Search results for: convolutional network
2854 A Virtual Grid Based Energy Efficient Data Gathering Scheme for Heterogeneous Sensor Networks
Authors: Siddhartha Chauhan, Nitin Kumar Kotania
Abstract:
Traditional Wireless Sensor Networks (WSNs) generally use static sinks to collect data from the sensor nodes via multiple forwarding. Therefore, network suffers with some problems like long message relay time, bottle neck problem which reduces the performance of the network. Many approaches have been proposed to prevent this problem with the help of mobile sink to collect the data from the sensor nodes, but these approaches still suffer from the buffer overflow problem due to limited memory size of sensor nodes. This paper proposes an energy efficient scheme for data gathering which overcomes the buffer overflow problem. The proposed scheme creates virtual grid structure of heterogeneous nodes. Scheme has been designed for sensor nodes having variable sensing rate. Every node finds out its buffer overflow time and on the basis of this cluster heads are elected. A controlled traversing approach is used by the proposed scheme in order to transmit data to sink. The effectiveness of the proposed scheme is verified by simulation.Keywords: buffer overflow problem, mobile sink, virtual grid, wireless sensor networks
Procedia PDF Downloads 3922853 Data Collection Techniques for Robotics to Identify the Facial Expressions of Traumatic Brain Injured Patients
Authors: Chaudhary Muhammad Aqdus Ilyas, Matthias Rehm, Kamal Nasrollahi, Thomas B. Moeslund
Abstract:
This paper presents the investigation of data collection procedures, associated with robots when placed with traumatic brain injured (TBI) patients for rehabilitation purposes through facial expression and mood analysis. Rehabilitation after TBI is very crucial due to nature of injury and variation in recovery time. It is advantageous to analyze these emotional signals in a contactless manner, due to the non-supportive behavior of patients, limited muscle movements and increase in negative emotional expressions. This work aims at the development of framework where robots can recognize TBI emotions through facial expressions to perform rehabilitation tasks by physical, cognitive or interactive activities. The result of these studies shows that with customized data collection strategies, proposed framework identify facial and emotional expressions more accurately that can be utilized in enhancing recovery treatment and social interaction in robotic context.Keywords: computer vision, convolution neural network- long short term memory network (CNN-LSTM), facial expression and mood recognition, multimodal (RGB-thermal) analysis, rehabilitation, robots, traumatic brain injured patients
Procedia PDF Downloads 1562852 Deep Neural Networks for Restoration of Sky Images Affected by Static and Anisotropic Aberrations
Authors: Constanza A. Barriga, Rafael Bernardi, Amokrane Berdja, Christian D. Guzman
Abstract:
Most image restoration methods in astronomy rely upon probabilistic tools that infer the best solution for a deconvolution problem. They achieve good performances when the point spread function (PSF) is spatially invariable in the image plane. However, this latter condition is not always satisfied with real optical systems. PSF angular variations cannot be evaluated directly from the observations, neither be corrected at a pixel resolution. We have developed a method for the restoration of images affected by static and anisotropic aberrations using deep neural networks that can be directly applied to sky images. The network is trained using simulated sky images corresponding to the T-80 telescope optical system, an 80 cm survey imager at Cerro Tololo (Chile), which are synthesized using a Zernike polynomial representation of the optical system. Once trained, the network can be used directly on sky images, outputting a corrected version of the image, which has a constant and known PSF across its field-of-view. The method was tested with the T-80 telescope, achieving better results than with PSF deconvolution techniques. We present the method and results on this telescope.Keywords: aberrations, deep neural networks, image restoration, variable point spread function, wide field images
Procedia PDF Downloads 1362851 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks
Authors: Wang Yichen, Haruka Yamashita
Abstract:
In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.Keywords: recurrent neural network, players lineup, basketball data, decision making model
Procedia PDF Downloads 1342850 Sustainability of Telecom Operators Orange-CI, MTN-CI, and MOOV Africa in Cote D’Ivoire
Authors: Odile Amoncou, Djedje-Kossu Zahui
Abstract:
The increased demand for digital communications during the COVID-19 pandemic has seen an unprecedented surge in new telecom infrastructure around the world. The expansion has been more remarkable in countries with developing telecom infrastructures. Particularly, the three telecom operators in Cote d’Ivoire, Orange CI, MTN CI, and MOOV Africa, have considerably scaled up their exploitation technologies and capacities in terms of towers, fiber optic installation, and customer service hubs. The trend will likely continue upward while expanding the carbon footprint of the Ivorian telecom operators. Therefore, the corporate social and environmental responsibilities of these telecommunication companies can no longer be overlooked. This paper assesses the sustainability of the three Ivorian telecommunication network operators by applying a combination of commonly used sustainability management indexes. These tools are streamlined and adapted to the relatively young and developing digital network of Cote D’Ivoire. We trust that this article will push the respective CEOs to make sustainability a top strategic priority and understand the substantial potential returns in terms of saving, new products, and new clients while improving their corporate image. In addition, good sustainability management can increase their stakeholders.Keywords: sustainability of telecom operators, sustainability management index, carbon footprint, digital communications
