Search results for: Optical Network Unit
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8424

Search results for: Optical Network Unit

6444 Distributed Generation Connection to the Network: Obtaining Stability Using Transient Behavior

Authors: A. Hadadi, M. Abdollahi, A. Dustmohammadi

Abstract:

The growing use of DGs in distribution networks provide many advantages and also cause new problems which should be anticipated and be solved with appropriate solutions. One of the problems is transient voltage drop and short circuit in the electrical network, in the presence of distributed generation - which can lead to instability. The appearance of the short circuit will cause loss of generator synchronism, even though if it would be able to recover synchronizing mode after removing faulty generator, it will be stable. In order to increase system reliability and generator lifetime, some strategies should be planned to apply even in some situations which a fault prevent generators from separation. In this paper, one fault current limiter is installed due to prevent DGs separation from the grid when fault occurs. Furthermore, an innovative objective function is applied to determine the impedance optimal amount of fault current limiter in order to improve transient stability of distributed generation. Fault current limiter can prevent generator rotor's sudden acceleration after fault occurrence and thereby improve the network transient stability by reducing the current flow in a fast and effective manner. In fact, by applying created impedance by fault current limiter when a short circuit happens on the path of current injection DG to the fault location, the critical fault clearing time improve remarkably. Therefore, protective relay has more time to clear fault and isolate the fault zone without any instability. Finally, different transient scenarios of connection plan sustainability of small scale synchronous generators to the distribution network are presented.

Keywords: critical clearing time, fault current limiter, synchronous generator, transient stability, transient states

Procedia PDF Downloads 202
6443 Quantitative Comparisons of Different Approaches for Rotor Identification

Authors: Elizabeth M. Annoni, Elena G. Tolkacheva

Abstract:

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia that is a known prognostic marker for stroke, heart failure and death. Reentrant mechanisms of rotor formation, which are stable electrical sources of cardiac excitation, are believed to cause AF. No existing commercial mapping systems have been demonstrated to consistently and accurately predict rotor locations outside of the pulmonary veins in patients with persistent AF. There is a clear need for robust spatio-temporal techniques that can consistently identify rotors using unique characteristics of the electrical recordings at the pivot point that can be applied to clinical intracardiac mapping. Recently, we have developed four new signal analysis approaches – Shannon entropy (SE), Kurtosis (Kt), multi-scale frequency (MSF), and multi-scale entropy (MSE) – to identify the pivot points of rotors. These proposed techniques utilize different cardiac signal characteristics (other than local activation) to uncover the intrinsic complexity of the electrical activity in the rotors, which are not taken into account in current mapping methods. We validated these techniques using high-resolution optical mapping experiments in which direct visualization and identification of rotors in ex-vivo Langendorff-perfused hearts were possible. Episodes of ventricular tachycardia (VT) were induced using burst pacing, and two examples of rotors were used showing 3-sec episodes of a single stationary rotor and figure-8 reentry with one rotor being stationary and one meandering. Movies were captured at a rate of 600 frames per second for 3 sec. with 64x64 pixel resolution. These optical mapping movies were used to evaluate the performance and robustness of SE, Kt, MSF and MSE techniques with respect to the following clinical limitations: different time of recordings, different spatial resolution, and the presence of meandering rotors. To quantitatively compare the results, SE, Kt, MSF and MSE techniques were compared to the “true” rotor(s) identified using the phase map. Accuracy was calculated for each approach as the duration of the time series and spatial resolution were reduced. The time series duration was decreased from its original length of 3 sec, down to 2, 1, and 0.5 sec. The spatial resolution of the original VT episodes was decreased from 64x64 pixels to 32x32, 16x16, and 8x8 pixels by uniformly removing pixels from the optical mapping video.. Our results demonstrate that Kt, MSF and MSE were able to accurately identify the pivot point of the rotor under all three clinical limitations. The MSE approach demonstrated the best overall performance, but Kt was the best in identifying the pivot point of the meandering rotor. Artifacts mildly affect the performance of Kt, MSF and MSE techniques, but had a strong negative impact of the performance of SE. The results of our study motivate further validation of SE, Kt, MSF and MSE techniques using intra-atrial electrograms from paroxysmal and persistent AF patients to see if these approaches can identify pivot points in a clinical setting. More accurate rotor localization could significantly increase the efficacy of catheter ablation to treat AF, resulting in a higher success rate for single procedures.

Keywords: Atrial Fibrillation, Optical Mapping, Signal Processing, Rotors

Procedia PDF Downloads 326
6442 ArcGIS as a Tool for Infrastructure Documentation and Asset Management: Establishing a GIS for Computer Network Documentation

Authors: John Segars

Abstract:

Built out of a real-world need to have better, more detailed, asset and infrastructure documentation, this project will lay out the case for using the database functionality of ArcGIS as a tool to track and maintain infrastructure location, status, maintenance and serviceability. Workflows and processes will be presented and detailed which may be applied to an organizations’ infrastructure needs that might allow them to make use of the robust tools which surround the ArcGIS platform. The end result is a value-added information system framework with a geographic component e.g., the spatial location of various I.T. assets, a detailed set of records which not only documents location but also captures the maintenance history for assets along with photographs and documentation of these various assets as attachments to the numerous feature class items. In addition to the asset location and documentation benefits, the staff will be able to log into the devices and pull SNMP (Simple Network Management Protocol) based query information from within the user interface. The entire collection of information may be displayed in ArcGIS, via a JavaScript based web application or via queries to the back-end database. The project is applicable to all organizations which maintain an IT infrastructure but specifically targets post-secondary educational institutions where access to ESRI resources is generally already available in house.

Keywords: ESRI, GIS, infrastructure, network documentation, PostgreSQL

Procedia PDF Downloads 184
6441 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network

Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.

