is not enough volume to apply pricing to several vehicles at the same time. The GAM model was selected as an improvement over GLM for its ease of use and its wide range of applications. The model was trained using the largest split of the data to determine model parameters. The remaining part of the data was used as testing data to verify the quality of the modeling activity. We used the Gini coefficient to evaluate the performance of the model. For long-term monitoring, commonly used metrics such as RMSE and MAE will be used. Another topic of interest in the insurance industry is to process of producing the model. We will discuss at a high level the interactions between the different teams with an insurance company that needs to work together to produce a model and then monitor the performance of the model over time. Moreover, we will discuss the regulations in place in the insurance industry. Finally, we will discuss the maintenance of the model and the fact that new data does not come constantly and that some metrics can take a long time to become meaningful.

Keywords: insurance, data science, modeling, monitoring, regulation, processes

Procedia PDF Downloads 76
16904 The Reliability and Shape of the Force-Power-Velocity Relationship of Strength-Trained Males Using an Instrumented Leg Press Machine

Authors: Mark Ashton Newman, Richard Blagrove, Jonathan Folland

Abstract:

The force-velocity profile of an individual has been shown to influence success in ballistic movements, independent of the individuals' maximal power output; therefore, effective and accurate evaluation of an individual’s F-V characteristics and not solely maximal power output is important. The relatively narrow range of loads typically utilised during force-velocity profiling protocols due to the difficulty in obtaining force data at high velocities may bring into question the accuracy of the F-V slope along with predictions pertaining to the maximum force that the system can produce at a velocity of null (F₀) and the theoretical maximum velocity against no load (V₀). As such, the reliability of the slope of the force-velocity profile, as well as V₀, has been shown to be relatively poor in comparison to F₀ and maximal power, and it has been recommended to assess velocity at loads closer to both F₀ and V₀. The aim of the present study was to assess the relative and absolute reliability of an instrumented novel leg press machine which enables the assessment of force and velocity data at loads equivalent to ≤ 10% of one repetition maximum (1RM) through to 1RM during a ballistic leg press movement. The reliability of maximal and mean force, velocity, and power, as well as the respective force-velocity and power-velocity relationships and the linearity of the force-velocity relationship, were evaluated. Sixteen male strength-trained individuals (23.6 ± 4.1 years; 177.1 ± 7.0 cm; 80.0 ± 10.8 kg) attended four sessions; during the initial visit, participants were familiarised with the leg press, modified to include a mounted force plate (Type SP3949, Force Logic, Berkshire, UK) and a Micro-Epsilon WDS-2500-P96 linear positional transducer (LPT) (Micro-Epsilon, Merseyside, UK). Peak isometric force (IsoMax) and a dynamic 1RM, both from a starting position of 81% leg length, were recorded for the dominant leg. Visits two to four saw the participants carry out the leg press movement at loads equivalent to ≤ 10%, 30%, 50%, 70%, and 90% 1RM. IsoMax was recorded during each testing visit prior to dynamic F-V profiling repetitions. The novel leg press machine used in the present study appears to be a reliable tool for measuring F and V-related variables across a range of loads, including velocities closer to V₀ when compared to some of the findings within the published literature. Both linear and polynomial models demonstrated good to excellent levels of reliability for SFV and F₀ respectively, with reliability for V₀ being good using a linear model but poor using a 2nd order polynomial model. As such, a polynomial regression model may be most appropriate when using a similar unilateral leg press setup to predict maximal force production capabilities due to only a 5% difference between F₀ and obtained IsoMax values with a linear model being best suited to predict V₀.

