Search results for: data mining applications and discovery
28895 Router 1X3 - RTL Design and Verification
Authors: Nidhi Gopal
Abstract:
Routing is the process of moving a packet of data from source to destination and enables messages to pass from one computer to another and eventually reach the target machine. A router is a networking device that forwards data packets between computer networks. It is connected to two or more data lines from different networks (as opposed to a network switch, which connects data lines from one single network). This paper mainly emphasizes upon the study of router device, its top level architecture, and how various sub-modules of router i.e. Register, FIFO, FSM and Synchronizer are synthesized, and simulated and finally connected to its top module.Keywords: data packets, networking, router, routing
Procedia PDF Downloads 81728894 Blockchain Security in MANETs
Authors: Nada Mouchfiq, Ahmed Habbani, Chaimae Benjbara
Abstract:
The security aspect of the IoT occupies a place of great importance especially after the evolution that has known this field lastly because it must take into account the transformations and the new applications .Blockchain is a new technology dedicated to the data sharing. However, this does not work the same way in the different systems with different operating principles. This article will discuss network security using the Blockchain to facilitate the sending of messages and information, enabling the use of new processes and enabling autonomous coordination of devices. To do this, we will discuss proposed solutions to ensure a high level of security in these networks in the work of other researchers. Finally, our article will propose a method of security more adapted to our needs as a team working in the ad hoc networks, this method is based on the principle of the Blockchain and that we named ”MPR Blockchain”.Keywords: Ad hocs networks, blockchain, MPR, security
Procedia PDF Downloads 18728893 Maintaining the Tension between the Classic Seduction Theory and the Role of Unconscious Fantasies
Authors: Galit Harel
Abstract:
This article describes the long-term psychoanalytic psychotherapy of a young woman who had experienced trauma during her childhood. The details of the trauma were unknown, as all memory of the trauma had been repressed. Past trauma is analyzable through a prism of transference, dreaming and dreams, mental states, and thinking processes that offer an opportunity to explore and analyze the influence of both reality and fantasy on the patient. The presented case describes a therapeutic process that strives to discover hidden meanings through the unconscious system and illustrates the movement from unconscious to conscious during exploration of the patient’s personal trauma in treatment. The author discusses the importance of classical and contemporary psychoanalytic models of childhood sexual trauma through the discovery of manifest and latent content, unconscious fantasies, and actual events of trauma. It is suggested that the complexity of trauma is clarified by the tension between these models and by the inclusion of aspects of both of them for a complete understanding.Keywords: dreams, psychoanalytic psychotherapy, thinking processes, transference, trauma
Procedia PDF Downloads 9528892 Genomic Analysis of Whole Genome Sequencing of Leishmania Major
Authors: Fatimazahrae Elbakri, Azeddine Ibrahimi, Meryem Lemrani, Dris Belghyti
Abstract:
Leishmaniasis represents a major public health problem because of the number of cases recorded each year and the wide distribution of the disease. It is a parasitic disease of flagellated protozoa transmitted by the bite of certain species of sandfly, causing a spectrum of clinical pathology in humans ranging from disfiguring skin lesions to fatal visceral leishmaniasis. Cutaneous leishmaniasis due to Leishmania major is a polymorphic disease; in fact, the infection can be asymptomatic, localized, or disseminated. The objective of this work is to determine the genomic diversity that contributes to clinical variability by trying to identify the variation in chromosome number and to extract SNPs and SNPs and InDels; it is based on four sequences (WGS) of Leishmania major available on NCBI in Fastq form, from three countries: Tunisia, Algeria, and Israel, the analysis is set up from a pipeline to facilitate the discovery of genetic diversity, in particular SNP and chromosomal somy.Keywords: Leshmania major, cutaneous Leishmania, NGS, genomic, somy, variant calling
Procedia PDF Downloads 8228891 A Smart Sensor Network Approach Using Affordable River Water Level Sensors
Authors: Dian Zhang, Brendan Heery, Maria O’Neill, Ciprian Briciu-Burghina, Noel E. O’Connor, Fiona Regan
Abstract:
Recent developments in sensors, wireless data communication and the cloud computing have brought the sensor web to a whole new generation. The introduction of the concept of ‘Internet of Thing (IoT)’ has brought the sensor research into a new level, which involves the developing of long lasting, low cost, environment friendly and smart sensors; new wireless data communication technologies; big data analytics algorithms and cloud based solutions that are tailored to large scale smart sensor network. The next generation of smart sensor network consists of several layers: physical layer, where all the smart sensors resident and data pre-processes occur, either on the sensor itself or field gateway; data transmission layer, where data and instructions exchanges happen; the data process layer, where meaningful information is extracted and organized from the pre-process data stream. There are many definitions of smart sensor, however, to summarize all these definitions, a smart sensor must be Intelligent and Adaptable. In future large scale sensor network, collected data are far too large for traditional applications to send, store or process. The sensor unit must be intelligent that pre-processes collected data locally on board (this process may occur on field gateway depends on the sensor network structure). In this case study, three smart sensing methods, corresponding to simple thresholding, statistical model and machine learning based MoPBAS method, are introduced and their strength and weakness are discussed as an introduction to the smart sensing concept. Data fusion, the integration of data and knowledge from multiple sources, are key components of the next generation smart sensor network. For example, in the water level monitoring system, weather forecast can be extracted from external sources and if a heavy rainfall is expected, the server can send instructions to the sensor notes to, for instance, increase the sampling rate or switch on the sleeping mode vice versa. In this paper, we describe the deployment of 11 affordable water level sensors in the Dublin catchment. The objective of this paper is to use the deployed river level sensor network at the Dodder catchment in Dublin, Ireland as a case study to give a vision of the next generation of a smart sensor network for flood monitoring to assist agencies in making decisions about deploying resources in the case of a severe flood event. Some of the deployed sensors are located alongside traditional water level sensors for validation purposes. Using the 11 deployed river level sensors in a network as a case study, a vision of the next generation of smart sensor network is proposed. Each key component of the smart sensor network is discussed, which hopefully inspires the researchers who are working in the sensor research domain.Keywords: smart sensing, internet of things, water level sensor, flooding
Procedia PDF Downloads 38328890 Production of Rhamnolipids from Different Resources and Estimating the Kinetic Parameters for Bioreactor Design
Authors: Olfat A. Mohamed
Abstract:
Rhamnolipids biosurfactants have distinct properties given them importance in many industrial applications, especially their great new future applications in cosmetic and pharmaceutical industries. These applications have encouraged the search for diverse and renewable resources to control the cost of production. The experimental results were then applied to find a suitable mathematical model for obtaining the design criteria of the batch bioreactor. This research aims to produce Rhamnolipids from different oily wastewater sources such as petroleum crude oil (PO) and vegetable oil (VO) by using Pseudomonas aeruginosa ATCC 9027. Different concentrations of the PO and the VO are added to the media broth separately are in arrangement (0.5 1, 1.5, 2, 2.5 % v/v) and (2, 4, 6, 8 and 10%v/v). The effect of the initial concentration of oil residues and the addition of glycerol and palmitic acid was investigated as an inducer in the production of rhamnolipid and the surface tension of the broth. It was found that 2% of the waste (PO) and 6% of the waste (VO) was the best initial substrate concentration for the production of rhamnolipids (2.71, 5.01 g rhamnolipid/l) as arrangement. Addition of glycerol (10-20% v glycerol/v PO) to the 2% PO fermentation broth led to increase the rhamnolipid production (about 1.8-2 times fold). However, the addition of palmitic acid (5 and 10 g/l) to fermentation broth contained 6% VO rarely enhanced the production rate. The experimental data for 2% initially (PO) was used to estimate the various kinetic parameters. The following results were obtained, maximum rate or velocity of reaction (Vmax) = 0.06417 g/l.hr), yield of cell weight per unit weight of substrate utilized (Yx/s = 0.324 g Cx/g Cs) maximum specific growth rate (μmax = 0.05791 hr⁻¹), yield of rhamnolipid weight per unit weight of substrate utilized (Yp/s)=0.2571gCp/g Cs), maintenance coefficient (Ms =0.002419), Michaelis-Menten constant, (Km=6.1237 gmol/l), endogenous decay coefficient (Kd=0.002375 hr⁻¹). Predictive parameters and advanced mathematical models were applied to evaluate the time of the batch bioreactor. The results were as follows: 123.37, 129 and 139.3 hours in respect of microbial biomass, substrate and product concentration, respectively compared with experimental batch time of 120 hours in all cases. The expected mathematical models are compatible with the laboratory results and can, therefore, be considered as tools for expressing the actual system.Keywords: batch bioreactor design, glycerol, kinetic parameters, petroleum crude oil, Pseudomonas aeruginosa, rhamnolipids biosurfactants, vegetable oil
Procedia PDF Downloads 13328889 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests
Authors: Julius Onyancha, Valentina Plekhanova
Abstract:
One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.Keywords: web log data, web user profile, user interest, noise web data learning, machine learning
Procedia PDF Downloads 26728888 Fast Adjustable Threshold for Uniform Neural Network Quantization
Authors: Alexander Goncharenko, Andrey Denisov, Sergey Alyamkin, Evgeny Terentev
Abstract:
The neural network quantization is highly desired procedure to perform before running neural networks on mobile devices. Quantization without fine-tuning leads to accuracy drop of the model, whereas commonly used training with quantization is done on the full set of the labeled data and therefore is both time- and resource-consuming. Real life applications require simplification and acceleration of quantization procedure that will maintain accuracy of full-precision neural network, especially for modern mobile neural network architectures like Mobilenet-v1, MobileNet-v2 and MNAS. Here we present a method to significantly optimize training with quantization procedure by introducing the trained scale factors for discretization thresholds that are separate for each filter. Using the proposed technique, we quantize the modern mobile architectures of neural networks with the set of train data of only ∼ 10% of the total ImageNet 2012 sample. Such reduction of train dataset size and small number of trainable parameters allow to fine-tune the network for several hours while maintaining the high accuracy of quantized model (accuracy drop was less than 0.5%). Ready-for-use models and code are available in the GitHub repository.Keywords: distillation, machine learning, neural networks, quantization
Procedia PDF Downloads 33128887 Meditation Based Brain Painting Promotes Foreign Language Memory through Establishing a Brain-Computer Interface
Authors: Zhepeng Rui, Zhenyu Gu, Caitilin de Bérigny
Abstract:
In the current study, we designed an interactive meditation and brain painting application to cultivate users’ creativity, promote meditation, reduce stress, and improve cognition while attempting to learn a foreign language. User tests and data analyses were conducted on 42 male and 42 female participants to better understand sex-associated psychological and aesthetic differences. Our method utilized brain-computer interfaces to import meditation and attention data to create artwork in meditation-based applications. Female participants showed statistically significantly different language learning outcomes following three meditation paradigms. The art style of brain painting helped females with language memory. Our results suggest that the most ideal methods for promoting memory attention were meditation methods and brain painting exercises contributing to language learning, memory concentration promotion, and foreign word memorization. We conclude that a short period of meditation practice can help in learning a foreign language. These findings provide new insights into meditation, creative language education, brain-computer interface, and human-computer interactions.Keywords: brain-computer interface, creative thinking, meditation, mental health
Procedia PDF Downloads 13328886 Rare-Earth Ions Doped Lithium Niobate Crystals: Luminescence and Raman Spectroscopy
Authors: Ninel Kokanyan, Edvard Kokanyan, Anush Movsesyan, Marc D. Fontana
Abstract:
Lithium Niobate (LN) is one of the widely used ferroelectrics having a wide number of applications such as phase-conjugation, holographic storage, frequency doubling, SAW sensors. Furthermore, the possibility of doping with rare-earth ions leads to new laser applications. Ho and Tm dopants seem interesting due to laser emission obtained at around 2 µm. Raman spectroscopy is a powerful spectroscopic technique providing a possibility to obtain a number of information about physicochemical and also optical properties of a given material. Polarized Raman measurements were carried out on Ho and Tm doped LN crystals with excitation wavelengths of 532nm and 785nm. In obtained Raman anti-Stokes spectra, we detect expected modes according to Raman selection rules. In contrast, Raman Stokes spectra are significantly different compared to what is expected by selection rules. Additional forbidden lines are detected. These lines have quite high intensity and are well defined. Moreover, the intensity of mentioned additional lines increases with an increase of Ho or Tm concentrations in the crystal. These additional lines are attributed to emission lines reflecting the photoluminescence spectra of these crystals. It means that in our case we were able to detect, within a very good resolution, in the same Stokes spectrum, the transitions between the electronic states, and the vibrational states as well. The analysis of these data is reported as a function of Ho and Tm content, for different polarizations and wavelengths, of the incident laser beam. Results also highlight additional information about π and σ polarizations of crystals under study.Keywords: lithium niobate, Raman spectroscopy, luminescence, rare-earth ions doped lithium niobate
Procedia PDF Downloads 22328885 Analyzing Large Scale Recurrent Event Data with a Divide-And-Conquer Approach
Authors: Jerry Q. Cheng
Abstract:
Currently, in analyzing large-scale recurrent event data, there are many challenges such as memory limitations, unscalable computing time, etc. In this research, a divide-and-conquer method is proposed using parametric frailty models. Specifically, the data is randomly divided into many subsets, and the maximum likelihood estimator from each individual data set is obtained. Then a weighted method is proposed to combine these individual estimators as the final estimator. It is shown that this divide-and-conquer estimator is asymptotically equivalent to the estimator based on the full data. Simulation studies are conducted to demonstrate the performance of this proposed method. This approach is applied to a large real dataset of repeated heart failure hospitalizations.Keywords: big data analytics, divide-and-conquer, recurrent event data, statistical computing