Procedia PDF Downloads 902849 Moving Target Defense against Various Attack Models in Time Sensitive Networks
Authors: Johannes Günther
Abstract:
Time Sensitive Networking (TSN), standardized in the IEEE 802.1 standard, has been lent increasing attention in the context of mission critical systems. Such mission critical systems, e.g., in the automotive domain, aviation, industrial, and smart factory domain, are responsible for coordinating complex functionalities in real time. In many of these contexts, a reliable data exchange fulfilling hard time constraints and quality of service (QoS) conditions is of critical importance. TSN standards are able to provide guarantees for deterministic communication behaviour, which is in contrast to common best-effort approaches. Therefore, the superior QoS guarantees of TSN may aid in the development of new technologies, which rely on low latencies and specific bandwidth demands being fulfilled. TSN extends existing Ethernet protocols with numerous standards, providing means for synchronization, management, and overall real-time focussed capabilities. These additional QoS guarantees, as well as management mechanisms, lead to an increased attack surface for potential malicious attackers. As TSN guarantees certain deadlines for priority traffic, an attacker may degrade the QoS by delaying a packet beyond its deadline or even execute a denial of service (DoS) attack if the delays lead to packets being dropped. However, thus far, security concerns have not played a major role in the design of such standards. Thus, while TSN does provide valuable additional characteristics to existing common Ethernet protocols, it leads to new attack vectors on networks and allows for a range of potential attacks. One answer to these security risks is to deploy defense mechanisms according to a moving target defense (MTD) strategy. The core idea relies on the reduction of the attackers' knowledge about the network. Typically, mission-critical systems suffer from an asymmetric disadvantage. DoS or QoS-degradation attacks may be preceded by long periods of reconnaissance, during which the attacker may learn about the network topology, its characteristics, traffic patterns, priorities, bandwidth demands, periodic characteristics on links and switches, and so on. Here, we implemented and tested several MTD-like defense strategies against different attacker models of varying capabilities and budgets, as well as collaborative attacks of multiple attackers within a network, all within the context of TSN networks. We modelled the networks and tested our defense strategies on an OMNET++ testbench, with networks of different sizes and topologies, ranging from a couple dozen hosts and switches to significantly larger set-ups.Keywords: network security, time sensitive networking, moving target defense, cyber security
Procedia PDF Downloads 752848 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction
Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan
Abstract:
Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.Keywords: decision trees, neural network, myocardial infarction, Data Mining
Procedia PDF Downloads 4302847 An Approach for Pattern Recognition and Prediction of Information Diffusion Model on Twitter
Authors: Amartya Hatua, Trung Nguyen, Andrew Sung
Abstract:
In this paper, we study the information diffusion process on Twitter as a multivariate time series problem. Our model concerns three measures (volume, network influence, and sentiment of tweets) based on 10 features, and we collected 27 million tweets to build our information diffusion time series dataset for analysis. Then, different time series clustering techniques with Dynamic Time Warping (DTW) distance were used to identify different patterns of information diffusion. Finally, we built the information diffusion prediction models for new hashtags which comprise two phrases: The first phrase is recognizing the pattern using k-NN with DTW distance; the second phrase is building the forecasting model using the traditional Autoregressive Integrated Moving Average (ARIMA) model and the non-linear recurrent neural network of Long Short-Term Memory (LSTM). Preliminary results of performance evaluation between different forecasting models show that LSTM with clustering information notably outperforms other models. Therefore, our approach can be applied in real-world applications to analyze and predict the information diffusion characteristics of selected topics or memes (hashtags) in Twitter.Keywords: ARIMA, DTW, information diffusion, LSTM, RNN, time series clustering, time series forecasting, Twitter
Procedia PDF Downloads 3922846 Planning Strategy for Sustainable Transportation in Heritage Areas
Authors: Hassam Hassan Elborombaly
Abstract:
The pollution generated from transportation modes, congestion and traffic heritage has led to the deterioration of historic buildings and the urban heritage in historic cities. Accordingly, this paper attempts to diagnose the transport and traffic problems in historic cities. In general and in Heritage Cities, and to investigate methods for conserving the urban heritage from negative effects of traffic congestion and of the traditional red modes of transportation. It also attempts to explore possible areas for intervention to mitigate transportation and traffic problems in the light of the principles of the sustainable transportation framework. It aims to draw conclusion and propose recommendation that would increase the efficiency and effectiveness of transportation plans in historic Cairo and consequently achieve sustainable transportation. Problems In historic cities public paths compose an irregular network enclosing large residential plots (defined as super blocks quarters or hettas). The blocks represent the basic morphology units in historic Cities. Each super block incorporates several uses (i.e. residential, non-residential, service uses and others). Local paths reach the interior of the super blocks in an organized inter core, which deals mainly with residential functions mixed with handicraft activities and is composed of several local path units; (b) the other core, which is bound by the public paths and contains a combination of residential, commercial and social activities. Objectives: 1- To provide amenity convenience and comfort for visitors and people who live and work in the area. Pedestrianizing, accessibility and safety are to be reinforced while respecting the organic urban pattern. 