Keywords: force-velocity, leg-press, power-velocity, profiling, reliability

Procedia PDF Downloads 58
16903 Turbulent Forced Convection of Cu-Water Nanofluid: CFD Models Comparison

Authors: I. Behroyan, P. Ganesan, S. He, S. Sivasankaran

Abstract:

This study compares the predictions of five types of Computational Fluid Dynamics (CFD) models, including two single-phase models (i.e. Newtonian and non-Newtonian) and three two-phase models (Eulerian-Eulerian, mixture and Eulerian-Lagrangian), to investigate turbulent forced convection of Cu-water nanofluid in a tube with a constant heat flux on the tube wall. The Reynolds (Re) number of the flow is between 10,000 and 25,000, while the volume fraction of Cu particles used is in the range of 0 to 2%. The commercial CFD package of ANSYS-Fluent is used. The results from the CFD models are compared with results from experimental investigations from literature. According to the results of this study, non-Newtonian single-phase model, in general, does not show a good agreement with Xuan and Li correlation in prediction of Nu number. Eulerian-Eulerian model gives inaccurate results expect for φ=0.5%. Mixture model gives a maximum error of 15%. Newtonian single-phase model and Eulerian-Lagrangian model, in overall, are the recommended models. This work can be used as a reference for selecting an appreciate model for future investigation. The study also gives a proper insight about the important factors such as Brownian motion, fluid behavior parameters and effective nanoparticle conductivity which should be considered or changed by the each model.

Keywords: heat transfer, nanofluid, single-phase models, two-phase models

Procedia PDF Downloads 484
16902 Particle Filter Implementation of a Non-Linear Dynamic Fall Model

Authors: T. Kobayashi, K. Shiba, T. Kaburagi, Y. Kurihara

Abstract:

For the elderly living alone, falls can be a serious problem encountered in daily life. Some elderly people are unable to stand up without the assistance of a caregiver. They may become unconscious after a fall, which can lead to serious aftereffects such as hypothermia, dehydration, and sometimes even death. We treat the subject as an inverted pendulum and model its angle from the equilibrium position and its angular velocity. As the model is non-linear, we implement the filtering method with a particle filter which can estimate true states of the non-linear model. In order to evaluate the accuracy of the particle filter estimation results, we calculate the root mean square error (RMSE) between the estimated angle/angular velocity and the true values generated by the simulation. The experimental results give the highest accuracy RMSE of 0.0141 rad and 0.1311 rad/s for the angle and angular velocity, respectively.

Keywords: fall, microwave Doppler sensor, non-linear dynamics model, particle filter

Procedia PDF Downloads 212
16901 Power Circuit Schemes in AC Drive is Made by Condition of the Minimum Electric Losses

Authors: M. A. Grigoryev, A. N. Shishkov, D. A. Sychev

Abstract:

The article defines the necessity of choosing the optimal power circuits scheme of the electric drive with field regulated reluctance machine. The specific weighting factors are calculation, the linear regression dependence of specific losses in semiconductor frequency converters are presented depending on the values of the rated current. It is revealed that with increase of the carrier frequency PWM improves the output current waveform, but increases the loss, so you will need depending on the task in a certain way to choose from the carrier frequency. For task of optimization by criterion of the minimum electrical losses regression dependence of the electrical losses in the frequency converter circuit at a frequency of a PWM signal of 0 Hz. The surface optimization criterion is presented depending on the rated output torque of the motor and number of phases. In electric drives with field regulated reluctance machine with at low output power optimization criterion appears to be the worst for multiphase circuits. With increasing output power this trend hold true, but becomes insignificantly different optimal solutions for three-phase and multiphase circuits. This is explained to the linearity of the dependence of the electrical losses from the current.

Keywords: field regulated reluctance machine, the electrical losses, multiphase power circuit, the surface optimization criterion

Procedia PDF Downloads 295
16900 A Gastro-Intestinal Model for a Rational Design of in vitro Systems to Study Drugs Bioavailability

Authors: Pompa Marcello, Mauro Capocelli, Vincenzo Piemonte

Abstract:

This work focuses on a mathematical model able to describe the gastro-intestinal physiology and providing a rational tool for the design of an artificial gastro-intestinal system. This latter is mainly devoted to analyse the absorption and bioavailability of drugs and nutrients through in vitro tests in order to overcome (or, at least, to partially replace) in vivo trials. The provided model realizes a conjunction ring (with extended prediction capability) between in vivo tests and mechanical-laboratory models emulating the human body. On this basis, no empirical equations controlling the gastric emptying are implemented in this model as frequent in the cited literature and all the sub-unit and the related system of equations are physiologically based. More in detail, the model structure consists of six compartments (stomach, duodenum, jejunum, ileum, colon and blood) interconnected through pipes and valves. Paracetamol, Ketoprofen, Irbesartan and Ketoconazole are considered and analysed in this work as reference drugs. The mathematical model has been validated against in vivo literature data. Results obtained show a very good model reliability and highlight the possibility to realize tailored simulations for different couples patient-drug, including food adsorption dynamics.

