Search results for: time series prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21471

Search results for: time series prediction

19521 Early Initiation of Breastfeeding and Its Determinants among Non-Caesarean Deliveries at Primary and Secondary Health Facilities: A Case Observational Study

Authors: Farhana Karim, Abdullah N. S. Khan, Mohiuddin A. K. Chowdhury, Nabila Zaka, Alexander Manu, Shams El Arifeen, Sk Masum Billah

Abstract:

Breastfeeding, an integral part of newborn care, can reduce 55-87% of all-cause neonatal mortality and morbidity. Early initiation of breastfeeding within 1 hour of birth can avert 22% of newborn mortality. Only 45% of world’s newborns and 42% of newborns in South-Asia are put to the breast within one hour of birth. In Bangladesh, only a half of the mothers practice early initiation of breastfeeding which is less likely to be practiced if the baby is born in a health facility. This study aims to generate strong evidence for early initiation of breastfeeding practices in the government health facilities and to explore the associated factors influencing the practice. The study was conducted in selected health facilities in three neighbouring districts of Northern Bangladesh. Total 249 normal vaginal delivery cases were observed for 24 hours since the time of birth. The outcome variable was initiation of breastfeeding within 1 hour while the explanatory variables included type of health facility, privacy, presence of support person, stage of labour at admission, need for augmentation of labour, complications during delivery, need for episiotomy, spontaneous cry of the newborn, skin-to-skin contact with mother, post-natal contact with the service provider, receiving a post-natal examination and counselling on breastfeeding during postnatal contact. The simple descriptive statistics were employed to see the distribution of samples according to socio-demographic characteristics. Kruskal-Wallis test was carried out for testing the equality of medians among two or more categories of each variable and P-value is reported. A series of simple logistic regressions were conducted with all the potential explanatory variables to identify the determining factors for breastfeeding within 1 hour in a health facility. Finally, multiple logistic regression was conducted including the variables found significant at bi-variate analyses. Almost 90% participants initiated breastfeeding at the health facility and median time to initiate breastfeeding was 38 minutes. However, delivering in a sub-district hospital significantly delayed the breastfeeding initiation in comparison to delivering in a district hospital. Maintenance of adequate privacy and presence of separate staff for taking care of newborn significantly reduced the time in early breastfeeding initiation. Initiation time was found longer if the mother had an augmented labour, obstetric complications, and the newborn needed resuscitation. However, the initiation time was significantly early if the baby was put skin-to-skin on mother’s abdomen and received a postnatal examination by a provider. After controlling for the potential confounders, the odds of initiating breastfeeding within one hour of birth is higher if mother gives birth in a district hospital (AOR 3.0: 95% CI 1.5, 6.2), privacy is well-maintained (AOR 2.3: 95% CI 1.1, 4.5), babies cry spontaneously (AOR 7.7: 95% CI 3.3, 17.8), babies are put to skin-to-skin contact with mother (AOR 4.6: 95% CI 1.9, 11.2) and if the baby is examined by a provider in the facility (AOR 4.4: 95% CI 1.4, 14.2). The evidence generated by this study will hopefully direct the policymakers to identify and prioritize the scopes for creating and supporting early initiation of breastfeeding in the health facilities.

Keywords: Bangladesh, early initiation of breastfeeding, health facility, normal vaginal delivery, skin to skin contact

Procedia PDF Downloads 158
19520 Vegetables and Fruits Solar Tunnel Dryer for Small-Scale Farmers in Kassala

Authors: Sami Mohamed Sharif

Abstract:

The current study focuses on the design and construction of a solar tunnel dryer intended for small-scale farmers in Kassala, Sudan. To determine the appropriate dimensions of the dryer, the heat and mass balance equations are used, taking into account factors such as the target agricultural product, climate conditions, solar irradiance, and desired drying time. In Kassala, a dryer with a width of 88 cm, length of 600 cm, and height of 25 cm has been built, capable of drying up to 40 kg of vegetables or fruits. The dryer is divided into two chambers of different lengths. The air passing through is heated to the desired drying temperature in a separate heating chamber that is 200 cm long. From there, the heated air enters the drying chamber, which is 400 cm long. In this section, the agricultural product is placed on a slightly elevated net. The tunnel dryer was constructed using materials from the local market. The paper also examines the solar irradiance in Kassala, finding an average of 23.6 MJ/m2/day, with a maximum of 26.6 MJ/m2/day in April and a minimum of 20.2 MJ/m2/day in December. A DC fan powered by a 160Wp solar panel is utilized to circulate air within the tunnel. By connecting the fan and three 12V, 60W bulbs in series, four different speeds can be achieved using a speed controller. Temperature and relative humidity measurements were taken hourly over three days, from 10:00 a.m. to 3:00 p.m. The results demonstrate the promising technology and sizing techniques of solar tunnel dryers, which can significantly increase the temperature within the tunnel by more than 90%.