2- To enhance street life, vitality and activity, in order to attract people and increase economic prosperity. Research Contents • Relation between residential areas and transportation in the inner core • Analytical studies for historic areas in heritage cities • Sustainable transportation planning in heritage cities • Dynamic and flexible methodology for achieving sustainable transportation network for the Heritage Cities • Result and RecommendationKeywords: irregular network, public paths, sustainable transportation, urban heritage
Procedia PDF Downloads 5342845 Analytical Modelling of Surface Roughness during Compacted Graphite Iron Milling Using Ceramic Inserts
Authors: Ş. Karabulut, A. Güllü, A. Güldaş, R. Gürbüz
Abstract:
This study investigates the effects of the lead angle and chip thickness variation on surface roughness during the machining of compacted graphite iron using ceramic cutting tools under dry cutting conditions. Analytical models were developed for predicting the surface roughness values of the specimens after the face milling process. Experimental data was collected and imported to the artificial neural network model. A multilayer perceptron model was used with the back propagation algorithm employing the input parameters of lead angle, cutting speed and feed rate in connection with chip thickness. Furthermore, analysis of variance was employed to determine the effects of the cutting parameters on surface roughness. Artificial neural network and regression analysis were used to predict surface roughness. The values thus predicted were compared with the collected experimental data, and the corresponding percentage error was computed. Analysis results revealed that the lead angle is the dominant factor affecting surface roughness. Experimental results indicated an improvement in the surface roughness value with decreasing lead angle value from 88° to 45°.Keywords: CGI, milling, surface roughness, ANN, regression, modeling, analysis
Procedia PDF Downloads 4492844 Simulation-Based Optimization of a Non-Uniform Piezoelectric Energy Harvester with Stack Boundary
Authors: Alireza Keshmiri, Shahriar Bagheri, Nan Wu
Abstract:
This research presents an analytical model for the development of an energy harvester with piezoelectric rings stacked at the boundary of the structure based on the Adomian decomposition method. The model is applied to geometrically non-uniform beams to derive the steady-state dynamic response of the structure subjected to base motion excitation and efficiently harvest the subsequent vibrational energy. The in-plane polarization of the piezoelectric rings is employed to enhance the electrical power output. A parametric study for the proposed energy harvester with various design parameters is done to prepare the dataset required for optimization. Finally, simulation-based optimization technique helps to find the optimum structural design with maximum efficiency. To solve the optimization problem, an artificial neural network is first trained to replace the simulation model, and then, a genetic algorithm is employed to find the optimized design variables. Higher geometrical non-uniformity and length of the beam lowers the structure natural frequency and generates a larger power output.Keywords: piezoelectricity, energy harvesting, simulation-based optimization, artificial neural network, genetic algorithm
Procedia PDF Downloads 1242843 Active Islanding Detection Method Using Intelligent Controller
Authors: Kuang-Hsiung Tan, Chih-Chan Hu, Chien-Wu Lan, Shih-Sung Lin, Te-Jen Chang
Abstract:
An active islanding detection method using disturbance signal injection with intelligent controller is proposed in this study. First, a DC\AC power inverter is emulated in the distributed generator (DG) system to implement the tracking control of active power, reactive power outputs and the islanding detection. The proposed active islanding detection method is based on injecting a disturbance signal into the power inverter system through the d-axis current which leads to a frequency deviation at the terminal of the RLC load when the utility power is disconnected. Moreover, in order to improve the transient and steady-state responses of the active power and reactive power outputs of the power inverter, and to further improve the performance of the islanding detection method, two probabilistic fuzzy neural networks (PFNN) are adopted to replace the traditional proportional-integral (PI) controllers for the tracking control and the islanding detection. Furthermore, the network structure and the online learning algorithm of the PFNN are introduced in detail. Finally, the feasibility and effectiveness of the tracking control and the proposed active islanding detection method are verified with experimental results.Keywords: distributed generators, probabilistic fuzzy neural network, islanding detection, non-detection zone
Procedia PDF Downloads 3902842 The Effects of Qigong Exercise Intervention on the Cognitive Function in Aging Adults
Authors: D. Y. Fong, C. Y. Kuo, Y. T. Chiang, W. C. Lin
Abstract:
Objectives: Qigong is an ancient Chinese practice in pursuit of a healthier body and a more peaceful mindset. It emphasizes on the restoration of vital energy (Qi) in body, mind, and spirit. The practice is the combination of gentle movements and mild breathing which help the doers reach the condition of tranquility. On account of the features of Qigong, first, we use cross-sectional methodology to compare the differences among the varied levels of Qigong practitioners on cognitive function with event-related potential (ERP) and electroencephalography (EEG). Second, we use the longitudinal methodology to explore the effects on the Qigong trainees for pretest and posttest on ERP and EEG. Current study adopts Attentional Network Test (ANT) task to examine the participants’ cognitive function, and aging-related researches demonstrated a declined tread on the cognition in older adults and exercise might ameliorate the deterioration. Qigong exercise integrates physical posture (muscle strength), breathing technique (aerobic ability) and focused intention (attention) that researchers hypothesize it might improve the cognitive function in aging adults. Method: Sixty participants were involved in this study, including 20 young adults (21.65±2.41 y) with normal physical activity (YA), 20 Qigong experts (60.69 ± 12.42 y) with over 7 years Qigong practice experience (QE), and 20 normal and healthy adults (52.90±12.37 y) with no Qigong practice experience as experimental group (EG). The EG participants took Qigong classes 2 times a week and 2 hours per time for 24 weeks with the purpose of examining the effect of Qigong intervention on cognitive function. ANT tasks (alert network, orient network, and executive control) were adopted to evaluate participants’ cognitive function via ERP’s P300 components and P300 amplitude topography. Results: Behavioral data: 1.The reaction time (RT) of YA is faster than the other two groups, and EG was faster than QE in the cue and flanker conditions of ANT task. 2. The RT of posttest was faster than pretest in EG in the cue and flanker conditions. 3. No difference among the three groups on orient, alert, and execute control networks. ERP data: 1. P300 amplitude detection in QE was larger than EG at Fz electrode in orient, alert, and execute control networks. 2. P300 amplitude in EG was larger at pretest than posttest on the orient network. 3. P300 Latency revealed no difference among the three groups in the three networks. Conclusion: Taken together these findings, they provide neuro-electrical evidence that older adults involved in Qigong practice may develop a more overall compensatory mechanism and also benefit the performance of behavior.Keywords: Qigong, cognitive function, aging, event-related potential (ERP)
Procedia PDF Downloads 3942841 Performance Evaluation of Hierarchical Location-Based Services Coupled to the Greedy Perimeter Stateless Routing Protocol for Wireless Sensor Networks
Authors: Rania Khadim, Mohammed Erritali, Abdelhakim Maaden
Abstract:
Nowadays Wireless Sensor Networks have attracted worldwide research and industrial interest, because they can be applied in various areas. Geographic routing protocols are very suitable to those networks because they use location information when they need to route packets. Obviously, location information is maintained by Location-Based Services provided by network nodes in a distributed way. In this paper we choose to evaluate the performance of two hierarchical rendezvous location based-services, GLS (Grid Location Service) and HLS (Hierarchical Location Service) coupled to the GPSR routing protocol (Greedy Perimeter Stateless Routing) for Wireless Sensor Network. The simulations were performed using NS2 simulator to evaluate the performance and power of the two services in term of location overhead, the request travel time (RTT) and the query Success ratio (QSR). This work presents also a new scalability performance study of both GLS and HLS, specifically, what happens if the number of nodes N increases. The study will focus on three qualitative metrics: The location maintenance cost, the location query cost and the storage cost.Keywords: location based-services, routing protocols, scalability, wireless sensor networks
Procedia PDF Downloads 3732840 Spectrum Allocation Using Cognitive Radio in Wireless Mesh Networks
Authors: Ayoub Alsarhan, Ahmed Otoom, Yousef Kilani, Abdel-Rahman al-GHuwairi
Abstract:
Wireless mesh networks (WMNs) have emerged recently to improve internet access and other networking services. WMNs provide network access to the clients and other networking functions such as routing, and packet forwarding. Spectrum scarcity is the main challenge that limits the performance of WMNs. Cognitive radio is proposed to solve spectrum scarcity problem. In this paper, we consider a cognitive wireless mesh network where unlicensed users (secondary users, SUs) can access free spectrum that is allocated to spectrum owners (primary users, PUs). Although considerable research has been conducted on spectrum allocation, spectrum assignment is still considered an important challenging problem. This problem can be solved using cognitive radio technology that allows SUs to intelligently locate free bands and access them without interfering with PUs. Our scheme considers several heuristics for spectrum allocation. These heuristics include: channel error rate, PUs activities, channel capacity and channel switching time. Performance evaluation of the proposed scheme shows that the scheme is able to allocate the unused spectrum for SUs efficiently.Keywords: cognitive radio, dynamic spectrum access, spectrum management, spectrum sharing, wireless mesh networks
Procedia PDF Downloads 5302839 Robot Navigation and Localization Based on the Rat’s Brain Signals
Authors: Endri Rama, Genci Capi, Shigenori Kawahara
Abstract:
The mobile robot ability to navigate autonomously in its environment is very important. Even though the advances in technology, robot self-localization and goal directed navigation in complex environments are still challenging tasks. In this article, we propose a novel method for robot navigation based on rat’s brain signals (Local Field Potentials). It has been well known that rats accurately and rapidly navigate in a complex space by localizing themselves in reference to the surrounding environmental cues. As the first step to incorporate the rat’s navigation strategy into the robot control, we analyzed the rats’ strategies while it navigates in a multiple Y-maze, and recorded Local Field Potentials (LFPs) simultaneously from three brain regions. Next, we processed the LFPs, and the extracted features were used as an input in the artificial neural network to predict the rat’s next location, especially in the decision-making moment, in Y-junctions. We developed an algorithm by which the robot learned to imitate the rat’s decision-making by mapping the rat’s brain signals into its own actions. Finally, the robot learned to integrate the internal states as well as external sensors in order to localize and navigate in the complex environment.Keywords: brain-machine interface, decision-making, mobile robot, neural network
Procedia PDF Downloads 2982838 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques
Authors: Chandu Rathnayake, Isuri Anuradha
Abstract:
Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.Keywords: CNN, random forest, decision tree, machine learning, deep learning
Procedia PDF Downloads 742837 The Communication Library DIALOG for iFDAQ of the COMPASS Experiment
Authors: Y. Bai, M. Bodlak, V. Frolov, S. Huber, V. Jary, I. Konorov, D. Levit, J. Novy, D. Steffen, O. Subrt, M. Virius
Abstract:
Modern experiments in high energy physics impose great demands on the reliability, the efficiency, and the data rate of Data Acquisition Systems (DAQ). This contribution focuses on the development and deployment of the new communication library DIALOG for the intelligent, FPGA-based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN. The iFDAQ utilizing a hardware event builder is designed to be able to readout data at the maximum rate of the experiment. The DIALOG library is a communication system both for distributed and mixed environments, it provides a network transparent inter-process communication layer. Using the high-performance and modern C++ framework Qt and its Qt Network API, the DIALOG library presents an alternative to the previously used DIM library. The DIALOG library was fully incorporated to all processes in the iFDAQ during the run 2016. From the software point of view, it might be considered as a significant improvement of iFDAQ in comparison with the previous run. To extend the possibilities of debugging, the online monitoring of communication among processes via DIALOG GUI is a desirable feature. In the paper, we present the DIALOG library from several insights and discuss it in a detailed way. Moreover, the efficiency measurement and comparison with the DIM library with respect to the iFDAQ requirements is provided.Keywords: data acquisition system, DIALOG library, DIM library, FPGA, Qt framework, TCP/IP
Procedia PDF Downloads 3172836 Two-Level Graph Causality to Detect and Predict Random Cyber-Attacks
Authors: Van Trieu, Shouhuai Xu, Yusheng Feng
Abstract:
Tracking attack trajectories can be difficult, with limited information about the nature of the attack. Even more difficult as attack information is collected by Intrusion Detection Systems (IDSs) due to the current IDSs having some limitations in identifying malicious and anomalous traffic. Moreover, IDSs only point out the suspicious events but do not show how the events relate to each other or which event possibly cause the other event to happen. Because of this, it is important to investigate new methods capable of performing the tracking of attack trajectories task quickly with less attack information and dependency on IDSs, in order to prioritize actions during incident responses. This paper proposes a two-level graph causality framework for tracking attack trajectories in internet networks by leveraging observable malicious behaviors to detect what is the most probable attack events that can cause another event to occur in the system. Technically, given the time series of malicious events, the framework extracts events with useful features, such as attack time and port number, to apply to the conditional independent tests to detect the relationship between attack events. Using the academic datasets collected by IDSs, experimental results show that the framework can quickly detect the causal pairs that offer meaningful insights into the nature of the internet network, given only reasonable restrictions on network size and structure. Without the framework’s guidance, these insights would not be able to discover by the existing tools, such as IDSs. It would cost expert human analysts a significant time if possible. The computational results from the proposed two-level graph network model reveal the obvious pattern and trends. In fact, more than 85% of causal pairs have the average time difference between the causal and effect events in both computed and observed data within 5 minutes. This result can be used as a preventive measure against future attacks. Although the forecast may be short, from 0.24 seconds to 5 minutes, it is long enough to be used to design a prevention protocol to block those attacks.Keywords: causality, multilevel graph, cyber-attacks, prediction
Procedia PDF Downloads 1572835 The Efects of Viable Marketing on Sustainable Development
Authors: Gabriela Tutuanu
Abstract:
The economic, social and environmental undesirable impact of the existing development pattern pushes to the adoption and use of a new development paradigm that of sustainable development. This paper intends to substantiate how the marketing can help the sustainable development. It begins with the subjects of sustainable development and sustainable marketing as they are discussed in literature. The sustainable development is a three dimensional concept which embeds the economic dimension, the social dimension and the environmental dimension that ask to have in view the simultaneous pursuit of economic prosperity, social equity and environmental quality. A major challenge to achieve these goals at business level and to integrate all three dimensions of sustainability is the sustainable marketing. The sustainable marketing is a relationship marketing that aims at building lasting relationships with the social and natural environment on a long-term thinking and futurity and this philosophy allows helping all three dimensions of sustainability. As marketing solutions that could contribute to the sustainable development. We advance the stimulation of sustainable demand, the constant innovation and improvement of sustainable products, the design and use of customized communication, a multichannel distribution network and the sale of sustainable products and services at fair prices. Their implementation will increase the economic, social and environmental sustainability at a large extent in the future if they are supported by political, governmental and legal authorities.Keywords: sustainable development, sustainable marketing, sustainable demand, sustainable product, credible communication, multi-channel distribution network, fair price