Keywords: gastro-intestinal model, drugs bioavailability, paracetamol, ketoprofen

Procedia PDF Downloads 168
16899 Wind Turbine Wake Prediction and Validation under a Stably-Stratified Atmospheric Boundary Layer

Authors: Yilei Song, Linlin Tian, Ning Zhao

Abstract:

Turbulence energetics and structures in the wake of large-scale wind turbines under the stably-stratified atmospheric boundary layer (SABL) can be complicated due to the presence of low-level jets (LLJs), a region of higher wind speeds than the geostrophic wind speed. With a modified one-k-equation, eddy viscosity model specified for atmospheric flows as the sub-grid scale (SGS) model, a realistic atmospheric state of the stable ABL is well reproduced by large-eddy simulation (LES) techniques. Corresponding to the precursor stably stratification, the detailed wake properties of a standard 5-MW wind turbine represented as an actuator line model are provided. An engineering model is proposed for wake prediction based on the simulation statistics and gets validated. Results confirm that the proposed wake model can provide good predictions for wind turbines under the SABL.

Keywords: large-eddy simulation, stably-stratified atmospheric boundary layer, wake model, wind turbine wake

Procedia PDF Downloads 174
16898 Basic One-Dimensional Modelica®-Model for Simulation of Gas-Phase Adsorber Dynamics

Authors: Adrian Rettig, Silvan Schneider, Reto Tamburini, Mirko Kleingries, Ulf Christian Muller

Abstract:

Industrial adsorption processes are, mainly due to si-multaneous heat and mass transfer, characterized by a high level of complexity. The conception of such processes often does not take place systematically; instead scale-up/down respectively number-up/down methods based on existing systems are used. This paper shows how Modelica® can be used to develop a transient model enabling a more systematic design of such ad- and desorption components and processes. The core of this model is a lumped-element submodel of a single adsorbent grain, where the thermodynamic equilibria and the kinetics of the ad- and desorption processes are implemented and solved on the basis of mass-, momentum and energy balances. For validation of this submodel, a fixed bed adsorber, whose characteristics are described in detail in the literature, was modeled and simulated. The simulation results are in good agreement with the experimental results from the literature. Therefore, the model development will be continued, and the extended model will be applied to further adsorber types like rotor adsorbers and moving bed adsorbers.

Keywords: adsorption, desorption, linear driving force, dynamic model, Modelica®, integral equation approach

Procedia PDF Downloads 371
16897 Forecasting Stock Prices Based on the Residual Income Valuation Model: Evidence from a Time-Series Approach

Authors: Chen-Yin Kuo, Yung-Hsin Lee

Abstract:

Previous studies applying residual income valuation (RIV) model generally use panel data and single-equation model to forecast stock prices. Unlike these, this paper uses Taiwan longitudinal data to estimate multi-equation time-series models such as Vector Autoregressive (VAR), Vector Error Correction Model (VECM), and conduct out-of-sample forecasting. Further, this work assesses their forecasting performance by two instruments. In favor of extant research, the major finding shows that VECM outperforms other three models in forecasting for three stock sectors over entire horizons. It implies that an error correction term containing long-run information contributes to improve forecasting accuracy. Moreover, the pattern of composite shows that at longer horizon, VECM produces the greater reduction in errors, and performs substantially better than VAR.