Keywords: tunnel dryer, solar drying, moisture content, fruits drying modeling, open sun drying

Procedia PDF Downloads 61
19519 A Study on the Waiting Time for the First Employment of Arts Graduates in Sri Lanka

Authors: Imali T. Jayamanne, K. P. Asoka Ramanayake

Abstract:

Transition from tertiary level education to employment is one of the challenges that many fresh university graduates face after graduation. The transition period or the waiting time to obtain the first employment varies with the socio-economic factors and the general characteristics of a graduate. Compared to other fields of study, Arts graduates in Sri Lanka, have to wait a long time to find their first employment. The objective of this study is to identify the determinants of the transition from higher education to employment of these graduates using survival models. The study is based on a survey that was conducted in the year 2016 on a stratified random sample of Arts graduates from Sri Lankan universities who had graduated in 2012. Among the 469 responses, 36 (8%) waiting times were interval censored and 13 (3%) were right censored. Waiting time for the first employment varied between zero to 51 months. Initially, the log-rank and the Gehan-Wilcoxon tests were performed to identify the significant factors. Gender, ethnicity, GCE Advanced level English grade, civil status, university, class received, degree type, sector of first employment, type of first employment and the educational qualifications required for the first employment were significant at 10%. The Cox proportional hazards model was fitted to model the waiting time for first employment with these significant factors. All factors, except ethnicity and type of employment were significant at 5%. However, since the proportional hazard assumption was violated, the lognormal Accelerated failure time (AFT) model was fitted to model the waiting time for the first employment. The same factors were significant in the AFT model as in Cox proportional model.

Keywords: AFT model, first employment, proportional hazard, survey design, waiting time

Procedia PDF Downloads 316
19518 An Active Rectifier with Time-Domain Delay Compensation to Enhance the Power Conversion Efficiency

Authors: Shao-Ku Kao

Abstract:

This paper presents an active rectifier with time-domain delay compensation to enhance the efficiency. A delay calibration circuit is designed to convert delay time to voltage and adaptive control on/off delay in variable input voltage. This circuit is designed in 0.18 mm CMOS process. The input voltage range is from 2 V to 3.6 V with the output voltage from 1.8 V to 3.4 V. The efficiency can maintain more than 85% when the load from 50 Ω ~ 1500 Ω for 3.6 V input voltage. The maximum efficiency is 92.4 % at output power to be 38.6 mW for 3.6 V input voltage.

Keywords: wireless power transfer, active diode, delay compensation, time to voltage converter, PCE

Procedia PDF Downloads 285
19517 Heuristic for Accelerating Run-Time Task Mapping in NoC-Based Heterogeneous MPSoCs

Authors: M. K. Benhaoua, A. K. Singh, A. E. H. Benyamina, A. Kumar, P. Boulet

Abstract:

In this paper, we propose a new packing strategy to find free resources for run-time mapping of application tasks on NoC-based Heterogeneous MPSoCs. The proposed strategy minimizes the task mapping time in addition to placing the communicating tasks close to each other. To evaluate our approach, a comparative study is carried out. Experiments show that our strategy provides better results when compared to latest dynamic mapping strategies reported in the literature.

Keywords: heterogeneous MPSoCs, NoC, dynamic mapping, routing

Procedia PDF Downloads 532
19516 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach

Authors: James Ladzekpo

Abstract:

Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.

Keywords: diabetes, machine learning, prediction, biomarkers

Procedia PDF Downloads 61
19515 Presenting a Model Based on Artificial Neural Networks to Predict the Execution Time of Design Projects

Authors: Hamed Zolfaghari, Mojtaba Kord

Abstract:

After feasibility study the design phase is started and the rest of other phases are highly dependent on this phase. forecasting the duration of design phase could do a miracle and would save a lot of time. This study provides a fast and accurate Machine learning (ML) and optimization framework, which allows a quick duration estimation of project design phase, hence improving operational efficiency and competitiveness of a design construction company. 3 data sets of three years composed of daily time spent for different design projects are used to train and validate the ML models to perform multiple projects. Our study concluded that Artificial Neural Network (ANN) performed an accuracy of 0.94.