Procedia PDF Downloads 4752834 New Mahalle – A More Urban Green Inclusive Neighborhood
Authors: Eirini Oikonomopoulou
Abstract:
Paper is dealing with gentrification of a poor central historic district of Fener and Balat in Istanbul, Turkey and propose ålans and principles of a neighborhood. Istanbul is located in a special geographic place, just in the meeting of Europe and Asia and it has a long and great history, facts that had affected the urban form of the city. Trough the time different civilizations inhabited in the city and they changed it by giving different character to its parts. The modernization of Istanbul brought western ideas into the historic organic urban fabric and put in the first priority the need for a clear and strong car-road/highway network in order to improve the car accessibility along the city. Following that model, transformation of public spaces was based on the driving experience. New public spaces was formulated to be the new symbol of Turkish Republic, to give a beautiful and clean image of the modern Turkish city, as well as work as landmarks across the highway network. Even if city is upgraded, bad quality neighborhoods still exist, far and near to the historic city center. One of them is Fener/Balat, which is located in Fatih district on the European side of Istanbul. This project aims to analyze the urban qualities of that neighborhood (mahalle) and propose a better, qualitative urban space towards a denser, greener and more inclusive neighborhood which could be an example for the whole city.Keywords: urban design, upgrade neighborhood, Istanbul, sustanability
Procedia PDF Downloads 5192833 The 5G Communication Technology Radiation Impact on Human Health and Airports Safety
Authors: Ashraf Aly
Abstract:
The aim of this study is to examine the impact of 5G communication technology radiation on human health and airport safety. The term 5G refers to the fifth generation of wireless mobile technology. The 5G wireless technology will increase the number of high-frequency-powered base stations and other devices and browsing and download speeds, as well as improve the network connectivity and play a big part in improving the performance of integrated applications, such as self-driving cars, medical devices, and robotics. 4G was the latest embedded version of mobile networking technology called 4G, and 5G is the new version of wireless technology. 5G networks have more features than 4G networks, such as lower latency, higher capacity, and increased bandwidth compared to 4G. 5G network improvements over 4G will have big impacts on how people live, business, and work all over the world. But neither 4G nor 5G have been tested for safety and show harmful effects from this wireless radiation. This paper presents biological factors on the effects of 5G radiation on human health. 5G services use C-band radio frequencies; these frequencies are close to those used by radio altimeters, which represent important equipment for airport and aircraft safety. The aviation industry, telecommunications companies, and their regulators have been discussing and weighing these interference concerns for years.Keywords: wireless communication, radiofrequency, Electromagnetic field, environmental issues
Procedia PDF Downloads 682832 Connotation Reform and Problem Response of Rural Social Relations under the Influence of the Earthquake: With a Review of Wenchuan Decade
Abstract:
The occurrence of Wenchuan earthquake in 2008 has led to severe damage to the rural areas of Chengdu city, such as the rupture of the social network, the stagnation of economic production and the rupture of living space. The post-disaster reconstruction has become a sustainable issue. As an important link to maintain the order of rural social development, social network should be an important content of post-disaster reconstruction. Therefore, this paper takes rural reconstruction communities in earthquake-stricken areas of Chengdu as the research object and adopts sociological research methods such as field survey, observation and interview to try to understand the transformation of rural social relations network under the influence of earthquake and its impact on rural space. It has found that rural societies under the earthquake generally experienced three phases: the break of stable social relations, the transition of temporary non-normal state, and the reorganization of social networks. The connotation of phased rural social relations also changed accordingly: turn to a new division of labor on the social orientation, turn to a capital flow and redistribution in new production mode on the capital orientation, and turn to relative decentralization after concentration on the spatial dimension. Along with such changes, rural areas have emerged some social issues such as the alienation of competition in the new industry division, the low social connection, the significant redistribution of capital, and the lack of public space. Based on a comprehensive review of these issues, this paper proposes the corresponding response mechanism. First of all, a reasonable division of labor should be established within the villages to realize diversified commodity supply. Secondly, the villages should adjust the industrial type to promote the equitable participation of capital allocation groups. Finally, external public spaces should be added to strengthen the field of social interaction within the communities.Keywords: social relations, social support networks, industrial division, capital allocation, public space