Keywords: residual income valuation model, vector error correction model, out of sample forecasting, forecasting accuracy

Procedia PDF Downloads 316
16896 Modeling of a Pendulum Test Including Skin and Muscles under Compression

Authors: M. J. Kang, Y. N. Jo, H. H. Yoo

Abstract:

Pendulum tests were used to identify a stretch reflex and diagnose spasticity. Some researches tried to make a mathematical model to simulate the motions. Thighs are subject to compressive forces due to gravity during a pendulum test. Therefore, it affects knee trajectories. However, the most studies on the pendulum tests did not consider that conditions. We used Kelvin-Voight model as compression model of skin and muscles. In this study, we investigated viscoelastic behaviors of skin and muscles using gelatin blocks from experiments of the vibration of the compliantly supported beam. Then we calculated a dynamic stiffness and loss factors from the experiment and estimated a damping coefficient of the model. We also did pendulum tests of human lower limbs to validate the stiffness and damping coefficient of a skin model. To simulate the pendulum motion, we derive equations of motion. We used stretch reflex activation model to estimate muscle forces induced by the stretch reflex. To validate the results, we compared the activation with electromyography signals during experiments. The compression behavior of skin and muscles in this study can be applied to analyze sitting posture as wee as developing surgical techniques.

Keywords: Kelvin-Voight model, pendulum test, skin and muscles under compression, stretch reflex

Procedia PDF Downloads 445
16895 Healthcare Associated Infections in an Intensive Care Unit in Tunisia: Incidence and Risk Factors

Authors: Nabiha Bouafia, Asma Ben Cheikh, Asma Ammar, Olfa Ezzi, Mohamed Mahjoub, Khaoula Meddeb, Imed Chouchene, Hamadi Boussarsar, Mansour Njah

Abstract:

Background: Hospital acquired infections (HAI) cause significant morbidity, mortality, length of stay and hospital costs, especially in the intensive care unit (ICU), because of the debilitated immune systems of their patients and exposure to invasive devices. The aims of this study were to determine the rate and the risk factors of HAI in an ICU of a university hospital in Tunisia. Materials/Methods: A prospective study was conducted in the 8-bed adult medical ICU of a University Hospital (Sousse Tunisia) during 14 months from September 15th, 2015 to November 15th, 2016. Patients admitted for more than 48h were included. Their surveillance was stopped after the discharge from ICU or death. HAIs were defined according to standard Centers for Disease Control and Prevention criteria. Risk factors were analyzed by conditional stepwise logistic regression. The p-value of < 0.05 was considered significant. Results: During the study, 192 patients had admitted for more than 48 hours. Their mean age was 59.3± 18.20 years and 57.1% were male. Acute respiratory failure was the main reason of admission (72%). The mean SAPS II score calculated at admission was 32.5 ± 14 (range: 6 - 78). The exposure to the mechanical ventilation (MV) and the central venous catheter were observed in 169 (88 %) and 144 (75 %) patients, respectively. Seventy-three patients (38.02%) developed 94 HAIs. The incidence density of HAIs was 41.53 per 1000 patient day. Mortality rate in patients with HAIs was 65.8 %( n= 48). Regarding the type of infection, Ventilator Associated Pneumoniae (VAP) and central venous catheter Associated Infections (CVC AI) were the most frequent with Incidence density: 14.88/1000 days of MV for VAP and 20.02/1000 CVC days for CVC AI. There were 5 Peripheral Venous Catheter Associated Infections, 2 urinary tract infections, and 21 other HAIs. Gram-negative bacteria were the most common germs identified in HAIs: Multidrug resistant Acinetobacter Baumanii (45%) and Klebsiella pneumoniae (10.96%) were the most frequently isolated. Univariate analysis showed that transfer from another hospital department (p= 0.001), intubation (p < 10-4), tracheostomy (p < 10-4), age (p=0.028), grade of acute respiratory failure (p=0.01), duration of sedation (p < 10-4), number of CVC (p < 10-4), length of mechanical ventilation (p < 10-4) and length of stay (p < 10-4), were associated to high risk of HAIS in ICU. Multivariate analysis reveals that independent risk factors for HAIs are: transfer from another hospital department: OR=13.44, IC 95% [3.9, 44.2], p < 10-4, duration of sedation: OR= 1.18, IC 95% [1.049, 1.325], p=0.006, high number of CVC: OR=2.78, IC 95% [1.73, 4.487], p < 10-4, and length of stay in ICU: OR= 1.14, IC 95% [1.066,1.22], p < 10-4. Conclusion: Prevention of nosocomial infections in ICUs is a priority of health care systems all around the world. Yet, their control requires an understanding of epidemiological data collected in these units.

