Search results for: language learning model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24181

Search results for: language learning model

22201 Negativization: A Focus Strategy in Basà Language

Authors: Imoh Philip

Abstract:

Basà language is classified as belonging to Kainji family, under the sub-phylum Western-Kainji known as Rubasa (Basa Benue) (Croizier & Blench, 1992:32). Basà is an under-described language spoken in the North-Central Nigeria. The language is characterized by subject-verb-object (henceforth SVO) as its canonical word order. Data for this work is sourced from the researcher’s native intuition of the language corroborated with a careful observation of native speakers. This paper investigates the syntactic derivational strategy of information-structure encoding in Basà language. It emphasizes on a negative operator, as a strategy for focusing a constituent or clause that follows it and negativizes a whole proposition. For items that are not nouns, they have to undergo an obligatory nominalization process, either by affixation, modification or conversion before they are moved to the pre verbal position for these operations. The study discovers and provides evidence of the fact showing that deferent constituents in the sentence such as the subject, direct, indirect object, genitive, verb phrase, prepositional phrase, clause and idiophone, etc. can be focused with the same negativizing operator. The process is characterized by focusing the pre verbal NP constituent alone, whereas the whole proposition is negated. The study can stimulate similar study or be replicated in other languages.

Keywords: negation, focus, Basà, nominalization

Procedia PDF Downloads 597
22200 Scaling Siamese Neural Network for Cross-Domain Few Shot Learning in Medical Imaging

Authors: Jinan Fiaidhi, Sabah Mohammed

Abstract:

Cross-domain learning in the medical field is a research challenge as many conditions, like in oncology imaging, use different imaging modalities. Moreover, in most of the medical learning applications, the sample training size is relatively small. Although few-shot learning (FSL) through the use of a Siamese neural network was able to be trained on a small sample with remarkable accuracy, FSL fails to be effective for use in multiple domains as their convolution weights are set for task-specific applications. In this paper, we are addressing this problem by enabling FSL to possess the ability to shift across domains by designing a two-layer FSL network that can learn individually from each domain and produce a shared features map with extra modulation to be used at the second layer that can recognize important targets from mix domains. Our initial experimentations based on mixed medical datasets like the Medical-MNIST reveal promising results. We aim to continue this research to perform full-scale analytics for testing our cross-domain FSL learning.

Keywords: Siamese neural network, few-shot learning, meta-learning, metric-based learning, thick data transformation and analytics

Procedia PDF Downloads 57
22199 Reconfigurable Device for 3D Visualization of Three Dimensional Surfaces

Authors: Robson da C. Santos, Carlos Henrique de A. S. P. Coutinho, Lucas Moreira Dias, Gerson Gomes Cunha

Abstract:

The article refers to the development of an augmented reality 3D display, through the control of servo motors and projection of image with aid of video projector on the model. Augmented Reality is a branch that explores multiple approaches to increase real-world view by viewing additional information along with the real scene. The article presents the broad use of electrical, electronic, mechanical and industrial automation for geospatial visualizations, applications in mathematical models with the visualization of functions and 3D surface graphics and volumetric rendering that are currently seen in 2D layers. Application as a 3D display for representation and visualization of Digital Terrain Model (DTM) and Digital Surface Models (DSM), where it can be applied in the identification of canyons in the marine area of the Campos Basin, Rio de Janeiro, Brazil. The same can execute visualization of regions subject to landslides, as in Serra do Mar - Agra dos Reis and Serranas cities both in the State of Rio de Janeiro. From the foregoing, loss of human life and leakage of oil from pipelines buried in these regions may be anticipated in advance. The physical design consists of a table consisting of a 9 x 16 matrix of servo motors, totalizing 144 servos, a mesh is used on the servo motors for visualization of the models projected by a retro projector. Each model for by an image pre-processing, is sent to a server to be converted and viewed from a software developed in C # Programming Language.

Keywords: visualization, 3D models, servo motors, C# programming language

Procedia PDF Downloads 342
22198 Online Language Tandem: Focusing on Intercultural Communication Competence and Non-Verbal Cues

Authors: Amira Benabdelkader

Abstract:

Communication presents the channel by which humankind create and maintain their relationship with others, express themselves, exchange information, learn and teach etc. The context of communication plays a distinctive role in deciding about the language to be used. The term context is mainly used to refer to the interlocutors, their cultures, languages, relationship, physical surrounding that is the communication setting, type of the information to be transmitted, the topic etc. Cultures, on one hand, impose on humans certain behaviours, attitudes, gestures and beliefs. On the other hand, the focus on language is inevitable as it is with its verbal and non-verbal components, a key tool in and for communication. Moreover, each language has its particularity in how people voice, address and express their thoughts, feelings and beliefs. Being in the same setting with people from different cultures and languages and having conversations with them would call upon the intercultural communicative competence. This latter would promote the success of their conversations. Additionally, this competence could manifest in several ways during their interactions, to the extent that no one can predict when and how the interlocutors would use it. The only thing probably that could be confirmed is that the setting and culture would in a way or another intervene and often shape the flow of their communication, if not the whole communication. Therefore, this paper will look at the intercultural communicative competence of language learners when introducing their cultures to each other in an online language tandem (henceforth OLT) using their second and/or foreign language with the L1 language speakers. The participants of this study are Algerian (use L2: French, FL: English), British (L1: English, L2/FL: French). In other words, this current paper will provide a qualitative analysis of the OLT experiment by emphasising how language learners can overcome the cultural differences in an intercultural setting while communicating online using Skype (video conversations) with people from different countries, cultures and L1. The non-verbal cues will have the lion share in the analysis by focusing on how they have been used to maintain this intercultural communication or hinder it through the misinterpretation of gestures, head movements, grimaces etc.