Keywords: big data, k-NN, machine learning, traffic speed prediction

Procedia PDF Downloads 367
6440 Surface Characterization of Zincblende and Wurtzite Semiconductors Using Nonlinear Optics

Authors: Hendradi Hardhienata, Tony Sumaryada, Sri Setyaningsih

Abstract:

Current progress in the field of nonlinear optics has enabled precise surface characterization in semiconductor materials. Nonlinear optical techniques are favorable due to their nondestructive measurement and ability to work in nonvacuum and ambient conditions. The advance of the bond hyperpolarizability models opens a wide range of nanoscale surface investigation including the possibility to detect molecular orientation at the surface of silicon and zincblende semiconductors, investigation of electric field induced second harmonic fields at the semiconductor interface, detection of surface impurities, and very recently, study surface defects such as twin boundary in wurtzite semiconductors. In this work, we show using nonlinear optical techniques, e.g. nonlinear bond models how arbitrary polarization of the incoming electric field in Rotational Anisotropy Spectroscopy experiments can provide more information regarding the origin of the nonlinear sources in zincblende and wurtzite semiconductor structure. In addition, using hyperpolarizability consideration, we describe how the nonlinear susceptibility tensor describing SHG can be well modelled using only few parameter because of the symmetry of the bonds. We also show how the third harmonic intensity feature shows considerable changes when the incoming field polarization angle is changed from s-polarized to p-polarized. We also propose a method how to investigate surface reconstruction and defects in wurtzite and zincblende structure at the nanoscale level.

Keywords: surface characterization, bond model, rotational anisotropy spectroscopy, effective hyperpolarizability

Procedia PDF Downloads 160
6439 Solid-State Synthesis Approach and Optical study of Red Emitting Phosphors Li₃BaSrxCa₁₋ₓEu₂.₇Gd₀.₃(MoO₄)₈ for White LEDs

Authors: Priyansha Sharma, Sibani Mund, Sivakumar Vaidyanathan

Abstract:

Solid-state synthesis methods were used for the synthesis of pure red emissive Li¬3BaSrxCa(1-x)Eu2.7Gd0.3(MoO4)8 (x = 0.0 to 1.0) phosphors, XRD, SEM, and FTIR spectra were used to characterize the materials, and their optical properties were thoroughly investigated. PL studies were examined at different excitations 230 nm, 275nm, 465nm, and 395 nm. All the spectra show similar emissions with the highest transition at 616 nm due to ED transition. The given phosphor Li¬3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 shows the highest intensity and is thus chosen for the temperature-dependent and Quantum yield study. According to the PL investigation, the phosphor-containing Eu3+ emits red light due to the (5D0 7F2) transition. The excitation analysis shows that all of the Eu3+ activated phosphors exhibited broad absorption due to the charge transfer band, O2-Mo6+, O2-Eu3+ transition, as well as narrow absorption bands related to the Eu3+ ion's 4f-4f electronic transition. Excitation spectra show Charge transfer band at 275 nm shows the highest intensity. The primary band in the spectra refers to Eu3+ ions occupying the lattice's non-centrosymmetric location. All of the compositions are monoclinic crystal structures with space group C2/c and match with reference powder patterns. The thermal stability of the 3BaSr0.25Ca0.75Eu2.7Gd0.3(MoO4)8 phosphor was investigated at (300 k- 500 K) as well as at low temperature from (20 K to 275 K) to be utilized for red and white LED fabrication. The Decay Lifetime of all the phosphor was measured. The best phosphor was used for White and Red LED fabrication.

Keywords: PL, phosphor, quantum yield, white LED

Procedia PDF Downloads 81
6438 Patronage Network and Ideological Manipulations in Translation of Literary Texts: A Case Study of George Orwell's “1984” in Persian Translation in the Period 1980 to 2015

Authors: Masoud Hassanzade Novin, Bahloul Salmani

Abstract:

The process of the translation is not merely the linguistic aspects. It is also considered in the cultural framework of both the source and target text cultures. The translation process and translated texts are confronted the new aspect in 20th century which is considered mostly in the patronage framework and ideological grillwork of the target language. To have these factors scrutinized in the process of the translation both micro-element factors and macro-element factors can be taken into consideration. For the purpose of this study through a qualitative type of research based on critical discourse analysis approach, the case study of the novel “1984” written by George Orwell was chosen as the corpus of the study to have the contrastive analysis by its Persian translated texts. Results of the study revealed some distortions embedded in the target texts which were overshadowed by ideological aspect and patronage network. The outcomes of the manipulated terms were different in various categories which revealed the manipulation aspects in the texts translated.

Keywords: critical discourse analysis, ideology, patronage network, translated texts

Procedia PDF Downloads 326
6437 Domain Adaptation Save Lives - Drowning Detection in Swimming Pool Scene Based on YOLOV8 Improved by Gaussian Poisson Generative Adversarial Network Augmentation

Authors: Simiao Ren, En Wei

Abstract:

Drowning is a significant safety issue worldwide, and a robust computer vision-based alert system can easily prevent such tragedies in swimming pools. However, due to domain shift caused by the visual gap (potentially due to lighting, indoor scene change, pool floor color etc.) between the training swimming pool and the test swimming pool, the robustness of such algorithms has been questionable. The annotation cost for labeling each new swimming pool is too expensive for mass adoption of such a technique. To address this issue, we propose a domain-aware data augmentation pipeline based on Gaussian Poisson Generative Adversarial Network (GP-GAN). Combined with YOLOv8, we demonstrate that such a domain adaptation technique can significantly improve the model performance (from 0.24 mAP to 0.82 mAP) on new test scenes. As the augmentation method only require background imagery from the new domain (no annotation needed), we believe this is a promising, practical route for preventing swimming pool drowning.