Keywords: healthcare associated infections, incidence, intensive care unit, risk factors

Procedia PDF Downloads 369
16894 Application of Fractional Model Predictive Control to Thermal System

Authors: Aymen Rhouma, Khaled Hcheichi, Sami Hafsi

Abstract:

The article presents an application of Fractional Model Predictive Control (FMPC) to a fractional order thermal system using Controlled Auto Regressive Integrated Moving Average (CARIMA) model obtained by discretization of a continuous fractional differential equation. Moreover, the output deviation approach is exploited to design the K -step ahead output predictor, and the corresponding control law is obtained by solving a quadratic cost function. Experiment results onto a thermal system are presented to emphasize the performances and the effectiveness of the proposed predictive controller.

Keywords: fractional model predictive control, fractional order systems, thermal system, predictive control

Procedia PDF Downloads 411
16893 Deposit Characteristics of Jakarta, Indonesia: A Stratigraphy Study of Jakarta Subsurface

Authors: Girlly Marchlina Listyono, Abdurrokhim Abdurrokhim, Emi Sukiyah, Pulung Arya Pranantya

Abstract:

Jakarta Area is composed by deposit which has various lithology characteristics. Based on its lithology types, colors, textures, mineral dan organic content from 22 wells scattered on Jakarta, lithofacies analysis and intra-wells data correlation can be done. From the analysis, it can be interpretated that Jakarta deposit deposited in marine, transition and terrestrial depositional environments. Terrestrial deposit characterized by domination of relatively coarse clastics and content of remaining roots, woods, plants, high content of quartz, lithic fragment, calcareous and oxidated appearace. The thickness of terrestrial deposit is thickening to south. Transitional deposit characterized by fine to medium clastics with dark color, high content of organic matter, various thickness in any ways. Marine deposit characterized by finer clastics, contain remain of shells, fosil, coral, limestone fragments, glauconites, calcareous. Marine deposit relatively thickening to north. Those lateral variety caused by tectonic, subsidence and stratigraphic condition. Deposition of Jakarta deposit from the data research was started on marine depositional environment which surrounded by the event of cycle of regression and transgression then ended with regression which ongoing until form shore line in north Jakarta nowadays.

Keywords: deposit, Indonesia, Jakarta, sediment, stratigraphy

Procedia PDF Downloads 254
16892 Knowledge of Sexually Transmitted Infections and Socio-Demographic Factors Affecting High Risk Sex among Unmarried Youths in Nigeria

Authors: Obasanjo Afolabi Bolarinwa

Abstract:

This study assesses the levels of knowledge of sexually transmitted infections among unmarried youths in Nigeria; examines the pattern of high risk sex among unmarried youths in Nigeria; investigate the socio-demographic factors (age, place of residence, religion, level of education, wealth index and employment status) affecting the practice of high-risk sexual behaviour and ascertain the relationships between knowledge of sexually transmitted infections and practice of high risk sex. The goal of the study is to identify the factors associated with the practice of high risk sex among youth. These were with a view to identifying critical actions needed to reduce high risk sexual behaviour among youths. The study employed secondary data. The data for the study were extracted from the 2013 Nigeria Demographic and Health Survey (NDHS). The 2013 NDHS collected information from 38,948 Women ages 15-49 years and 17,359 men ages 15-49. A total of 7,744 female and 6,027 male respondents were utilized in the study. In order to adjust for the effect of oversampling of the population, the weighting factor provided by Measure DHS was applied. The data were analysed using frequency distribution and logistic regression. The results show that both male (92.2%) and female (93.6%) have accurate knowledge of sexually transmitted infections. The study also revealed that prevalence of high risk sexual behavior is high among Nigerian youths; this is evident as 77.7% (female) and 78.4% (male) are engaging in high risk sexual behavior. The bivariate analysis shows that age of respondent (χ2=294.2; p < 0.05), religion (χ2=136.64; p < 0.05), wealth index (χ2=17.38; p < 0.05), level of education (χ2=34.73; p < 0.05) and employment status (χ2=94.54; p < 0.05) were individual factors significantly associated with high risk sexual behaviour among male while age of respondent (χ2=327.07; p < 0.05), place of residence (χ2=6.71; p < 0.05), religion (χ2=81.04; p < 0.05), wealth index (χ2=7.41; p < 0.05), level of education (χ2=18.12; p < 0.05) and employment status (χ2=51.02; p < 0.05) were individual factors significantly associated with high risk sexual behaviour among female. Furthermore, the study shows that there is a relationship between knowledge of sexually transmitted infections and high risk sex among male (χ2=38.32; p < 0.05) and female (χ2=18.37; p < 0.05). At multivariate level, the study revealed that individual characteristics such as age, religion, place of residence, wealth index, levels of education and employment status were statistically significantly related with high risk sexual behaviour among male and female (p < 0.05). Lastly, the study shows that knowledge of sexually transmitted infection was significantly related to high risk sexual behaviour among youths (p < 0.05). The study concludes that there is a high level of knowledge of sexually transmitted infections among unmarried youths in Nigeria. The practice of high risk sex is high among unmarried youths but higher among male youths. The prevalence of high risk sexual activity is higher for males when they are at disadvantage and higher for females when they are at advantage. Socio-demographic factors like age of respondents, religion, wealth index, place of residence, employment status and highest level of education are factors influencing high risk sexual behaviour among youths.