Keywords: intercultural communicative competence, non-verbal cues, online language tandem, Skype

Procedia PDF Downloads 281
22197 Understanding Mental Constructs of Language and Emotion

Authors: Sakshi Ghai

Abstract:

The word ‘emotion’ has been microscopically studied through psychological, anthropological and biological lenses and have indubitably been one of the most researched concepts as, in all situations and reactions that constitute human life, emotions form the very niche of our mutual existence. While understanding the social aspects of cognition, one can realize that emotions are deeply interwoven with language and thereby are pivotal in inducing human actions and behavior. The society or the outward social structure is the result of the inward psychological structure of our human relationships, for the individual is the result of the total experience, knowledge and conduct of man. The aim of this paper is threefold: first, to establish the relation between mental representations of emotions and its neuropsychological connection with language on a conscious and sub-conscious level; secondly, to describe how innate, basic and higher cognitive emotions affect the constantly changing state of an agent and peruse its assistance in determining the moral compass within all beings. Lastly, in the course of this paper, the concept of the architecture of mind is explored considering how it has developed an ability to display adaptive emotional states and responses, which are in sync with the language of thought. For every response to the social environment is so deeply determined by the very social milieu in which one is situated, language has a fundamental role in constructing emotions and articulating behavior. Being linguistic beings, we tend to associate emotion, feelings and other aspects of inwards mental states intrinsically with the language we use. This paper aims to devise a discursive approach to understand how emotions are fabricated, intertwined with the mental constructs further expressed and communicated through the various units of language.

Keywords: mental representation, emotion, language, psychology

Procedia PDF Downloads 289
22196 Fostering Students’ Active Learning in Speaking Class through Project-Based Learning

Authors: Rukminingsih Rukmi

Abstract:

This paper addresses the issue of L2 teaching speaking to ESL students by fostering their active learning through project-based learning. Project-based learning was employed in classrooms where teachers support students by giving sufficient guidance and feedback. The students drive the inquiry, engage in research and discovery, and collaborate effectively with teammates to deliver the final work product. The teacher provides the initial direction and acts as a facilitator along the way. This learning approach is considered helpful for fostering students’ active learning. that the steps in implementing of project-based learning that fosters students’ critical thinking in TEFL class are in the following: (1) Discussing the materials about Speaking Class, (2) Working with the group to construct scenario of ways on speaking practice, (3) Practicing the scenario, (4) Recording the speaking practice into video, and (5) Evaluating the video product. This research is aimed to develop a strategy of teaching speaking by implementing project-based learning to improve speaking skill in the second Semester of English Department of STKIP PGRI Jombang. To achieve the purpose, the researcher conducted action research. The data of the study were gathered through the following instruments: test, observation checklists, and questionnaires. The result was indicated by the increase of students’ average speaking scores from 65 in the preliminary study, 73 in the first cycle, and 82 in the second cycle. Besides, the results of the study showed that project-based learning considered to be appropriate strategy to give students the same amount of chance in practicing their speaking skill and to pay attention in creating a learning situation.

Keywords: active learning, project-based learning, speaking ability, L2 teaching speaking

Procedia PDF Downloads 398
22195 Teaching Tolerance in the Language Classroom through a Text

Authors: Natalia Kasatkina

Abstract:

In an ever-increasing globalization, one’s grasp of diversity and tolerance has never been more indispensable, and it is a vital duty for all those in the field of foreign language teaching to help children cultivate such values. The present study explores the role of DIVERSITY and TOLERANCE in the language classroom and elementary, middle, and high school students’ perceptions of these two concepts. It draws on several theoretical domains of language acquisition, cultural awareness, and school psychology. Relying on these frameworks, the major findings are synthesized, and a paradigm of teaching tolerance through language-teaching is formulated. Upon analysing how tolerant our children are with ‘others’ in and outside the classroom, we have concluded that intolerance and aggression towards the ‘other’ increase with age, and that a feeling of supremacy over migrants and a sense of fear towards them begin to manifest more apparently when the students are in high school. In addition, we have also found that children in elementary school do not exhibit such prejudiced thoughts and behavior, which leads us to the believe that tolerance as well as intolerance are learned. Therefore, it is within our reach to teach our children to be open-minded and accepting. We have used the novel ‘Uncle Tom’s Cabin’ by Harriet Beecher Stowe as a springboard for lessons which are not only targeted at shedding light on the role of language in the modern world, but also aim to stimulate an awareness of cultural diversity. We equally strive to conduct further cross-cultural research in order to solidify the theory behind this study, and thus devise a language-based curriculum which would encourage tolerance through the examination of various literary texts.