Keywords: computer vision, deep learning, YOLOv8, detection, swimming pool, drowning, domain adaptation, generative adversarial network, GAN, GP-GAN

Procedia PDF Downloads 104
6436 Incidence and Risk Factors of Central Venous Associated Infections in a Tunisian Medical Intensive Care Unit

Authors: Ammar Asma, Bouafia Nabiha, Ghammam Rim, Ezzi Olfa, Ben Cheikh Asma, Mahjoub Mohamed, Helali Radhia, Sma Nesrine, Chouchène Imed, Boussarsar Hamadi, Njah Mansour

Abstract:

Background: Central venous catheter associated infections (CVC-AI) are among the serious hospital-acquired infections. The aims of this study are to determine the incidence of CVC-AI, and their risk factors among patients followed in a Tunisian medical intensive care unit (ICU). Materials / Methods: A prospective cohort study conducted between September 15th, 2015 and November 15th, 2016 in an 8-bed medical ICU including all patients admitted for more than 48h. CVC-AI were defined according to CDC of ATLANTA criteria. The enrollment was based on clinical and laboratory diagnosis of CVC-AI. For all subjects, age, sex, underlying diseases, SAPS II score, ICU length of stay, exposure to CVC (number of CVC placed, site of insertion and duration catheterization) were recorded. Risk factors were analyzed by conditional stepwise logistic regression. The p-value of < 0.05 was considered significant. Results: Among 192 eligible patients, 144 patients (75%) had a central venous catheter. Twenty-eight patients (19.4%) had developed CVC-AI with density rate incidence 20.02/1000 CVC-days. Among these infections, 60.7% (n=17) were systemic CVC-AI (with negative blood culture), and 35.7% (n=10) were bloodstream CVC-AI. The mean SAPS II of patients with CVC-AI was 32.76 14.48; their mean Charlson index was 1.77 1.55, their mean duration of catheterization was 15.46 10.81 days and the mean duration of one central line was 5.8+/-3.72 days. Gram-negative bacteria was determined in 53.5 % of CVC-AI (n= 15) dominated by multi-drug resistant Acinetobacter baumani (n=7). Staphylococci were isolated in 3 CVC-AI. Fourteen (50%) patients with CVC-AI died. Univariate analysis identified men (p=0.034), the referral from another hospital department (p=0.03), tobacco (p=0.006), duration of sedation (p=0.003) and the duration of catheterization (p=0), as possible risk factors of CVC-AI. Multivariate analysis showed that independent factors of CVC-AI were, male sex; OR= 5.73, IC 95% [2; 16.46], p=0.001, Ramsay score; OR= 1.57, IC 95% [1.036; 2.38], p=0.033, and duration of catheterization; OR=1.093, IC 95% [1.035; 1.15], p=0.001. Conclusion: In a monocenter cohort, CVC-AI had a high density and is associated with poor outcome. Identifying the risk factors is necessary to find solutions for this major health problem.

Keywords: central venous catheter associated infection, intensive care unit, prospective cohort studies, risk factors

Procedia PDF Downloads 363
6435 A Study of the Adaptive Reuse for School Land Use Strategy: An Application of the Analytic Network Process and Big Data

Authors: Wann-Ming Wey

Abstract:

In today's popularity and progress of information technology, the big data set and its analysis are no longer a major conundrum. Now, we could not only use the relevant big data to analysis and emulate the possible status of urban development in the near future, but also provide more comprehensive and reasonable policy implementation basis for government units or decision-makers via the analysis and emulation results as mentioned above. In this research, we set Taipei City as the research scope, and use the relevant big data variables (e.g., population, facility utilization and related social policy ratings) and Analytic Network Process (ANP) approach to implement in-depth research and discussion for the possible reduction of land use in primary and secondary schools of Taipei City. In addition to enhance the prosperous urban activities for the urban public facility utilization, the final results of this research could help improve the efficiency of urban land use in the future. Furthermore, the assessment model and research framework established in this research also provide a good reference for schools or other public facilities land use and adaptive reuse strategies in the future.

Keywords: adaptive reuse, analytic network process, big data, land use strategy

Procedia PDF Downloads 207
6434 Sustainability Enhancement of Pedestrian Space Quality in Old Communities from the Perspective of Inclusiveness:Taking Cao Yang New Village, Shanghai as an Example

Authors: Feng Zisu

Abstract:

Community is the basic unit of the city, community pedestrian space is also an important part of the urban public space, and its quality improvement is also closely related to the residents' happiness and sense of belonging. Domestic and international research perspectives on community pedestrian space have gradually changed to inclusive design for the whole population, paying more attention to the equitable accessibility of urban space and the multiple composite enhancement of spatial connotation. In order to realize the inclusive and sustainable development of pedestrian space in old communities, this article selects Cao Yang New Village in Shanghai as a practice case, and based on the connotation of inclusiveness, the four dimensions of space, traffic, function and emotion are selected as the layers of inclusive connotation of pedestrian space in old communities. This article identifies the objective social needs, dynamic activity characteristics and subjective feelings of multiple subjects, and reconstructs the structural hierarchy of “spatial perception - behavioral characteristics - subjective feelings” of walking. It also proposes a governance strategy of “reconfiguring the pedestrian network, optimizing street quality, integrating ecological space and reshaping the community scene” from the aspects of quality of physical environment and quality of behavioral perception, aiming to provide new ideas for promoting the inclusive and sustainable development of pedestrian space in old communities.