Keywords: high risk sex, wealth index, sexual behaviour, knowledge

Procedia PDF Downloads 254
16891 Modelling Sudden Deaths from Myocardial Infarction and Stroke

Authors: Y. S. Yusoff, G. Streftaris, H. R Waters

Abstract:

Death within 30 days is an important factor to be looked into, as there is a significant risk of deaths immediately following or soon after, Myocardial Infarction (MI) or stroke. In this paper, we will model the deaths within 30 days following a Myocardial Infarction (MI) or stroke in the UK. We will see how the probabilities of sudden deaths from MI or stroke have changed over the period 1981-2000. We will model the sudden deaths using a Generalized Linear Model (GLM), fitted using the R statistical package, under a Binomial distribution for the number of sudden deaths. We parameterize our model using the extensive and detailed data from the Framingham Heart Study, adjusted to match UK rates. The results show that there is a reduction for the sudden deaths following a MI over time but no significant improvement for sudden deaths following a stroke.

Keywords: sudden deaths, myocardial infarction, stroke, ischemic heart disease

Procedia PDF Downloads 286
16890 3D Modelling and Numerical Analysis of Human Inner Ear by Means of Finite Elements Method

Authors: C. Castro-Egler, A. Durán-Escalante, A. García-González

Abstract:

This paper presents a method to generate a finite element model of the human auditory inner ear system. The geometric model has been realized using 2D images from a virtual model of temporal bones. A point cloud has been gotten manually from those images to construct a whole mesh with hexahedral elements. The main difference with the predecessor models is the spiral shape of the cochlea with its three scales completely defined: scala tympani, scala media and scala vestibuli; which are separate by basilar membrane and Reissner membrane. To validate this model, numerical simulations have been realised with two models: an isolated inner ear and a whole model of human auditory system. Ideal conditions of displacement are applied over the oval window in the isolated Inner Ear model. The whole model is made up of the outer auditory channel, the tympani, the ossicular chain, and the inner ear. The boundary condition for the whole model is 1Pa over the auditory channel entrance. The numerical simulations by FEM have been done using a harmonic analysis with a frequency range between 100-10.000 Hz with an interval of 100Hz. The following results have been carried out: basilar membrane displacement; the scala media pressure according to the cochlea length and the transfer function of the middle ear normalized with the pressure in the tympanic membrane. The basilar membrane displacements and the pressure in the scala media make it possible to validate the response in frequency of the basilar membrane.

Keywords: finite elements method, human auditory system model, numerical analysis, 3D modelling cochlea

Procedia PDF Downloads 362
16889 Documents Emotions Classification Model Based on TF-IDF Weighting Measure

Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees

Abstract:

Emotions classification of text documents is applied to reveal if the document expresses a determined emotion from its writer. As different supervised methods are previously used for emotion documents’ classification, in this research we present a novel model that supports the classification algorithms for more accurate results by the support of TF-IDF measure. Different experiments have been applied to reveal the applicability of the proposed model, the model succeeds in raising the accuracy percentage according to the determined metrics (precision, recall, and f-measure) based on applying the refinement of the lexicon, integration of lexicons using different perspectives, and applying the TF-IDF weighting measure over the classifying features. The proposed model has also been compared with other research to prove its competence in raising the results’ accuracy.