Keywords: literary text, tolerance, EFL classroom, word-association test

Procedia PDF Downloads 292
22194 Effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management Solutions

Authors: Tesfaye Mengistu

Abstract:

This thesis aims to investigate the effectiveness of Reinforcement Learning (RL) for Autonomous Energy Management solutions. The study explores the potential of Model Free RL approaches, such as Monte Carlo RL and Q-learning, to improve energy management by autonomously adjusting energy management strategies to maximize efficiency. The research investigates the implementation of RL algorithms for optimizing energy consumption in a single-agent environment. The focus is on developing a framework for the implementation of RL algorithms, highlighting the importance of RL for enabling autonomous systems to adapt quickly to changing conditions and make decisions based on previous experiences. Moreover, the paper proposes RL as a novel energy management solution to address nations' CO2 emission goals. Reinforcement learning algorithms are well-suited to solving problems with sequential decision-making patterns and can provide accurate and immediate outputs to ease the planning and decision-making process. This research provides insights into the challenges and opportunities of using RL for energy management solutions and recommends further studies to explore its full potential. In conclusion, this study provides valuable insights into how RL can be used to improve the efficiency of energy management systems and supports the use of RL as a promising approach for developing autonomous energy management solutions in residential buildings.

Keywords: artificial intelligence, reinforcement learning, monte carlo, energy management, CO2 emission

Procedia PDF Downloads 84
22193 Computer Assisted Learning Module (CALM) for Consumer Electronics Servicing

Authors: Edicio M. Faller

Abstract:

The use of technology in the delivery of teaching and learning is vital nowadays especially in education. Computer Assisted Learning Module (CALM) software is the use of computer in the delivery of instruction with a tailored fit program intended for a specific lesson or a set of topics. The CALM software developed in this study is intended to supplement the traditional teaching methods in technical-vocational (TECH-VOC) instruction specifically the Consumer Electronics Servicing course. There are three specific objectives of this study. First is to create a learning enhancement and review materials on the selected lessons. Second, is to computerize the end-of-chapter quizzes. Third, is to generate a computerized mock exam and summative assessment. In order to obtain the objectives of the study the researcher adopted the Agile Model where the development of the study undergoes iterative and incremental process of the Software Development Life Cycle. The study conducted an acceptance testing using a survey questionnaire to evaluate the CALM software. The results showed that CALM software was generally interpreted as very satisfactory. To further improve the CALM software it is recommended that the program be updated, enhanced and lastly, be converted from stand-alone to a client/server architecture.

Keywords: computer assisted learning module, software development life cycle, computerized mock exam, consumer electronics servicing

Procedia PDF Downloads 393
22192 Professional Development in EFL Classroom: Motivation and Reflection

Authors: Iman Jabbar

Abstract:

Within the scope of professionalism and in order to compete with the modern world, teachers, are expected to develop their teaching skills and activities in addition to their professional knowledge. At the college level, the teacher should be able to face classroom challenges through his engagement with the learning situation to understand the students and their needs. In our field of TESOL, the role of the English teacher is no longer restricted to teaching English texts, but rather he should endeavor to enhance the students’ skills such as communication and critical analysis. Within the literature of professionalism, there are certain strategies and tools that an English teacher should adopt to develop his competence and performance. Reflective practice, which is an exploratory process, is one of these strategies. Another strategy contributing to classroom development is motivation. It is crucial in students’ learning as it affects the quality of learning English in the classroom in addition to determining success or failure as well as language achievement. This is a qualitative study grounded on interpretive perspectives of teachers and students regarding the process of professional development. This study aims at (a) understanding how teachers at the college level conceptualize reflective practice and motivation inside EFL classroom, and (b) exploring the methods and strategies that they implement to practice reflection and motivation. This study and is based on two questions: 1. How do EFL teachers perceive and view reflection and motivation in relation to their teaching and professional development? 2. How can reflective practice and motivation be developed into practical strategies and actions in EFL teachers’ professional context? The study is organized into two parts, theoretical and practical. The theoretical part reviews the literature on the concept of reflective practice and motivation in relation to professional development through providing certain definitions, theoretical models, and strategies. The practical part draws on the theoretical one, however; it is the core of the study since it deals with two issues. It involves the research design, methodology, and methods of data collection, sampling, and data analysis. It ends up with an overall discussion of findings and the researcher's reflections on the investigated topic. In terms of significance, the study is intended to contribute to the field of TESOL at the academic level through the selection of the topic and investigating it from theoretical and practical perspectives. Professional development is the path that leads to enhancing the quality of teaching English as a foreign or second language in a way that suits the modern trends of globalization and advanced technology.