Keywords: inclusivity, old community, pedestrian space, spatial quality, sustainable renovation

Procedia PDF Downloads 47
6433 Development and Range Testing of a LoRaWAN System in an Urban Environment

Authors: N. R. Harris, J. Curry

Abstract:

This paper describes the construction and operation of an experimental LoRaWAN network surrounding the University of Southampton in the United Kingdom. Following successful installation, an experimental node design is built and characterised, with particular emphasis on radio range. Several configurations are investigated, including different data rates, and varying heights of node. It is concluded that although range can be great (over 8 km in this case), environmental topology is critical. However, shorter range implementations, up to about 2 km in an urban environment, are relatively insensitive although care is still needed. The example node and the relatively simple base station reported demonstrate that LoraWan can be a very low cost and practical solution to Internet of Things type applications for distributed monitoring systems with sensors spread over distances of several km.

Keywords: long-range, wireless, sensor, network

Procedia PDF Downloads 138
6432 Design and Preliminary Evaluation of Benzoxazolone-Based Agents for Targeting Mitochondrial-Located Translocator Protein

Authors: Nidhi Chadha, A. K. Tiwari, Marilyn D. Milton, Anil K. Mishra

Abstract:

Translocator protein (18 kDa) TSPO is highly expressed during microglia activation in neuroinflammation. Although a number of PET ligands have been developed for the visualization of activated microglia, one of the advantageous approaches is to develop potential optical imaging (OI) probe. Our study involves computational screening, synthesis and evaluation of TSPO ligand through various imaging modalities namely PET/SPECT/Optical. The initial computational screening involves pharmacophore modeling from the library designing having oxo-benzooxazol-3-yl-N-phenyl-acetamide groups and synthesis for visualization of efficacy of these compounds as multimodal imaging probes. Structure modeling of monomer, Ala147Thr mutated, parallel and anti-parallel TSPO dimers was performed and docking analysis was performed for distinct binding sites. Computational analysis showed pattern of variable binding profile of known diagnostic ligands and NBMP via interactions with conserved residues along with TSPO’s natural polymorphism of Ala147→Thr, which showed alteration in the binding affinity due to considerable changes in tertiary structure. Preliminary in vitro binding studies shows binding affinity in the range of 1-5 nm and selectivity was also certified by blocking studies. In summary, this skeleton was found to be potential probe for TSPO imaging due to ease in synthesis, appropriate lipophilicity and reach to specific region of brain.

Keywords: TSPO, molecular modeling, imaging, docking

Procedia PDF Downloads 465
6431 Network Pharmacological Evaluation of Holy Basil Bioactive Phytochemicals for Identifying Novel Potential Inhibitors Against Neurodegenerative Disorder

Authors: Bhuvanesh Baniya

Abstract:

Alzheimer disease is illnesses that are responsible for neuronal cell death and resulting in lifelong cognitive problems. Due to their unclear mechanism, there are no effective drugs available for the treatment. For a long time, herbal drugs have been used as a role model in the field of the drug discovery process. Holy basil in the Indian medicinal system (Ayurveda) is used for several neuronal disorders like insomnia and memory loss for decades. This study aims to identify active components of holy basil as potential inhibitors for the treatment of Alzheimer disease. To fulfill this objective, the Network pharmacology approach, gene ontology, pharmacokinetics analysis, molecular docking, and molecular dynamics simulation (MDS) studies were performed. A total of 7 active components in holy basil, 12 predicted neurodegenerative targets of holy basil, and 8063 Alzheimer-related targets were identified from different databases. The network analysis showed that the top ten targets APP, EGFR, MAPK1, ESR1, HSPA4, PRKCD, MAPK3, ABL1, JUN, and GSK3B were found as significant target related to Alzheimer disease. On the basis of gene ontology and topology analysis results, APP was found as a significant target related to Alzheimer’s disease pathways. Further, the molecular docking results to found that various compounds showed the best binding affinities. Further, MDS top results suggested could be used as potential inhibitors against APP protein and could be useful for the treatment of Alzheimer’s disease.

Keywords: holy basil, network pharmacology, neurodegeneration, active phytochemicals, molecular docking and simulation

Procedia PDF Downloads 107
6430 Medication Errors in Neonatal Intensive Care Unit

Authors: Ramzi Shawahna

Abstract:

Background: Neonatal intensive care units are high-risk settings where medication errors can occur and cause harm to this fragile segment of patients. This multicenter qualitative study was conducted to describe medication errors that occurred in neonatal intensive care units in Palestine from the perspectives of healthcare providers. Methods: This exploratory multicenter qualitative study was conducted and reported in adherence to the consolidated criteria for reporting qualitative research checklist. Semi-structured in-depth interviews were conducted with healthcare professionals (4 pediatricians/neonatologists and 11 intensive care unit nurses) who provided care services for patients admitted to neonatal intensive care units in Palestine. An interview schedule guided the semi-structured in-depth interviews. The qualitative interpretive description approach was used to thematically analyze the data. Results: The total duration of the interviews was 282 min. The healthcare providers described their experiences with 41 different medication errors. These medication errors were categorized under 3 categories and 10 subcategories. Errors that occurred while preparing/diluting/storing medications were related to calculations, using a wrong solvent/diluent, dilution errors, failure to adhere to guidelines while preparing the medication, failure to adhere to storage/packaging guidelines, and failure to adhere to labeling guidelines. Errors that occurred while prescribing/administering medications were related to inappropriate medication for the neonate, using a different administration technique from the one that was intended and administering a different dose from the one that was intended. Errors that occurred after administering the medications were related to failure to adhere to monitoring guidelines. Conclusion: In this multicenter study, pediatricians/neonatologists and neonatal intensive care unit nurses described medication errors occurring in intensive care units in Palestine. Medication errors occur in different stages of the medication process: preparation/dilution/storage, prescription/administration, and monitoring. Further studies are still needed to quantify medication errors occurring in neonatal intensive care units and investigate if the designed strategies could be effective in minimizing medication errors.