Keywords: emotion detection, TF-IDF, WEKA tool, classification algorithms

Procedia PDF Downloads 484
16888 An Automatic Speech Recognition Tool for the Filipino Language Using the HTK System

Authors: John Lorenzo Bautista, Yoon-Joong Kim

Abstract:

This paper presents the development of a Filipino speech recognition tool using the HTK System. The system was trained from a subset of the Filipino Speech Corpus developed by the DSP Laboratory of the University of the Philippines-Diliman. The speech corpus was both used in training and testing the system by estimating the parameters for phonetic HMM-based (Hidden-Markov Model) acoustic models. Experiments on different mixture-weights were incorporated in the study. The phoneme-level word-based recognition of a 5-state HMM resulted in an average accuracy rate of 80.13 for a single-Gaussian mixture model, 81.13 after implementing a phoneme-alignment, and 87.19 for the increased Gaussian-mixture weight model. The highest accuracy rate of 88.70% was obtained from a 5-state model with 6 Gaussian mixtures.

Keywords: Filipino language, Hidden Markov Model, HTK system, speech recognition

Procedia PDF Downloads 480
16887 Prediction of the Torsional Vibration Characteristics of a Rotor-Shaft System Using Its Scale Model and Scaling Laws

Authors: Jia-Jang Wu

Abstract:

This paper presents the scaling laws that provide the criteria of geometry and dynamic similitude between the full-size rotor-shaft system and its scale model, and can be used to predict the torsional vibration characteristics of the full-size rotor-shaft system by manipulating the corresponding data of its scale model. The scaling factors, which play fundamental roles in predicting the geometry and dynamic relationships between the full-size rotor-shaft system and its scale model, for torsional free vibration problems between scale and full-size rotor-shaft systems are firstly obtained from the equation of motion of torsional free vibration. Then, the scaling factor of external force (i.e., torque) required for the torsional forced vibration problems is determined based on the Newton’s second law. Numerical results show that the torsional free and forced vibration characteristics of a full-size rotor-shaft system can be accurately predicted from those of its scale models by using the foregoing scaling factors. For this reason, it is believed that the presented approach will be significant for investigating the relevant phenomenon in the scale model tests.

Keywords: torsional vibration, full-size model, scale model, scaling laws

Procedia PDF Downloads 396
16886 Paternal Postpartum Depression and Its Relationship to Maternal Depression

Authors: Fatemeh Abdollahi, Mehran Zarghami, Jamshid Yazdani Jarati, Mun-Sunn Lye

Abstract:

Fathers may be at risk of depression during the postpartum period. Some studies have been reported maternal depression is the key predictor of paternal postpartum depression (PPD). This study aimed to explore this association. Using a cross-sectional study design, 591 couples referring to primary health centers at 2-8 weeks postpartum (during 2017) were recruited. Couples screened for depression using Edinburgh Postnatal Depression Scale (EPDS). Data on socio-demographic characteristics and psychosocial factors was also gathered. Paternal PPD was analyzed in relation to maternal PPD and other related factors using multiple regressions. The prevalence of Paternal and maternal postpartum depression was 15.7% (93) and 31.8% (188), respectively. The regression model showed that there was increased risk of PPD in fathers whose wives experienced PPD [OR=1.15, (95%CI: 1.04-1.27)], who had a lower state of general health [OR=1.21, (95%CI: 1.11-1.33)], who experienced increased number of life events [OR=1.42, (95%CI: 1.01-1.2.00)], and who were at older age [OR=1.20, (95%CI: 1.05- 1.36)]. Also, there was a decreased risk of depression in fathers with more children compared with those with fewer children [OR=0.20, (95%CI: 0.07-0.53)]. Maternal PPD and psychosocial risk factors were the strong predictors of parental PPD. Being grown up in a family with two depressed parents are an important issue for children and needs futher research and attention.

Keywords: Father, Mother, Postpartum depression, Risk factors

Procedia PDF Downloads 146