Keywords: professional development, motivation, reflection, learning

Procedia PDF Downloads 451
22191 Modelling Conceptual Quantities Using Support Vector Machines

Authors: Ka C. Lam, Oluwafunmibi S. Idowu

Abstract:

Uncertainty in cost is a major factor affecting performance of construction projects. To our knowledge, several conceptual cost models have been developed with varying degrees of accuracy. Incorporating conceptual quantities into conceptual cost models could improve the accuracy of early predesign cost estimates. Hence, the development of quantity models for estimating conceptual quantities of framed reinforced concrete structures using supervised machine learning is the aim of the current research. Using measured quantities of structural elements and design variables such as live loads and soil bearing pressures, response and predictor variables were defined and used for constructing conceptual quantities models. Twenty-four models were developed for comparison using a combination of non-parametric support vector regression, linear regression, and bootstrap resampling techniques. R programming language was used for data analysis and model implementation. Gross soil bearing pressure and gross floor loading were discovered to have a major influence on the quantities of concrete and reinforcement used for foundations. Building footprint and gross floor loading had a similar influence on beams and slabs. Future research could explore the modelling of other conceptual quantities for walls, finishes, and services using machine learning techniques. Estimation of conceptual quantities would assist construction planners in early resource planning and enable detailed performance evaluation of early cost predictions.

Keywords: bootstrapping, conceptual quantities, modelling, reinforced concrete, support vector regression

Procedia PDF Downloads 206
22190 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning

Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah

Abstract:

Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.

Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning

Procedia PDF Downloads 33
22189 A Study on the Correlation Analysis between the Pre-Sale Competition Rate and the Apartment Unit Plan Factor through Machine Learning

Authors: Seongjun Kim, Jinwooung Kim, Sung-Ah Kim

Abstract:

The development of information and communication technology also affects human cognition and thinking, especially in the field of design, new techniques are being tried. In architecture, new design methodologies such as machine learning or data-driven design are being applied. In particular, these methodologies are used in analyzing the factors related to the value of real estate or analyzing the feasibility in the early planning stage of the apartment housing. However, since the value of apartment buildings is often determined by external factors such as location and traffic conditions, rather than the interior elements of buildings, data is rarely used in the design process. Therefore, although the technical conditions are provided, the internal elements of the apartment are difficult to apply the data-driven design in the design process of the apartment. As a result, the designers of apartment housing were forced to rely on designer experience or modular design alternatives rather than data-driven design at the design stage, resulting in a uniform arrangement of space in the apartment house. The purpose of this study is to propose a methodology to support the designers to design the apartment unit plan with high consumer preference by deriving the correlation and importance of the floor plan elements of the apartment preferred by the consumers through the machine learning and reflecting this information from the early design process. The data on the pre-sale competition rate and the elements of the floor plan are collected as data, and the correlation between pre-sale competition rate and independent variables is analyzed through machine learning. This analytical model can be used to review the apartment unit plan produced by the designer and to assist the designer. Therefore, it is possible to make a floor plan of apartment housing with high preference because it is possible to feedback apartment unit plan by using trained model when it is used in floor plan design of apartment housing.

Keywords: apartment unit plan, data-driven design, design methodology, machine learning

Procedia PDF Downloads 268
22188 Terraria AI: YOLO Interface for Decision-Making Algorithms

Authors: Emmanuel Barrantes Chaves, Ernesto Rivera Alvarado

Abstract:

This paper presents a method to enable agents for the Terraria game to evaluate algorithms commonly used in general video game artificial intelligence competitions. The usage of the ‘You Only Look Once’ model in the first layer of the process obtains information from the screen, translating this information into a video game description language known as “Video Game Description Language”; the agents take that as input to make decisions. For this, the state-of-the-art algorithms were tested and compared; Monte Carlo Tree Search and Rolling Horizon Evolutionary; in this case, Rolling Horizon Evolutionary shows a better performance. This approach’s main advantage is that a VGDL beforehand is unnecessary. It will be built on the fly and opens the road for using more games as a framework for AI.

Keywords: AI, MCTS, RHEA, Terraria, VGDL, YOLOv5

Procedia PDF Downloads 96
22187 Digital Curriculum Preservation Planning, Actions, and Challenges

Authors: Misook Ahn

Abstract:

This study examined the Digital Curriculum Repository (DCR) project initiated at Defense Language Institute Foreign Language Center (DLIFLC). The purpose of the DCR is to build a centralized curriculum infrastructure, preserve all curriculum materials, and provide academic service to users (faculty, students, or other agencies). The DCR collection includes core language curriculum materials developed by each language school—foreign language textbooks, language survival kits, and audio files currently in or not in use at the schools. All core curriculum materials with audio and video files have been coded, collected, and preserved at the DCR. The DCR website was designed with MS SharePoint for easy accessibility by the DLIFLC’s faculty and students. All metadata for the collected curriculum materials have been input by language, code, year, book type, level, user, version, and current status (in use/not in use). The study documents digital curriculum preservation planning, actions, and challenges, including collecting, coding, collaborating, designing DCR SharePoint, and policymaking. DCR Survey data is also collected and analyzed for this research. Based on the finding, the study concludes that the mandatory policy for the DCR system and collaboration with school leadership are critical elements of a successful repository system. The sample collected items, metadata, and DCR SharePoint site are presented in the evaluation section.