Keywords: time estimation, machine learning, Artificial neural network, project design phase

Procedia PDF Downloads 101
19514 Internet of Things Based Process Model for Smart Parking System

Authors: Amjaad Alsalamah, Liyakathunsia Syed

Abstract:

Transportation is an essential need for many people to go to their work, school, and home. In particular, the main common method inside many cities is to drive the car. Driving a car can be an easy job to reach the destination and load all stuff in a reasonable time. However, deciding to find a parking lot for a car can take a long time using the traditional system that can issue a paper ticket for each customer. The old system cannot guarantee a parking lot for all customers. Also, payment methods are not always available, and many customers struggled to find their car among a numerous number of cars. As a result, this research focuses on providing an online smart parking system in order to save time and budget. This system provides a flexible management system for both parking owner and customers by receiving all request via the online system and it gets an accurate result for all available parking and its location.

Keywords: smart parking system, IoT, tracking system, process model, cost, time

Procedia PDF Downloads 340
19513 Spatial Spillovers in Forecasting Market Diffusion of Electric Mobility

Authors: Reinhold Kosfeld, Andreas Gohs

Abstract:

In the reduction of CO₂ emissions, the transition to environmentally friendly transport modes has a high significance. In Germany, the climate protection programme 2030 includes various measures for promoting electromobility. Although electric cars at present hold a market share of just over one percent, its stock more than doubled in the past two years. Special measures like tax incentives and a buyer’s premium have been put in place to promote the shift towards electric cars and boost their diffusion. Knowledge of the future expansion of electric cars is required for planning purposes and adaptation measures. With a view of these objectives, we particularly investigate the effect of spatial spillovers on forecasting performance. For this purpose, time series econometrics and panel econometric models are designed for pure electric cars and hybrid cars for Germany. Regional forecasting models with spatial interactions are consistently estimated by using spatial econometric techniques. Regional data on the stocks of electric cars and their determinants at the district level (NUTS 3 regions) are available from the Federal Motor Transport Authority (Kraftfahrt-Bundesamt) for the period 2017 - 2019. A comparative examination of aggregated regional and national predictions provides quantitative information on accuracy gains by allowing for spatial spillovers in forecasting electric mobility.

Keywords: electric mobility, forecasting market diffusion, regional panel data model, spatial interaction

Procedia PDF Downloads 178
19512 Effect of CuO, Al₂O₃ and ZnO Nanoparticles on the Response Time for Natural Convection

Authors: Mefteh Bouhalleb

Abstract:

With the recent progress in nanotechnology, nanofluids have excellent potentiality in many modern engineering processes, particularly for solar systems such as concentrated solar power plants (CSP). In this context, a numerical simulation is performed to investigate laminar natural convection nanofluids in an inclined rectangular enclosure. Mass conservation, momentum, and energy equations are numerically solved by the finite volume element method using the SIMPLER algorithm for pressure-velocity coupling. In this work, we tested the acting factors on the system response time, such as the particle volume fraction of nanoparticles, particle material, particle size, an inclination angle of enclosure and Rayleigh number. The results show that the diameter of solid particles and Rayleigh number plays an important role in the system response time. The orientation angle of the cavity affects the system response time. A phenomenon of hysteresis appears when the system does not return to its initial state.

Keywords: nanofluid, nanoparticles, heat transfer, time response

Procedia PDF Downloads 95
19511 Real-Time Web Map Service Based on Solar-Powered Unmanned Aerial Vehicle

Authors: Sunghun Jung

Abstract:

The existing web map service providers contract with the satellite operators to update their maps by paying an astronomical amount of money, but the cost could be minimized by operating a cheap and small UAV. In contrast to the satellites, we only need to replace aged battery packs from time to time for the usage of UAVs. Utilizing both a regular camera and an infrared camera mounted on a small, solar-powered, long-endurance, and hoverable UAV, daytime ground surface photographs, and nighttime infrared photographs will be continuously and repeatedly uploaded to the web map server and overlapped with the existing ground surface photographs in real-time. The real-time web map service using a small, solar-powered, long-endurance, and hoverable UAV can also be applied to the surveillance missions, in particular, to detect border area intruders. The improved real-time image stitching algorithm is developed for the graphic map data overlapping. Also, a small home server will be developed to manage the huge size of incoming map data. The map photographs taken at tens or hundreds of kilometers by a UAV would improve the map graphic resolution compared to the map photographs taken at thousands of kilometers by satellites since the satellite photographs are limited by weather conditions.