Procedia PDF Downloads 17228884 Advancing Environmental Remediation Through the Production of Functional Porous Materials from Phosphorite Residue Tailings
Authors: Ali Mohammed Yimer, Ayalew Assen, Youssef Belmabkhout
Abstract:
Environmental remediation is a pressing global concern, necessitating innovative strategies to address the challenges posed by industrial waste and pollution. This study aims to advance environmental remediation by developing cutting-edge functional porous materials from phosphorite residue tailings. Phosphorite mining activities generate vast amounts of waste, which pose significant environmental risks due to their contaminants. The proposed approach involved transforming these phosphorite residue tailings into valuable porous materials through a series of physico-chemical processes including milling, acid-base leaching, designing or templating as well as formation processes. The key components of the tailings were extracted and processed to produce porous arrays with high surface area and porosity. These materials were engineered to possess specific properties suitable for environmental remediation applications, such as enhanced adsorption capacity and selectivity for target contaminants. The synthesized porous materials were thoroughly characterized using advanced analytical techniques (XRD, SEM-EDX, N2 sorption, TGA, FTIR) to assess their structural, morphological, and chemical properties. The performance of the materials in removing various pollutants, including heavy metals and organic compounds, were evaluated through batch adsorption experiments. Additionally, the potential for material regeneration and reusability was investigated to enhance the sustainability of the proposed remediation approach. The outdoors of this research holds significant promise for addressing the environmental challenges associated with phosphorite residue tailings. By valorizing these waste materials into porous materials with exceptional remediation capabilities, this study contributes to the development of sustainable and cost-effective solutions for environmental cleanup. Furthermore, the utilization of phosphorite residue tailings in this manner offers a potential avenue for the remediation of other contaminated sites, thereby fostering a circular economy approach to waste management.Keywords: functional porous materials, phosphorite residue tailings, adsorption, environmental remediation, sustainable solutions
Procedia PDF Downloads 6528883 Improved Hash Value Based Stream CipherUsing Delayed Feedback with Carry Shift Register
Authors: K. K. Soundra Pandian, Bhupendra Gupta
Abstract:
In the modern era, as the application data’s are massive and complex, it needs to be secured from the adversary attack. In this context, a non-recursive key based integrated spritz stream cipher with the circulant hash function using delayed feedback with carry shift register (d-FCSR) is proposed in this paper. The novelty of this proposed stream cipher algorithm is to engender the improved keystream using d-FCSR. The proposed algorithm is coded using Verilog HDL to produce dynamic binary key stream and implemented on commercially available FPGA device Virtex 5 xc5vlx110t-2ff1136. The implementation of stream cipher using d-FCSR on the FPGA device operates at a maximum frequency of 60.62 MHz. It achieved the data throughput of 492 Mbps and improved in terms of efficiency (throughput/area) compared to existing techniques. This paper also briefs the cryptanalysis of proposed circulant hash value based spritz stream cipher using d-FCSR is against the adversary attack on a hardware platform for the hardware based cryptography applications.Keywords: cryptography, circulant function, field programmable gated array, hash value, spritz stream cipher
Procedia PDF Downloads 25428882 Estimating Leaf Area and Biomass of Wheat Using UAS Multispectral Remote Sensing
Authors: Jackson Parker Galvan, Wenxuan Guo
Abstract:
Unmanned aerial vehicle (UAV) technology is being increasingly adopted in high-throughput plant phenotyping for applications in plant breeding and precision agriculture. Winter wheat is an important cover crop for reducing soil erosion and protecting the environment in the Southern High Plains. Efficiently quantifying plant leaf area and biomass provides critical information for producers to practice site-specific management of crop inputs, such as water and fertilizers. The objective of this study was to estimate wheat biomass and leaf area index using UAV images. This study was conducted in an irrigated field in Garza County, Texas. High-resolution images were acquired on three dates (February 18, March 25, and May 15th ) using a multispectral sensor onboard a Matrice 600 UAV. On each data of image acquisition, 10 random plant samples were collected and measured for biomass and leaf area. Images were stitched using Pix4D, and ArcGIS was applied to overlay sampling locations and derive data for sampling locations.Keywords: precision agriculture, UAV plant phenotyping, biomass, leaf area index, winter wheat, southern high plains
Procedia PDF Downloads 9728881 The Exploration of the Physical Properties of the Combinations of Selenium-Based Ternary Chalcogenides AScSe₂ (A=K, Cs) for Photovoltaic Applications
Authors: Ayesha Asma, Aqsa Arooj
Abstract:
It is an essential need in this era of Science and Technology to investigate some unique and appropriate materials for optoelectronic applications. Here, we deliberated, for the first time, the structural, optoelectronic, mechanical, vibrational, and thermo dynamical properties of hexagonal structure selenium-based ternary chalcogenides AScSe₂ (A= K, Cs) by using Perdew-Burke-Ernzerhof Generalized-Gradient-Approximation (PBE-GGA). The lattice angles for these materials are found as α=β=90o and γ=120o. KScSe₂ optimized with lattice parameters a=b=4.3 (Å), c=7.81 (Å) whereas CsScSe₂ got relaxed at a=b=4.43 (Å) and c=8.51 (Å). However, HSE06 functional has overestimated the lattice parameters to the extent that for KScSe₂ a=b=4.92 (Å), c=7.10 (Å), and CsScSe₂ a=b=5.15 (Å), c=7.09 (Å). The energy band gap of these materials calculated via PBE-GGA and HSE06 functionals confirms their semiconducting nature. Concerning Born’s criteria, these materials are mechanically stable ones. Moreover, the temperature dependence of thermodynamic potentials and specific heat at constant volume are also determined while using the harmonic approximation. The negative values of free energy ensure their thermodynamic stability. The vibrational modes are calculated by plotting the phonon dispersion and the vibrational density of states (VDOS), where infrared (IR) and Raman spectroscopy are used to characterize the vibrational modes. The various optical parameters are examined at a smearing value of 0.5eV. These parameters unveil that these materials are good absorbers of incident light in ultra-violet (UV) regions and may be utilized in photovoltaic applications.Keywords: structural, optimized, vibrational, ultraviolet
Procedia PDF Downloads 4828880 Analyzing the Factors that Cause Parallel Performance Degradation in Parallel Graph-Based Computations Using Graph500
Authors: Mustafa Elfituri, Jonathan Cook
Abstract:
Recently, graph-based computations have become more important in large-scale scientific computing as they can provide a methodology to model many types of relations between independent objects. They are being actively used in fields as varied as biology, social networks, cybersecurity, and computer networks. At the same time, graph problems have some properties such as irregularity and poor locality that make their performance different than regular applications performance. Therefore, parallelizing graph algorithms is a hard and challenging task. Initial evidence is that standard computer architectures do not perform very well on graph algorithms. Little is known exactly what causes this. The Graph500 benchmark is a representative application for parallel graph-based computations, which have highly irregular data access and are driven more by traversing connected data than by computation. In this paper, we present results from analyzing the performance of various example implementations of Graph500, including a shared memory (OpenMP) version, a distributed (MPI) version, and a hybrid version. We measured and analyzed all the factors that affect its performance in order to identify possible changes that would improve its performance. Results are discussed in relation to what factors contribute to performance degradation.Keywords: graph computation, graph500 benchmark, parallel architectures, parallel programming, workload characterization.
Procedia PDF Downloads 15228879 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection
Authors: Tim Farrelly
Abstract:
In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.Keywords: deep learning, object detection, machine vision applications, sport, network design
Procedia PDF Downloads 15228878 Automatic and High Precise Modeling for System Optimization
Authors: Stephanie Chen, Mitja Echim, Christof Büskens
Abstract:
To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization
Procedia PDF Downloads 41028877 Theoretical Investigation of Structural and Electronic Properties of AlBi
Authors: S. Louhibi-Fasla, H. Achour, B. Amrani
Abstract:
The purpose of this work is to provide some additional information to the existing data on the physical properties of AlBi with state-of-the-art first-principles method of the full potential linear augmented plane wave (FPLAPW). Additionally to the structural properties, the electronic properties have also been investigated. The dependence of the volume, the bulk modulus, the variation of the thermal expansion α, as well as the Debye temperature are successfully obtained in the whole range from 0 to 30 GPa and temperature range from 0 to 1200 K. The latter are the basis of solid-state science and industrial applications and their study is of importance to extend our knowledge on their specific behaviour when undergoing severe constraints of high pressure and high temperature environments.Keywords: AlBi, FP-LAPW, structural properties, electronic properties
Procedia PDF Downloads 38528876 Concealed Objects Detection in Visible, Infrared and Terahertz Ranges
Authors: M. Kowalski, M. Kastek, M. Szustakowski
Abstract:
Multispectral screening systems are becoming more popular because of their very interesting properties and applications. One of the most significant applications of multispectral screening systems is prevention of terrorist attacks. There are many kinds of threats and many methods of detection. Visual detection of objects hidden under clothing of a person is one of the most challenging problems of threats detection. There are various solutions of the problem; however, the most effective utilize multispectral surveillance imagers. The development of imaging devices and exploration of new spectral bands is a chance to introduce new equipment for assuring public safety. We investigate the possibility of long lasting detection of potentially dangerous objects covered with various types of clothing. In the article we present the results of comparative studies of passive imaging in three spectrums – visible, infrared and terahertzKeywords: terahertz, infrared, object detection, screening camera, image processing