Keywords: medication errors, pharmacist, pharmacology, neonates

Procedia PDF Downloads 89
6429 Importance of Location Selection of an Energy Storage System in a Smart Grid

Authors: Vanaja Rao

Abstract:

In the recent times, the need for the integration of Renewable Energy Sources (RES) in a Smart Grid is on the rise. As a result of this, associated energy storage systems are known to play important roles in sustaining the efficient operation of such RES like wind power and solar power. This paper investigates the importance of location selection of Energy Storage Systems (ESSs) in a Smart Grid. Three scenarios of ESS location is studied and analyzed in a Smart Grid, which are – 1. Near the generation/source, 2. In the middle of the Grid and, 3. Near the demand/consumption. This is explained with the aim of assisting any Distribution Network Operator (DNO) in deploying the ESSs in a power network, which will significantly help reduce the costs and time of planning and avoid any damages incurred as a result of installing them at an incorrect location of a Smart Grid. To do this, the outlined scenarios mentioned above are modelled and analyzed with the National Grid’s datasets of energy generation and consumption in the UK power network. As a result, the outcome of this analysis aims to provide a better overview for the location selection of the ESSs in a Smart Grid. This ensures power system stability and security along with the optimum usage of the ESSs.

Keywords: distribution networks, energy storage system, energy security, location planning, power stability, smart grid

Procedia PDF Downloads 302
6428 Enhancing Knowledge Graph Convolutional Networks with Structural Adaptive Receptive Fields for Improved Node Representation and Information Aggregation

Authors: Zheng Zhihao

Abstract:

Recently, Knowledge Graph Framework Network (KGCN) has developed powerful capabilities in knowledge representation and reasoning tasks. However, traditional KGCN often uses a fixed weight mechanism when aggregating information, failing to make full use of rich structural information, resulting in a certain expression ability of node representation, and easily causing over-smoothing problems. In order to solve these challenges, the paper proposes an new graph neural network model called KGCN-STAR (Knowledge Graph Convolutional Network with Structural Adaptive Receptive Fields). This model dynamically adjusts the perception of each node by introducing a structural adaptive receptive field. wild range, and a subgraph aggregator is designed to capture local structural information more effectively. Experimental results show that KGCN-STAR shows significant performance improvement on multiple knowledge graph data sets, especially showing considerable capabilities in the task of representation learning of complex structures.

Keywords: knowledge graph, graph neural networks, structural adaptive receptive fields, information aggregation

Procedia PDF Downloads 41
6427 Measurements for Risk Analysis and Detecting Hazards by Active Wearables

Authors: Werner Grommes

Abstract:

Intelligent wearables (illuminated vests or hand and foot-bands, smart watches with a laser diode, Bluetooth smart glasses) overflow the market today. They are integrated with complex electronics and are worn very close to the body. Optical measurements and limitation of the maximum light density are needed. Smart watches are equipped with a laser diode or control different body currents. Special glasses generate readable text information that is received via radio transmission. Small high-performance batteries (lithium-ion/polymer) supply the electronics. All these products have been tested and evaluated for risk. These products must, for example, meet the requirements for electromagnetic compatibility as well as the requirements for electromagnetic fields affecting humans or implant wearers. Extensive analyses and measurements were carried out for this purpose. Many users are not aware of these risks. The result of this study should serve as a suggestion to do it better in the future or simply to point out these risks. Commercial LED warning vests, LED hand and foot-bands, illuminated surfaces with inverter (high voltage), flashlights, smart watches, and Bluetooth smart glasses were checked for risks. The luminance, the electromagnetic emissions in the low-frequency as well as in the high-frequency range, audible noises, and nervous flashing frequencies were checked by measurements and analyzed. Rechargeable lithium-ion or lithium-polymer batteries can burn or explode under special conditions like overheating, overcharging, deep discharge or using out of the temperature specification. Some risk analysis becomes necessary. The result of this study is that many smart wearables are worn very close to the body, and an extensive risk analysis becomes necessary. Wearers of active implants like a pacemaker or implantable cardiac defibrillator must be considered. If the wearable electronics include switching regulators or inverter circuits, active medical implants in the near field can be disturbed. A risk analysis is necessary.

Keywords: safety and hazards, electrical safety, EMC, EMF, active medical implants, optical radiation, illuminated warning vest, electric luminescent, hand and head lamps, LED, e-light, safety batteries, light density, optical glare effects

Procedia PDF Downloads 112
6426 AI-based Radio Resource and Transmission Opportunity Allocation for 5G-V2X HetNets: NR and NR-U Networks

Authors: Farshad Zeinali, Sajedeh Norouzi, Nader Mokari, Eduard Jorswieck

Abstract:

The capacity of fifth-generation (5G) vehicle-to-everything (V2X) networks poses significant challenges. To ad- dress this challenge, this paper utilizes New Radio (NR) and New Radio Unlicensed (NR-U) networks to develop a heterogeneous vehicular network (HetNet). We propose a new framework, named joint BS assignment and resource allocation (JBSRA) for mobile V2X users and also consider coexistence schemes based on flexible duty cycle (DC) mechanism for unlicensed bands. Our objective is to maximize the average throughput of vehicles while guaranteeing the WiFi users' throughput. In simulations based on deep reinforcement learning (DRL) algorithms such as deep deterministic policy gradient (DDPG) and deep Q network (DQN), our proposed framework outperforms existing solutions that rely on fixed DC or schemes without consideration of unlicensed bands.