Keywords: MS share point, digital preservation, repository, policy

Procedia PDF Downloads 159
22186 Personalize E-Learning System Based on Clustering and Sequence Pattern Mining Approach

Authors: H. S. Saini, K. Vijayalakshmi, Rishi Sayal

Abstract:

Network-based education has been growing rapidly in size and quality. Knowledge clustering becomes more important in personalized information retrieval for web-learning. A personalized-Learning service after the learners’ knowledge has been classified with clustering. Through automatic analysis of learners’ behaviors, their partition with similar data level and interests may be discovered so as to produce learners with contents that best match educational needs for collaborative learning. We present a specific mining tool and a recommender engine that we have integrated in the online learning in order to help the teacher to carry out the whole e-learning process. We propose to use sequential pattern mining algorithms to discover the most used path by the students and from this information can recommend links to the new students automatically meanwhile they browse in the course. We have Developed a specific author tool in order to help the teacher to apply all the data mining process. We tend to report on many experiments with real knowledge so as to indicate the quality of using both clustering and sequential pattern mining algorithms together for discovering personalized e-learning systems.

Keywords: e-learning, cluster, personalization, sequence, pattern

Procedia PDF Downloads 429
22185 Re-Evaluating the Hegemony of English Language in West Africa: A Meta-Analysis Review of the Research, 2003-2018

Authors: Oris Tom-Lawyer, Michael Thomas

Abstract:

This paper seeks to analyse the hegemony of the English language in Western Africa through the lens of educational policies and the socio-economic functions of the language. It is based on the premise that there is a positive link between the English language and development contexts. The study aims to fill a gap in the research literature by examining the usefulness of hegemony as a concept to explain the role of English language in the region, thus countering the negative connotations that often accompany it. The study identified four main research questions: i. What are the socio-economic functions of English in Francophone/lusophone countries? ii. What factors promote the hegemony of English in anglophone countries? iii. To what extent is the hegemony of English in West Africa? iv. What are the implications of the non-hegemony of English in Western Africa? Based on a meta-analysis of the research literature between 2003 and 2018, the findings of the study revealed that in francophone/lusophone countries, English functions in the following socio-economic domains; they are peace keeping missions, regional organisations, commercial and industrial sectors, as an unofficial international language and as a foreign language. The factors that promote linguistic hegemony of English in anglophone countries are English as an official language, a medium of instruction, lingua franca, cultural language, language of politics, language of commerce, channel of development and English for media and entertainment. In addition, the extent of the hegemony of English in West Africa can be viewed from the factors that contribute to the non-hegemony of English in the region; they are French language, Portuguese language, the French culture, neo-colonialism, level of poverty, and economic ties of French to its former colonies. Finally, the implications of the non-hegemony of English language in West Africa are industrial backwardness, poverty rate, lack of social mobility, drop out of school rate, growing interest in English, access to limited internet information and lack of extensive career opportunities. The paper concludes that the hegemony of English has resulted in the development of anglophone countries in Western Africa, while in the francophone/lusophone regions of the continent, industrial backwardness and low literacy rates have been consequences of English language marginalisation. In conclusion, the paper makes several recommendations, including the need for the early introduction of English into French curricula as part of a potential solution.

Keywords: developmental tool, English language, linguistic hegemony, West Africa

Procedia PDF Downloads 141
22184 Phonological Processing and Its Role in Pseudo-Word Decoding in Children Learning to Read Kannada Language between 5.6 to 8.6 Years

Authors: Vangmayee. V. Subban, Somashekara H. S, Shwetha Prabhu, Jayashree S. Bhat

Abstract:

Introduction and Need: Phonological processing is critical in learning to read alphabetical and non-alphabetical languages. However, its role in learning to read Kannada an alphasyllabary is equivocal. The literature has focused on the developmental role of phonological awareness on reading. To the best of authors knowledge, the role of phonological memory and phonological naming has not been addressed in alphasyllabary Kannada language. Therefore, there is a need to evaluate the comprehensive role of the phonological processing skills in Kannada on word decoding skills during the early years of schooling. Aim and Objectives: The present study aimed to explore the phonological processing abilities and their role in learning to decode pseudowords in children learning to read the Kannada language during initial years of formal schooling between 5.6 to 8.6 years. Method: In this cross sectional study, 60 typically developing Kannada speaking children, 20 each from Grade I, Grade II, and Grade III between the age range of 5.6 to 6.6 years, 6.7 to 7.6 years and 7.7 to 8.6 years respectively were selected from Kannada medium schools. Phonological processing abilities were assessed using an assessment tool specifically developed to address the objectives of the present research. The assessment tool was content validated by subject experts and had good inter and intra-subject reliability. Phonological awareness was assessed at syllable level using syllable segmentation, blending, and syllable stripping at initial, medial and final position. Phonological memory was assessed using pseudoword repetition task and phonological naming was assessed using rapid automatized naming of objects. Both phonological awareneness and phonological memory measures were scored for the accuracy of the response, whereas Rapid Automatized Naming (RAN) was scored for total naming speed. Results: The mean scores comparison using one-way ANOVA revealed a significant difference (p ≤ 0.05) between the groups on all the measures of phonological awareness, pseudoword repetition, rapid automatized naming, and pseudoword reading. Subsequent post-hoc grade wise comparison using Bonferroni test revealed significant differences (p ≤ 0.05) between each of the grades for all the tasks except (p ≥ 0.05) for syllable blending, syllable stripping, and pseudoword repetition between Grade II and Grade III. The Pearson correlations revealed a highly significant positive correlation (p=0.000) between all the variables except phonological naming which had significant negative correlations. However, the correlation co-efficient was higher for phonological awareness measures compared to others. Hence, phonological awareness was chosen a first independent variable to enter in the hierarchical regression equation followed by rapid automatized naming and finally, pseudoword repetition. The regression analysis revealed syllable awareness as a single most significant predictor of pseudoword reading by explaining the unique variance of 74% and there was no significant change in R² when RAN and pseudoword repetition were added subsequently to the regression equation. Conclusion: Present study concluded that syllable awareness matures completely by Grade II, whereas the phonological memory and phonological naming continue to develop beyond Grade III. Amongst phonological processing skills, phonological awareness, especially syllable awareness is crucial for word decoding than phonological memory and naming during initial years of schooling.

Keywords: phonological awareness, phonological memory, phonological naming, phonological processing, pseudo-word decoding

Procedia PDF Downloads 175
22183 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran

Authors: Saba Gachpaz, Hamid Reza Heidari

Abstract:

The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. To achieve this, more resources should be consumed and, besides other environmental concerns, highlight sustainable agricultural development. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for ten different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.

Keywords: land suitability, machine learning, random forest, sustainable agriculture

Procedia PDF Downloads 84
22182 Theoretical and ML-Driven Identification of a Mispriced Credit Risk

Authors: Yuri Katz, Kun Liu, Arunram Atmacharan

Abstract:

Due to illiquidity, mispricing on Credit Markets is inevitable. This creates huge challenges to banks and investors as they seek to find new ways of risk valuation and portfolio management in a post-credit crisis world. Here, we analyze the difference in behavior of the spread-to-maturity in investment and high-yield categories of US corporate bonds between 2014 and 2023. Deviation from the theoretical dependency of this measure in the universe under study allows to identify multiple cases of mispriced credit risk. Remarkably, we observe mispriced bonds in both categories of credit ratings. This identification is supported by the application of the state-of-the-art machine learning model in more than 90% of cases. Noticeably, the ML-driven model-based forecasting of a category of bond’s credit ratings demonstrate an excellent out-of-sample accuracy (AUC = 98%). We believe that these results can augment conventional valuations of credit portfolios.

Keywords: credit risk, credit ratings, bond pricing, spread-to-maturity, machine learning

Procedia PDF Downloads 80
22181 Speed Breaker/Pothole Detection Using Hidden Markov Models: A Deep Learning Approach

Authors: Surajit Chakrabarty, Piyush Chauhan, Subhasis Panda, Sujoy Bhattacharya

Abstract:

A large proportion of roads in India are not well maintained as per the laid down public safety guidelines leading to loss of direction control and fatal accidents. We propose a technique to detect speed breakers and potholes using mobile sensor data captured from multiple vehicles and provide a profile of the road. This would, in turn, help in monitoring roads and revolutionize digital maps. Incorporating randomness in the model formulation for detection of speed breakers and potholes is crucial due to substantial heterogeneity observed in data obtained using a mobile application from multiple vehicles driven by different drivers. This is accomplished with Hidden Markov Models, whose hidden state sequence is found for each time step given the observables sequence, and are then fed as input to LSTM network with peephole connections. A precision score of 0.96 and 0.63 is obtained for classifying bumps and potholes, respectively, a significant improvement from the machine learning based models. Further visualization of bumps/potholes is done by converting time series to images using Markov Transition Fields where a significant demarcation among bump/potholes is observed.

Keywords: deep learning, hidden Markov model, pothole, speed breaker

Procedia PDF Downloads 144
22180 Customization of Moodle Open Source LMS for Tanzania Secondary Schools’ Use

Authors: Ellen A. Kalinga

Abstract:

Moodle is an open source learning management system that enables creation of a powerful and flexible learning environment. Many organizations, especially learning institutions have customized Moodle open source LMS for their own use. In general open source LMSs are of great interest due to many advantages they offer in terms of cost, usage and freedom to customize to fit a particular context. Tanzania Secondary School e-Learning (TanSSe-L) system is the learning management system for Tanzania secondary schools. TanSSe-L system was developed using a number of methods, one of them being customization of Moodle Open Source LMS. This paper presents few areas on the way Moodle OS LMS was customized to produce a functional TanSSe-L system fitted to the requirements and specifications of Tanzania secondary schools’ context.