Procedia PDF Downloads 36028875 A Deep Learning Approach for Optimum Shape Design
Authors: Cahit Perkgöz
Abstract:
Artificial intelligence has brought new approaches to solving problems in almost every research field in recent years. One of these topics is shape design and optimization, which has the possibility of applications in many fields, such as nanotechnology and electronics. A properly constructed cost function can eliminate the need for labeled data required in deep learning and create desired shapes. In this work, the network parameters are optimized differentially, which differs from traditional approaches. The methods are tested for physics-related structures and successful results are obtained. This work is supported by Eskişehir Technical University scientific research project (Project No: 20ADP090)Keywords: deep learning, shape design, optimization, artificial intelligence
Procedia PDF Downloads 15628874 An Architecture Based on Capsule Networks for the Identification of Handwritten Signature Forgery
Authors: Luisa Mesquita Oliveira Ribeiro, Alexei Manso Correa Machado
Abstract:
Handwritten signature is a unique form for recognizing an individual, used to discern documents, carry out investigations in the criminal, legal, banking areas and other applications. Signature verification is based on large amounts of biometric data, as they are simple and easy to acquire, among other characteristics. Given this scenario, signature forgery is a worldwide recurring problem and fast and precise techniques are needed to prevent crimes of this nature from occurring. This article carried out a study on the efficiency of the Capsule Network in analyzing and recognizing signatures. The chosen architecture achieved an accuracy of 98.11% and 80.15% for the CEDAR and GPDS databases, respectively.Keywords: biometrics, deep learning, handwriting, signature forgery
Procedia PDF Downloads 8728873 Decision-Making Process and Its Method: Effective Usage Strategies
Authors: Kubra Korkmaz Onat
Abstract:
Decision-making significantly influences outcomes and shapes future actions, making it a crucial aspect of both personal and professional life. This study examines various decision-making approaches, focusing on their procedures and applications. The rational decision-making model is highlighted for its systematic approach and reliance on data analysis and logical reasoning. Additionally, the study explores consensus, weighted scoring, voting, and brainstorming analysis methods. Key findings indicate that each method has unique strengths and is best suited for specific contexts. The article concludes by offering practical guidance for how to choose the appropriate decision-making approach based on the circumstances.Keywords: decision-making, decision-making process, decision-making methods, group decision-making
Procedia PDF Downloads 1728872 Clean Coal Using Coal Bed Methane: A Pollution Control Mechanism
Authors: Arish Iqbal, Santosh Kumar Singh
Abstract:
Energy from coal is one of the major source of energy throughout the world but taking into consideration its effect on environment 'Clean Coal Technologies' (CCT) came into existence. In this paper we have we studied why CCT’s are essential and what are the different types of CCT’s. Also, the coal and CCT scenario in India is introduced. Coal Bed Methane one of major CCT area is studied in detail. Different types of coal bed methane and its methods of extraction are discussed. The different problem areas during the extraction of CBM are identified and discussed. How CBM can be used as a fuel for future is also discussed.Keywords: CBM (coal bed methane), CCS (carbon capture and storage), CCT (clean coal technology), CMM (coal mining methane)
Procedia PDF Downloads 24428871 Quantification Model for Capability Evaluation of Optical-Based in-Situ Monitoring System for Laser Powder Bed Fusion (LPBF) Process
Authors: Song Zhang, Hui Wang, Johannes Henrich Schleifenbaum
Abstract:
Due to the increasing demand for quality assurance and reliability for additive manufacturing, the development of an advanced in-situ monitoring system is required to monitor the process anomalies as input for further process control. Optical-based monitoring systems, such as CMOS cameras and NIR cameras, are proved as effective ways to monitor the geometrical distortion and exceptional thermal distribution. Therefore, many studies and applications are focusing on the availability of the optical-based monitoring system for detecting varied types of defects. However, the capability of the monitoring setup is not quantified. In this study, a quantification model to evaluate the capability of the monitoring setups for the LPBF machine based on acquired monitoring data of a designed test artifact is presented, while the design of the relevant test artifacts is discussed. The monitoring setup is evaluated based on its hardware properties, location of the integration, and light condition. Methodology of data processing to quantify the capacity for each aspect is discussed. The minimal capability of the detectable size of the monitoring set up in the application is estimated by quantifying its resolution and accuracy. The quantification model is validated using a CCD camera-based monitoring system for LPBF machines in the laboratory with different setups. The result shows the model to quantify the monitoring system's performance, which makes the evaluation of monitoring systems with the same concept but different setups possible for the LPBF process and provides the direction to improve the setups.Keywords: data processing, in-situ monitoring, LPBF process, optical system, quantization model, test artifact