Keywords: vehicle-to-everything (V2X), resource allocation, BS assignment, new radio (NR), new radio unlicensed (NR-U), coexistence NR-U and WiFi, deep deterministic policy gradient (DDPG), deep Q-network (DQN), joint BS assignment and resource allocation (JBSRA), duty cycle mechanism

Procedia PDF Downloads 108
6425 Investigating the Neural Heterogeneity of Developmental Dyscalculia

Authors: Fengjuan Wang, Azilawati Jamaludin

Abstract:

Developmental Dyscalculia (DD) is defined as a particular learning difficulty with continuous challenges in learning requisite math skills that cannot be explained by intellectual disability or educational deprivation. Recent studies have increasingly recognized that DD is a heterogeneous, instead of monolithic, learning disorder with not only cognitive and behavioral deficits but so too neural dysfunction. In recent years, neuroimaging studies employed group comparison to explore the neural underpinnings of DD, which contradicted the heterogenous nature of DD and may obfuscate critical individual differences. This research aimed to investigate the neural heterogeneity of DD using case studies with functional near-infrared spectroscopy (fNIRS). A total of 54 aged 6-7 years old of children participated in this study, comprising two comprehensive cognitive assessments, an 8-minute resting state, and an 8-minute one-digit addition task. Nine children met the criteria of DD and scored at or below 85 (i.e., the 16th percentile) on the Mathematics or Math Fluency subtest of the Wechsler Individual Achievement Test, Third Edition (WIAT-III) (both subtest scores were 90 and below). The remaining 45 children formed the typically developing (TD) group. Resting-state data and brain activation in the inferior frontal gyrus (IFG), superior frontal gyrus (SFG), and intraparietal sulcus (IPS) were collected for comparison between each case and the TD group. Graph theory was used to analyze the brain network under the resting state. This theory represents the brain network as a set of nodes--brain regions—and edges—pairwise interactions across areas to reveal the architectural organizations of the nervous network. Next, a single-case methodology developed by Crawford et al. in 2010 was used to compare each case’s brain network indicators and brain activation against 45 TD children’s average data. Results showed that three out of the nine DD children displayed significant deviation from TD children’s brain indicators. Case 1 had inefficient nodal network properties. Case 2 showed inefficient brain network properties and weaker activation in the IFG and IPS areas. Case 3 displayed inefficient brain network properties with no differences in activation patterns. As a rise above, the present study was able to distill differences in architectural organizations and brain activation of DD vis-à-vis TD children using fNIRS and single-case methodology. Although DD is regarded as a heterogeneous learning difficulty, it is noted that all three cases showed lower nodal efficiency in the brain network, which may be one of the neural sources of DD. Importantly, although the current “brain norm” established for the 45 children is tentative, the results from this study provide insights not only for future work in “developmental brain norm” with reliable brain indicators but so too the viability of single-case methodology, which could be used to detect differential brain indicators of DD children for early detection and interventions.

Keywords: brain activation, brain network, case study, developmental dyscalculia, functional near-infrared spectroscopy, graph theory, neural heterogeneity

Procedia PDF Downloads 55
6424 Analysis of Performance Improvement Factors in Supply Chain Manufacturing Using Analytic Network Process and Kaizen

Authors: Juliza Hidayati, Yesie M. Sinuhaji, Sawarni Hasibuan

Abstract:

A company producing drinking water through many incompatibility issues that affect supply chain performance. The study was conducted to determine the factors that affect the performance of the supply chain and improve it. To obtain the dominant factors affecting the performance of the supply chain used Analytic Network Process, while to improve performance is done by using Kaizen. Factors affecting the performance of the supply chain to be a reference to identify the cause of the non-conformance. Results weighting using ANP indicates that the dominant factor affecting the level of performance is the precision of the number of shipments (15%), the ability of the fulfillment of the booking amount (12%), and the number of rejected products when signing (12%). Incompatibility of the factors that affect the performance of the supply chain are identified, so that found the root cause of the problem is most dominant. Based on the weight of Risk Priority Number (RPN) gained the most dominant root cause of the problem, namely the poorly maintained engine, the engine worked for three shifts, machine parts that are not contained in the plant. Improvements then performed using the Kaizen method of systematic and sustainable.

Keywords: analytic network process, booking amount, risk priority number, supply chain performance

Procedia PDF Downloads 298
6423 An Event Relationship Extraction Method Incorporating Deep Feedback Recurrent Neural Network and Bidirectional Long Short-Term Memory

Authors: Yin Yuanling

Abstract:

A Deep Feedback Recurrent Neural Network (DFRNN) and Bidirectional Long Short-Term Memory (BiLSTM) are designed to address the problem of low accuracy of traditional relationship extraction models. This method combines a deep feedback-based recurrent neural network (DFRNN) with a bi-directional long short-term memory (BiLSTM) approach. The method combines DFRNN, which extracts local features of text based on deep feedback recurrent mechanism, BiLSTM, which better extracts global features of text, and Self-Attention, which extracts semantic information. Experiments show that the method achieves an F1 value of 76.69% on the CEC dataset, which is 0.0652 better than the BiLSTM+Self-ATT model, thus optimizing the performance of the deep learning method in the event relationship extraction task.