Keywords: LMS, Moodle, e-learning, Tanzania, secondary school

Procedia PDF Downloads 393
22179 Improving Learning and Teaching of Software Packages among Engineering Students

Authors: Sara Moridpour

Abstract:

To meet emerging industry needs, engineering students must learn different software packages and enhance their computational skills. Traditionally, face-to-face is selected as the preferred approach to teaching software packages. Face-to-face tutorials and workshops provide an interactive environment for learning software packages where the students can communicate with the teacher and interact with other students, evaluate their skills, and receive feedback. However, COVID-19 significantly limited face-to-face learning and teaching activities at universities. Worldwide lockdowns and the shift to online and remote learning and teaching provided the opportunity to introduce different strategies to enhance the interaction among students and teachers in online and virtual environments and improve the learning and teaching of software packages in online and blended teaching methods. This paper introduces a blended strategy to teach engineering software packages to undergraduate students. This article evaluates the effectiveness of the proposed blended learning and teaching strategy in students’ learning by comparing the impact of face-to-face, online and the proposed blended environments on students’ software skills. The paper evaluates the students’ software skills and their software learning through an authentic assignment. According to the results, the proposed blended teaching strategy successfully improves the software learning experience among undergraduate engineering students.

Keywords: teaching software packages, undergraduate students, blended learning and teaching, authentic assessment

Procedia PDF Downloads 115
22178 The Effectiveness of Using MS SharePoint for the Curriculum Repository System

Authors: Misook Ahn

Abstract:

This study examines the Institutional Curriculum Repository (ICR) developed with MS SharePoint. The purpose of using MS SharePoint is to organize, share, and manage the curriculum data. The ICR aims to build a centralized curriculum infrastructure, preserve all curriculum materials, and provide academic service to users (faculty, students, or other agencies). The ICR collection includes core language curriculum materials developed by each language school—foreign language textbooks, language survival kits, and audio files currently in or not in use at the schools. All core curriculum materials with audio and video files have been coded, collected, and preserved at the ICR. All metadata for the collected curriculum materials have been input by language, code, year, book type, level, user, version, and current status (in use/not in use). The qualitative content analysis, including the survey data, is used to evaluate the effectiveness of using MS SharePoint for the repository system. This study explains how to manage and preserve curriculum materials with MS SharePoint, along with challenges and suggestions for further research. This study will be beneficial to other universities or organizations considering archiving or preserving educational materials.

Keywords: digital preservation, ms sharepoint, repository, curriculum materials

Procedia PDF Downloads 105
22177 A Machine Learning Approach for the Leakage Classification in the Hydraulic Final Test

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

The widespread use of machine learning applications in production is significantly accelerated by improved computing power and increasing data availability. Predictive quality enables the assurance of product quality by using machine learning models as a basis for decisions on test results. The use of real Bosch production data based on geometric gauge blocks from machining, mating data from assembly and hydraulic measurement data from final testing of directional valves is a promising approach to classifying the quality characteristics of workpieces.

Keywords: machine learning, classification, predictive quality, hydraulics, supervised learning

Procedia PDF Downloads 213
22176 Revisiting High School Students’ Learning Styles in English Subject

Authors: Aroona Hashmi

Abstract:

The prime motive for this endeavor was to explore the tenth grade English class students’ preferred learning styles studying in government secondary school so that English subject teachers could tailor their pedagogical strategies in relation to their students learning needs. The further aim of this study was to identify any significance difference among the students on a gender basis, area basis and different categories of school basis. The population of this study consisting of all the secondary level schools working in the government sector and positioned in the province of Punjab. The multi-stage cluster sampling method was employed while selecting the study sample from the population. The scale used for the identification of students’ learning styles in this study was developed by Grasha-Riechmann. The data collected through learning style scale was analyzed by employing descriptive statistics technique. The results from data analysis depict that learning styles of the majority of students found to be Collaborative and Competitive. Overall, no considerable difference was surfaced between male-female, urban-rural, general-other categories of 10th grade English class students learning styles.

Keywords: learning style, learning style scale, grade, government sector

Procedia PDF Downloads 341
22175 Teaching Young Children Social and Emotional Learning through Shared Book Reading: Project GROW

Authors: Stephanie Al Otaiba, Kyle Roberts

Abstract:

Background and Significance Globally far too many students read below grade level; thus improving literacy outcomes is vital. Research suggests that non-cognitive factors, including Social and Emotional Learning (SEL) are linked to success in literacy outcomes. Converging evidence exists that early interventions are more effective than later remediation; therefore teachers need strategies to support early literacy while developing students’ SEL and their vocabulary, or language, for learning. This presentation describe findings from a US federally-funded project that trained teachers to provide an evidence-based read-aloud program for young children, using commercially available books with multicultural characters and themes to help their students “GROW”. The five GROW SEL themes include: “I can name my feelings”, “I can learn from my mistakes”, “I can persist”, “I can be kind to myself and others”, and “I can work toward and achieve goals”. Examples of GROW vocabulary (from over 100 words taught across the 5 units) include: emotions, improve, resilient, cooperate, accomplish, responsible, compassion, adapt, achieve, analyze. Methodology This study used a mixed methods research design, with qualitative methods to describe data from teacher feedback surveys (regarding satisfaction, feasibility), observations of fidelity of implementation, and with quantitative methods to assess the effect sizes for student vocabulary growth. GROW Intervention and Teacher Training Procedures Researchers trained classroom teachers to implement GROW. Each thematic unit included four books, vocabulary cards with images of the vocabulary words, and scripted lessons. Teacher training included online and in-person training; researchers incorporated virtual reality videos of instructors with child avatars to model lessons. Classroom teachers provided 2-3 20 min lessons per week ranging from short-term (8 weeks) to longer-term trials for up to 16 weeks. Setting and Participants The setting for the study included two large urban charter schools in the South. Data was collected across two years; during the first year, participants included 7 kindergarten teachers and 108 and the second year involved an additional set of 5 kindergarten and first grade teachers and 65 students. Initial Findings The initial qualitative findings indicate teachers reported the lessons to be feasible to implement and they reported that students enjoyed the books. Teachers found the vocabulary words to be challenging and important. They were able to implement lessons with fidelity. Quantitative analyses of growth for each taught word suggest that students’ growth on taught words ranged from large (ES = .75) to small (<.20). Researchers will contrast the effects for more and less successful books within the GROW units. Discussion and Conclusion It is feasible for teachers of young students to effectively teach SEL vocabulary and themes during shared book reading. Teachers and students enjoyed the books and students demonstrated growth on taught vocabulary. Researchers will discuss implications of the study and about the GROW program for researchers in learning sciences, will describe some limitations about research designs that are inherent in school-based research partnerships, and will provide some suggested directions for future research and practice.

Keywords: early literacy, learning science, language and vocabulary, social and emotional learning, multi-cultural

Procedia PDF Downloads 43
22174 Reading Strategy Awareness of English Major Students

Authors: Hsin-Yi Lien

Abstract:

The study explored the role of metacognition in foreign language anxiety on a sample of 411 Taiwanese students of English as a Foreign Language. The reading strategy inventory was employed to evaluate the tertiary learners’ level of metacognitive awareness and a semi-structured background questionnaire was also used to examine the learners’ perceptions of their English proficiency and satisfaction of their current English learning. In addition, gender and academic level differences in employment of reading strategies were investigated. The results showed the frequency of reading strategy use increase slightly along with academic years and males and females actually employ different reading strategies. The EFL tertiary learners in the present study utilized cognitive strategies more frequently than metacognitive strategies or support strategies. Male students use metacognitive strategy more often while female students use cognitive and support strategy more frequently.

Keywords: cognitive strategy, gender differences, metacognitive strategy, support strategy

Procedia PDF Downloads 415
22173 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 136
22172 Teacher Education in a Bilingual Perspective: Brazilian Sign Language and Portuguese

Authors: Neuma Chaveiro, Juliana Guimarães Faria

Abstract:

Introduction: The thematic that guides this study is teacher training for the teaching of sign language in a perspective of bilingual education – specifically aimed at Brazilian public schools that offer inclusive education, and that have, among its students, deaf children who use Brazilian Sign Language as a means of communication and expression. In the Teacher Training Course for Letters/Libras at the Universidade Federal de Goiás/UFG, we developed a bilingual education project for the deaf, linked to PIBID (Institutional Scholarship for Teaching Initiation Program), funded by the Brazilian Federal Government through CAPES (Coordination for the Improvement of Higher Education Personnel). Goals: to provide the education of higher education teachers to work in public schools in basic education and to insert students from the UFG’s Letters/Libras course in the school’s daily life, giving them the opportunity for the creation and participation in methodological experiences and of teaching practices in order to overcome the problems identified in the teaching-learning process of deaf students, in a bilingual perspective, associating Libras (Brazilian Sign Language) and Portuguese. Methodology: qualitative approach and research-action, prioritizing action – reflection – action of the people involved. The Letters-Libras PIBID of the College of Letters/UFG, in this qualitative context, is guided by the assumptions of investigation-action to contribute to the education of the Libras teacher. Results: production of studies and researches in the area of education, professionalization and teaching practice for the degree holder in Letters: Libras; b) studies, research and training in bilingual education; c) clarification and discussion of the myths that permeate the reality of users of sign languages; d) involving students in the development of didactic materials for bilingual education. Conclusion: the PIBID Project Letters/Libras allows, both to the basic education school and to the teachers in training for the teaching of Libras, an integrated and collective work partnership, with discussions and changes in relation to bilingual education for the deaf and the teaching of Libras.

Keywords: deaf, sign language, teacher training, educacion

Procedia PDF Downloads 297