Procedia PDF Downloads 20028870 Global Digital Peer-to-Peer (P2P) Lending Platform Empowering Rural India: Determinants of Funding
Authors: Ankur Mehra, M. V. Shivaani
Abstract:
With increasing digitization, the world is coming closer, not only in terms of informational flow but also in terms of capital flows. And micro-finance institutions (MFIs) have perfectly leveraged this digital world by resorting to the innovative digital social peer-to-peer (P2P) lending platforms, such as, Kiva. These digital P2P platforms bring together micro-borrowers and lenders from across the world. The main objective of this study is to understand the funding preferences of social investors primarily from developed countries (such as US, UK, Australia), lending money to borrowers from rural India at zero interest rates through Kiva. Further, the objective of this study is to increase awareness about such a platform among various MFIs engaged in providing micro-loans to those in need. The sample comprises of India based micro-loan applications posted by various MFIs on Kiva lending platform over the period Sept 2012-March 2016. Out of 7,359 loans, 256 loans failed to get funded by social investors. On an average a micro-loan with 30 days to expiry gets fully funded in 7,593 minutes or 5.27 days. 62% of the loans raised on Kiva are related to livelihood, 32.5% of the loans are for funding basic necessities and balance 5.5% loans are for funding education. 47% of the loan applications have more than one borrower; while, currency exchange risk is on the social lenders for 45% of the loans. Controlling for the loan amount and loan tenure, the analyses suggest that those loan applications where the number of borrowers is more than one have a lower chance of getting funded as compared to the loan applications made by a sole borrower. Such group applications also take more time to get funded. Further, loan application by a solo woman not only has a higher chance of getting funded but as such get funded faster. The results also suggest that those loan applications which are supported by an MFI that has a religious affiliation, not only have a lower chance of getting funded, but also take longer to get funded as compared to the loan applications posted by secular MFIs. The results do not support cross-border currency risk to be a factor in explaining the determinants of loan funding. Finally, analyses suggest that loans raised for the purpose of earning livelihood and education have a higher chance of getting funded and such loans get funded faster as compared to the loans applied for purposes related to basic necessities such a clothing, housing, food, health, and personal use. The results are robust to controls for ‘MFI dummy’ and ‘year dummy’. The key implication from this study is that global social investors tend to develop an emotional connect with single woman borrowers and consequently they get funded faster Hence, MFIs should look for alternative ways for funding loans whose purpose is to meet basic needs; while, more loans related to livelihood and education should be raised via digital platforms.Keywords: P2P lending, social investing, fintech, financial inclusion
Procedia PDF Downloads 14628869 Water Supply and Demand Analysis for Ranchi City under Climate Change Using Water Evaluation and Planning System Model
Authors: Pappu Kumar, Ajai Singh, Anshuman Singh
Abstract:
There are different water user sectors such as rural, urban, mining, subsistence and commercial irrigated agriculture, commercial forestry, industry, power generation which are present in the catchment in Subarnarekha River Basin and Ranchi city. There is an inequity issue in the access to water. The development of the rural area, construction of new power generation plants, along with the population growth, the requirement of unmet water demand and the consideration of environmental flows, the revitalization of small-scale irrigation schemes is going to increase the water demands in almost all the water-stressed catchment. The WEAP Model was developed by the Stockholm Environment Institute (SEI) to enable evaluation of planning and management issues associated with water resources development. The WEAP model can be used for both urban and rural areas and can address a wide range of issues including sectoral demand analyses, water conservation, water rights and allocation priorities, river flow simulation, reservoir operation, ecosystem requirements and project cost-benefit analyses. This model is a tool for integrated water resource management and planning like, forecasting water demand, supply, inflows, outflows, water use, reuse, water quality, priority areas and Hydropower generation, In the present study, efforts have been made to access the utility of the WEAP model for water supply and demand analysis for Ranchi city. A detailed works have been carried out and it was tried to ascertain that the WEAP model used for generating different scenario of water requirement, which could help for the future planning of water. The water supplied to Ranchi city was mostly contributed by our study river, Hatiya reservoir and ground water. Data was collected from various agencies like PHE Ranchi, census data of 2011, Doranda reservoir and meteorology department etc. This collected and generated data was given as input to the WEAP model. The model generated the trends for discharge of our study river up to next 2050 and same time also generated scenarios calculating our demand and supplies for feature. The results generated from the model outputs predicting the water require 12 million litter. The results will help in drafting policies for future regarding water supplies and demands under changing climatic scenarios.Keywords: WEAP model, water demand analysis, Ranchi, scenarios