Keywords: event relations, deep learning, DFRNN models, bi-directional long and short-term memory networks

Procedia PDF Downloads 151
6422 Effects of Lung Protection Ventilation Strategies on Postoperative Pulmonary Complications After Noncardiac Surgery: A Network Meta-Analysis of Randomized Controlled Trials

Authors: Ran An, Dang Wang

Abstract:

Background: Mechanical ventilation has been confirmed to increase the incidence of postoperative pulmonary complications (PPCs), and several studies have shown that low tidal volumes combined with positive end-expiratory pressure (PEEP) and recruitment manoeuvres (RM) reduce the incidence of PPCs. However, the optimal lung-protective ventilatory strategy remains unclear. Methods: Multiple databases were searched for randomized controlled trials (RCTs) published prior to October 2023. The association between individual PEEP (iPEEP) or other forms of lung-protective ventilation and the incidence of PPCs was evaluated by Bayesian network meta-analysis. Results: We included 58 studies (11610 patients) in this meta-analysis. The network meta-analysis showed that low ventilation (LVt) combined with iPEEP and RM was associated with significantly lower incidences of PPCs [HVt: OR=0.38 95CrI (0.19, 0.75), LVt: OR=0.33, 95% CrI (0.12, 0.82)], postoperative atelectasis, and pneumonia than was HVt or LVt. In abdominal surgery, LVT combined with iPEEP or medium-to-high PEEP and RM were associated with significantly lower incidences of PPCs, postoperative atelectasis, and pneumonia. LVt combined with iPEEP and RM was ranked the highest, which was based on SUCRA scores. Conclusion: LVt combined with iPEEP and RM decreased the incidences of PPCs, postoperative atelectasis, and pneumonia in noncardiac surgery patients. iPEEP-guided ventilation was the optimal lung protection ventilation strategy. The quality of evidence was moderate.

Keywords: protection ventilation strategies, postoperative pulmonary complications, network meta-analysis, noncardiac surgery

Procedia PDF Downloads 42
6421 A Behaviourally Plausible Decision Centred Perspective on the Role of Corporate Governance in Corporate Failures

Authors: Navdeep Kaur

Abstract:

The primary focus of this study is to answer “What is the role of corporate governance in corporate failures? Does poor corporate governance lead to corporate failures? If so, how?”. In doing so, the study examines the literature from multiple fields, including corporate governance, corporate failures and organizational decision making, and presents a research gap to analyze and explore the relationship between corporate governance practices and corporate failures through a behavioral lens. In approaching this, a qualitative research methodology is adopted to analyze the failure of Enron Corporation (United States). The research considered the case study organizations as the primary unit of analysis and the decision-makers as the secondary unit of analysis. Based on this research approach, the study reports the analytical results drawn from extensive and triangulated secondary data. The study then interprets the results in the context of the theoretical synthesis. The study contributes towards filling a gap in the research and presents a behaviourally plausible decision centered model of the role of corporate governance in corporate failures. The model highlights the critical role of the behavioral aspects of corporate governance decision making in corporate failures and focuses attention on the under-explored aspects of corporate governance decision making. The study also suggests a further understanding of ‘A Behavioral Theory of the Firm’ in relation to corporate failures.

Keywords: behavior, corporate failure, corporate governance, decision making, values

Procedia PDF Downloads 138
6420 Application of Artificial Intelligence in Market and Sales Network Management: Opportunities, Benefits, and Challenges

Authors: Mohamad Mahdi Namdari

Abstract:

In today's rapidly changing and evolving business competition, companies and organizations require advanced and efficient tools to manage their markets and sales networks. Big data analysis, quick response in competitive markets, process and operations optimization, and forecasting customer behavior are among the concerns of executive managers. Artificial intelligence, as one of the emerging technologies, has provided extensive capabilities in this regard. The use of artificial intelligence in market and sales network management can lead to improved efficiency, increased decision-making accuracy, and enhanced customer satisfaction. Specifically, AI algorithms can analyze vast amounts of data, identify complex patterns, and offer strategic suggestions to improve sales performance. However, many companies are still distant from effectively leveraging this technology, and those that do face challenges in fully exploiting AI's potential in market and sales network management. It appears that the general public's and even the managerial and academic communities' lack of knowledge of this technology has caused the managerial structure to lag behind the progress and development of artificial intelligence. Additionally, high costs, fear of change and employee resistance, lack of quality data production processes, the need for updating structures and processes, implementation issues, the need for specialized skills and technical equipment, and ethical and privacy concerns are among the factors preventing widespread use of this technology in organizations. Clarifying and explaining this technology, especially to the academic, managerial, and elite communities, can pave the way for a transformative beginning. The aim of this research is to elucidate the capacities of artificial intelligence in market and sales network management, identify its opportunities and benefits, and examine the existing challenges and obstacles. This research aims to leverage AI capabilities to provide a framework for enhancing market and sales network performance for managers. The results of this research can help managers and decision-makers adopt more effective strategies for business growth and development by better understanding the capabilities and limitations of artificial intelligence.

Keywords: artificial intelligence, market management, sales network, big data analysis, decision-making, digital marketing

Procedia PDF Downloads 52
6419 Design and Implement a Remote Control Robot Controlled by Zigbee Wireless Network

Authors: Sinan Alsaadi, Mustafa Merdan

Abstract:

Communication and access systems can be made with many methods in today’s world. These systems are such standards as Wifi, Wimax, Bluetooth, GPS and GPRS. Devices which use these standards also use system resources excessively in direct proportion to their transmission speed. However, large-scale data communication is not always needed. In such cases, a technology which will use system resources as little as possible and support smart network topologies has been needed in order to enable the transmissions of such small packet data and provide the control for this kind of devices. IEEE issued 802.15.4 standard upon this necessity and enabled the production of Zigbee protocol which takes these standards as its basis and devices which support this protocol. In our project, this communication protocol was preferred. The aim of this study is to provide the immediate data transmission of our robot from the field within the scope of the project. In addition, making the communication with the robot through Zigbee Protocol has also been aimed. While sitting on the computer, obtaining the desired data from the region where the robot is located has been taken as the basis. Arduino Uno R3 microcontroller which provides the control mechanism, 1298 shield as the motor driver.