Procedia PDF Downloads 1572831 Viscoelastic Behaviour of Hyaluronic Acid Copolymers
Authors: Loredana Elena Nita, Maria Bercea, Aurica P. Chiriac, Iordana Neamtu
Abstract:
The paper is devoted to the behavior of gels based on poly(itaconic anhydride-co-3, 9-divinyl-2, 4, 8, 10-tetraoxaspiro (5.5) undecane) copolymers, with different ratio between the comonomers, and hyaluronic acid (HA). The gel formation was investigated by small-amplitude oscillatory shear measurements following the viscoelastic behavior as a function of gel composition, temperature and shear conditions. Hyaluronic acid was investigated in the same conditions and its rheological behavior is typical to viscous fluids. In the case of the copolymers, the ratio between the two comonomers influences the viscoelastic behavior, a higher content of itaconic anhydride favoring the gel formation. Also, the sol-gel transition was evaluated according to Winter-Chambon criterion that identifies the gelation point when the viscoelastic moduli (G’ and G”) behave similarly as a function of oscillation frequency. From rheological measurements, an optimum composition was evidenced for which the system presents a typical gel-like behavior at 37 °C: the elastic modulus is higher than the viscous modulus and they are not dependent on the oscillation frequency. The formation of the 3D macroporous network was also evidenced by FTIR spectra, SEM microscopy and chemical imaging. These hydrogels present a high potential as drug delivery systems.Keywords: copolymer, viscoelasticity, gelation, 3D network
Procedia PDF Downloads 2872830 Special Single Mode Fiber Tests of Polarization Mode Dispersion Changes in a Harsh Environment
Authors: Jan Bohata, Stanislav Zvanovec, Matej Komanec, Jakub Jaros, David Hruby
Abstract:
Even though there is a rapid development in new optical networks, still optical communication infrastructures remain composed of thousands of kilometers of aging optical cables. Many of them are located in a harsh environment which contributes to an increased attenuation or induced birefringence of the fibers leading to the increase of polarization mode dispersion (PMD). In this paper, we report experimental results from environmental optical cable tests and characterization in the climate chamber. We focused on the evaluation of optical network reliability in a harsh environment. For this purpose, a special thermal chamber was adopted, targeting to the large temperature changes between -60 °C and 160 C° with defined humidity. Single mode optical cable 230 meters long, having six tubes and a total number of 72 single mode optical fibers was spliced together forming one fiber link, which was afterward tested in the climate chamber. The main emphasis was put to the polarization mode dispersion (PMD) changes, which were evaluated by three different PMD measuring methods (general interferometry technique, scrambled state-of-polarization analysis and polarization optical time domain reflectometer) in order to fully validate obtained results. Moreover, attenuation and chromatic dispersion (CD), as well as the PMD, were monitored using 17 km long single mode optical cable. Results imply a strong PMD dependence on thermal changes, imposing the exceeding 200 % of its value during the exposure to extreme temperatures and experienced more than 20 dB insertion losses in the optical system. The derived statistic is provided in the paper together with an evaluation of such as optical system reliability, which could be a crucial tool for the optical network designers. The environmental tests are further taken in context to our previously published results from long-term monitoring of fundamental parameters within an optical cable placed in a harsh environment in a special outdoor testbed. Finally, we provide a correlation between short-term and long-term monitoring campaigns and statistics, which are necessary for optical network safety and reliability.Keywords: optical fiber, polarization mode dispersion, harsh environment, aging
Procedia PDF Downloads 3882829 Community Participation of the Villagers: Corporate Social Responsibility Programme in Pantai Harapan Jaya Village, Bekasi Regency, West Java
Authors: Auliya Adzillatin Uzhma, Ismu Rini Dwi Ari, I. Nyoman Suluh Wijaya
Abstract:
Corporate Social Responsibility (CSR) programme in Pantai Harapan Jaya village is cultivation of mangrove and fishery capital distribution, to achieve the goal the CSR programme needed participation from the society in it. Moeliono in Fahrudin (2011) mentioned that participation from society is based by intrinsic reason from inside people it self and extrinsic reason from the other who related to him or from connection with other people. The fundamental connection who caused more boundaries from action which the organization can do called the social structure. The purpose of this research is to know the form of public participation and the density of the villager and people who is participated in CSR programme. This research use Social Network Analysis method by knew the Rate of Participation and Density. The result of the research is people who is involved in the programme is lived in Dusun Pondok Dua and they work in fisheries field. Rate of Participation is 11,61 and that means people involved in 11 or 12 activites of CSR Programme. The rate of participation of CSR Programme is categorized as high rate participation. The density value from the participant is 0.516 it’s mean that 51.6% of the people that participated is involved in the same step of CSR programme.Keywords: community participation, social network analysis, corporate social responsibility, urban and regional studies
Procedia PDF Downloads 5192828 Urban Freight Station: An Innovative Approach to Urban Freight
Authors: Amit Kumar Jain, Surbhi Jain
Abstract:
The urban freight in a city constitutes 10 to 18 per cent of all city road traffic, and 40 per cent of air pollution and noise emissions, are directly related to commercial transport. The policy measures implemented by urban planners have sought to restrict rather than assist goods-vehicle operations. This approach has temporarily controlled the urban transport demand during peak hours of traffic but has not effectively solved transport congestion. The solution discussed in the paper envisages the development of a comprehensive network of Urban Freight Stations (UFS) connected through underground conveyor belts in the city in line with baggage segregation and distribution in any of the major airports. The transportation of freight shall be done in standard size containers/cars through rail borne carts. The freight can be despatched or received from any of the UFS. Once freight is booked for a destination from any of the UFS, it would be stuffed in the container and digitally tagged for the destination. The container would reach the destination UFS through a network of rail borne carts. The container would be de-stuffed at the destination UFS and sent for further delivery, or the consignee may be asked to collect the consignment from urban freight station. The obvious benefits would be decongestion of roads, reduction in air and noise pollution, saving in manpower used for freight transportation.Keywords: congestion, urban freight, intelligent transport system, pollution
Procedia PDF Downloads 3032827 Radial Distribution Network Reliability Improvement by Using Imperialist Competitive Algorithm
Authors: Azim Khodadadi, Sahar Sadaat Vakili, Ebrahim Babaei
Abstract:
This study presents a numerical method to optimize the failure rate and repair time of a typical radial distribution system. Failure rate and repair time are effective parameters in customer and energy based indices of reliability. Decrease of these parameters improves reliability indices. Thus, system stability will be boost. The penalty functions indirectly reflect the cost of investment which spent to improve these indices. Constraints on customer and energy based indices, i.e. SAIFI, SAIDI, CAIDI and AENS have been considered by using a new method which reduces optimization algorithm controlling parameters. Imperialist Competitive Algorithm (ICA) used as main optimization technique and particle swarm optimization (PSO), simulated annealing (SA) and differential evolution (DE) has been applied for further investigation. These algorithms have been implemented on a test system by MATLAB. Obtained results have been compared with each other. The optimized values of repair time and failure rate are much lower than current values which this achievement reduced investment cost and also ICA gives better answer than the other used algorithms.Keywords: imperialist competitive algorithm, failure rate, repair time, radial distribution network
Procedia PDF Downloads 6702826 Modeling of Hydraulic Networking of Water Supply Subsystem Case of Addis Ababa
Authors: Solomon Weldegebriel Gebrelibanos
Abstract:
Water is one of the most important substances in human life that can give a human liberality with its cost and availability. Water comes from rainfall and runoff and reaches the ground as runoff that is stored in a river, ponds, and big water bodies, including sea and ocean and the remaining water portion is infiltrated into the ground to store in the aquifer. Water can serve human beings in various ways, including irrigation, water supply, hydropower and soon. Water supply is the main pillar of the water service to the human being. Water supply distribution in Addis Ababa arises from Legedadi, Akakai, and Gefersa. The objective of the study is to measure the performance of the water supply distribution in Addis Ababa city. The water supply distribution model is developed by computer-aided design software. The model can analyze the operational change, loss of water, and performance of the network. The two design criteria that have been employed to analyze the network system are velocity and pressure. The result shows that the customers are using the water at high pressure with low demand. The water distribution system is older than the expected service life with more leakage. Hence the study recommended that fixing Pressure valves and new distribution facilities can resolve the performance of the water supply systemKeywords: distribution, model, pressure, velocity
Procedia PDF Downloads 1382825 Deep Supervision Based-Unet to Detect Buildings Changes from VHR Aerial Imagery
Authors: Shimaa Holail, Tamer Saleh, Xiongwu Xiao
Abstract:
Building change detection (BCD) from satellite imagery is an essential topic in urbanization monitoring, agricultural land management, and updating geospatial databases. Recently, methods for detecting changes based on deep learning have made significant progress and impressive results. However, it has the problem of being insensitive to changes in buildings with complex spectral differences, and the features being extracted are not discriminatory enough, resulting in incomplete buildings and irregular boundaries. To overcome these problems, we propose a dual Siamese network based on the Unet model with the addition of a deep supervision strategy (DS) in this paper. This network consists of a backbone (encoder) based on ImageNet pre-training, a fusion block, and feature pyramid networks (FPN) to enhance the step-by-step information of the changing regions and obtain a more accurate BCD map. To train the proposed method, we created a new dataset (EGY-BCD) of high-resolution and multi-temporal aerial images captured over New Cairo in Egypt to detect building changes for this purpose. The experimental results showed that the proposed method is effective and performs well with the EGY-BCD dataset regarding the overall accuracy, F1-score, and mIoU, which were 91.6 %, 80.1 %, and 73.5 %, respectively.Keywords: building change detection, deep supervision, semantic segmentation, EGY-BCD dataset
Procedia PDF Downloads 123