Procedia PDF Downloads 42228868 Investigation into the Phytochemistry and Biological Activities of Medicinal Plants Used in Algerian Folk Medicine: Potential Use in Human Medicine
Authors: Djebbar Atmani, Dina Kilani, Tristan Richard
Abstract:
Medicinal plants are an important source for the discovery of potential new substances for use in medicine and food. Pistacia lentiscus, Fraxinus angustifolia and Clematis flammula, plants growing in the Mediterranean basin, are widely used in traditional medicine. Therefore, the present study was designed to investigate their antioxidant, anti-inflammatory, antidiabetic, anti-mutagenic/genotoxic and neuroprotective potential and identification of active compounds using appropriate methodology. Plant extracts and fractions exhibited high scavenging capacity against known radicals, enhanced superoxide dismutase and catalase activitiesand restored blood glucose levels, in vivo, to normal values, in agreement with the in vitro enzymatic inhibition data, through inhibition of amylase and glucosidase activities. Administration of Pistacia lentiscus extracts significantly decreased carrageenan-induced mice paw oedema and reduced effectively IL-1β levels in cell culture, whereas Fraxinus angustifolia extracts showed good healing capacity against wounds when applied topically on rabbits. Pistacia lentiscus and Fraxinus angustifolia extracts showed good neuro-protection and restored cognitive functions in mice, while Clematis flammula extracts showed potent anti-ulcerogenic activity associated to a promising anti-mutagenic/genotoxic activity. HPLC-MS and NMR analyses allowed the identification and structural elucidation of several known and new anthocyanins, flavonols and flavanols. Therefore, Pistacia lentiscus, Fraxinus angustifolia and Clematis flammulacould be used in palliative treatments against inflammatory conditions and diabetes complications, as well as against deterioration of cognitive functions.Keywords: pistacia lentiscus, clematis flammula, fraxinus angustifolia, phenolic compounds, biological activity
Procedia PDF Downloads 7628867 Pomegranate Attenuated Levodopa-Induced Dyskinesia and Dopaminergic Degeneration in MPTP Mice Models of Parkinson’s Disease
Authors: Mahsa Hadipour Jahromy, Sara Rezaii
Abstract:
Parkinson’s disease (PD) results primarily from the death of dopaminergic neurons in the substantia nigra. Soon after the discovery of levodopa and its beneficial effects in chronic administration, debilitating involuntary movements observed, termed levodopa-induced dyskinesia (LID) with poorly understood pathogenesis. Polyphenol-rich compounds, like pomegranate, provided neuroprotection in several animal models of brain diseases. In the present work, we investigated whether pomegranate has preventive effects following 4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic degenerations and the potential to diminish LID in mice. Mice model of PD was induced by MPTP (30 mg/kg daily for five consecutive days). To induce a mice model of LID, valid PD mice were treated with levodopa (50 mg/kg, i.p) for 15 days. Then the effects of chronic co-administration of pomegranate juice (20 ml/kg) with levodopa and continuing for 10 days, evaluated. Behavioural tests were performed in all groups, every other day including: Abnormal involuntary movements (AIMS), forelimb adjusting steps, cylinder, and catatonia tests. Finally, brain tissue sections were prepared to study substantia nigra changes and dopamine neuron density after treatments. With this MPTP regimen, significant movement disorders revealed in AIMS tests and there was a reduction in dopamine striatal density. Levodopa attenuates their loss caused by MPTP, however, in chronic administration, dyskinesia observed in forelimb adjusting step and cylinder tests. Besides, catatonia observed in some cases. Chronic pomegranate co-administration significantly improved LID in both tests and reduced dopaminergic loss in substantia nigra. These data indicate that pomegranate might be a good adjunct for preserving dopaminergic neurons in the substantia nigra and reducing LID in mice.Keywords: levodopa-induced dyskinesia, MPTP, Parkinson’s disease, pomegranate
Procedia PDF Downloads 49528866 The Normal-Generalized Hyperbolic Secant Distribution: Properties and Applications
Authors: Hazem M. Al-Mofleh
Abstract:
In this paper, a new four-parameter univariate continuous distribution called the Normal-Generalized Hyperbolic Secant Distribution (NGHS) is defined and studied. Some general and structural distributional properties are investigated and discussed, including: central and non-central n-th moments and incomplete moments, quantile and generating functions, hazard function, Rényi and Shannon entropies, shapes: skewed right, skewed left, and symmetric, modality regions: unimodal and bimodal, maximum likelihood (MLE) estimators for the parameters. Finally, two real data sets are used to demonstrate empirically its flexibility and prove the strength of the new distribution.Keywords: bimodality, estimation, hazard function, moments, Shannon’s entropy
Procedia PDF Downloads 354