Keywords: ZigBee, wireless network, remote monitoring, smart home, agricultural industry

Procedia PDF Downloads 281
6418 Device Control Using Brain Computer Interface

Authors: P. Neeraj, Anurag Sharma, Harsukhpreet Singh

Abstract:

In current years, Brain-Computer Interface (BCI) scheme based on steady-state Visual Evoked Potential (SSVEP) have earned much consideration. This study tries to evolve an SSVEP based BCI scheme that can regulate any gadget mock-up in two unique positions ON and OFF. In this paper, two distinctive gleam frequencies in low-frequency part were utilized to evoke the SSVEPs and were shown on a Liquid Crystal Display (LCD) screen utilizing Lab View. Two stimuli shading, Yellow, and Blue were utilized to prepare the system in SSVEPs. The Electroencephalogram (EEG) signals recorded from the occipital part. Elements of the brain were separated by utilizing discrete wavelet Transform. A prominent system for multilayer system diverse Neural Network Algorithm (NNA), is utilized to characterize SSVEP signals. During training of the network with diverse calculation Regression plot results demonstrated that when Levenberg-Marquardt preparing calculation was utilized the exactness turns out to be 93.9%, which is superior to another training algorithm.

Keywords: brain computer interface, electroencephalography, steady-state visual evoked potential, wavelet transform, neural network

Procedia PDF Downloads 338
6417 An Investigation of Surface Texturing by Ultrasonic Impingement of Micro-Particles

Authors: Nagalingam Arun Prasanth, Ahmed Syed Adnan, S. H. Yeo

Abstract:

Surface topography plays a significant role in the functional performance of engineered parts. It is important to have a control on the surface geometry and understanding on the surface details to get the desired performance. Hence, in the current research contribution, a non-contact micro-texturing technique has been explored and developed. The technique involves ultrasonic excitation of a tool as a prime source of surface texturing for aluminum alloy workpieces. The specimen surface is polished first and is then immersed in a liquid bath containing 10% weight concentration of Ti6Al4V grade 5 spherical powders. A submerged slurry jet is used to recirculate the spherical powders under the ultrasonic horn which is excited at an ultrasonic frequency and amplitude of 40 kHz and 70 µm respectively. The distance between the horn and workpiece surface was remained fixed at 200 µm using a precision control stage. Texturing effects were investigated for different process timings of 1, 3 and 5 s. Thereafter, the specimens were cleaned in an ultrasonic bath for 5 mins to remove loose debris on the surface. The developed surfaces are characterized by optical and contact surface profiler. The optical microscopic images show a texture of circular spots on the workpiece surface indented by titanium spherical balls. Waviness patterns obtained from contact surface profiler supports the texturing effect produced from the proposed technique. Furthermore, water droplet tests were performed to show the efficacy of the proposed technique to develop hydrophilic surfaces and to quantify the texturing effect produced.

Keywords: surface texturing, surface modification, topography, ultrasonic

Procedia PDF Downloads 224
6416 Utility of Optical Coherence Tomography (OCT) and Visual Field Assessment in Neurosurgical Patients

Authors: Ana Ferreira, Ines Costa, Patricia Polónia, Josué Pereira, Olinda Faria, Pedro Alberto Silva

Abstract:

Introduction: Optical coherence tomography (OCT) and visual field tools are pivotal in evaluating neurological deficits and predicting potential visual improvement following surgical decompression in neurosurgical patients. Despite their clinical significance, a comprehensive understanding of their utility in this context is lacking in the literature. This study aims to elucidate the applications of OCT and visual field assessment, delineating distinct patterns of visual deficit presentations within the studied cohort. Methods: This retrospective analysis considered all adult patients who underwent a single surgery for pituitary adenoma or anterior skull base meningioma with optic nerve involvement, coupled with neuro-ophthalmology evaluation, between July 2020 and January 2023. A minimum follow-up period of 6 months was deemed essential. Results: A total of 24 patients, with a median age of 61, were included in the analysis. Three primary patterns emerged: 1) Low visual field involvement with compromised OCT, 2) High visual field involvement with relatively unaffected OCT, and 3) Significant compromise observed in both OCT and visual fields. Conclusion: This study delineates various findings in OCT and visual field assessments with illustrative examples. Based on the current findings, a prospective cohort will be systematically collected to further investigate and validate these patterns and their prognostic significance, enhancing our understanding of the utility of OCT and visual fields in neurosurgical patients.

Keywords: OCT, neurosurgery, visual field, optic nerve

Procedia PDF Downloads 88
6415 An MIPSSTWM-based Emergency Vehicle Routing Approach for Quick Response to Highway Incidents

Authors: Siliang Luan, Zhongtai Jiang

Abstract:

The risk of highway incidents is commonly recognized as a major concern for transportation authorities due to the hazardous consequences and negative influence. It is crucial to respond to these unpredictable events as soon as possible faced by emergency management decision makers. In this paper, we focus on path planning for emergency vehicles, one of the most significant processes to avoid congestion and reduce rescue time. A Mixed-Integer Linear Programming with Semi-Soft Time Windows Model (MIPSSTWM) is conducted to plan an optimal routing respectively considering the time consumption of arcs and nodes of the urban road network and the highway network, especially in developing countries with an enormous population. Here, the arcs indicate the road segments and the nodes include the intersections of the urban road network and the on-ramp and off-ramp of the highway networks. An attempt in this research has been made to develop a comprehensive and executive strategy for emergency vehicle routing in heavy traffic conditions. The proposed Cuckoo Search (CS) algorithm is designed by imitating obligate brood parasitic behaviors of cuckoos and Lévy Flights (LF) to solve this hard and combinatorial problem. Using a Chinese city as our case study, the numerical results demonstrate the approach we applied in this paper outperforms the previous method without considering the nodes of the road network for a real-world situation. Meanwhile, the accuracy and validity of the CS algorithm also show better performances than the traditional algorithm.

Keywords: emergency vehicle, path planning, cs algorithm, urban traffic management and urban planning

Procedia PDF Downloads 87