Keywords: long-endurance, real-time web map service (RWMS), solar-powered, unmanned aerial vehicle (UAV)

Procedia PDF Downloads 280
19510 Algorithms for Run-Time Task Mapping in NoC-Based Heterogeneous MPSoCs

Authors: M. K. Benhaoua, A. K. Singh, A. E. Benyamina, P. Boulet

Abstract:

Mapping parallelized tasks of applications onto these MPSoCs can be done either at design time (static) or at run-time (dynamic). Static mapping strategies find the best placement of tasks at design-time, and hence, these are not suitable for dynamic workload and seem incapable of runtime resource management. The number of tasks or applications executing in MPSoC platform can exceed the available resources, requiring efficient run-time mapping strategies to meet these constraints. This paper describes a new Spiral Dynamic Task Mapping heuristic for mapping applications onto NoC-based Heterogeneous MPSoC. This heuristic is based on packing strategy and routing Algorithm proposed also in this paper. Heuristic try to map the tasks of an application in a clustering region to reduce the communication overhead between the communicating tasks. The heuristic proposed in this paper attempts to map the tasks of an application that are most related to each other in a spiral manner and to find the best possible path load that minimizes the communication overhead. In this context, we have realized a simulation environment for experimental evaluations to map applications with varying number of tasks onto an 8x8 NoC-based Heterogeneous MPSoCs platform, we demonstrate that the new mapping heuristics with the new modified dijkstra routing algorithm proposed are capable of reducing the total execution time and energy consumption of applications when compared to state-of-the-art run-time mapping heuristics reported in the literature.

Keywords: multiprocessor system on chip, MPSoC, network on chip, NoC, heterogeneous architectures, run-time mapping heuristics, routing algorithm

Procedia PDF Downloads 490
19509 West Meets Islam in Contemporary World, Leadership Perspective

Authors: Muhamad Rosdi Senam, Khairuddin Abdul Rashid, Azila Ahmad Sarkawi, Rapiah Mohd Zaini

Abstract:

Islam is a way of life than merely a religion that covers all facets of Muslim affairs and lifes. It provides the most comprehensive values, principles and guidance that are based on divine sources to all mankind in all spheres including leadership. Islamic leadership is all encompassing and holistic model of leadership that offers the tauhidic paradigm, spiritual and ethical (akhlaq) dimensions that are absent in the modern conventional leadership theories. Islamic leadership has a glorious history of great success from the era of the Prophet S.A.W. and the following caliphs that had conquered almost one third of the world territory during that time, as their leadership was paragon of excellence that followed to the spirits and teachings of the Qur’an and the Sunnah. As the modern civilisation designed by the West takes place, the modern leadership theories has been dominating the world and literature including those in the Muslim countries. However, it is clear that values and principles derived from Islam and the West are distinct, as the Islamic ones are based on divine, the non-Islamics are not indeed as there are based on human rational and judgement. Recent development in business organisations and literature have seen the tendency towards moral, ethical, even spiritual and positive form of leadership such as servant leadership, ethical leadership, authentic leadership and spiritual leadership that found its root in the Islamic model of leadership.This development has surfaced after series of serious ethical dilemma, corporate scandals and leadership crisis in the West. This paper aims to draw a comparative discussions and analysis between the modern conventional leadership theories with the Islamic leadership by highlighting the key dimensions that distinguish the two. It is suggested in this paper that the core dimensions of Islamic leadership are spiritual dimension, moral and ethical dimension and physical dimension which is also paralleled with the roles of khalifah of Allah on earth; relationship with Allah, relationship with human beings and relationship with the environment respectively. Islam is a way of life than merely a religion that covers all facets of Muslim affairs and lifes. It provides the most comprehensive values, principles and guidance that are based on divine sources to all mankind in all spheres including leadership. Islamic leadership is all encompassing and holistic model of leadership that offers the tauhidic paradigm, spiritual and ethical (akhlaq) dimensions that are absent in the modern conventional leadership theories. Islamic leadership has a glorious history of great success from the era of the Prophet S.A.W. and the following caliphs that had conquered almost one third of the world territory during that time, as their leadership was paragon of excellence that followed to the spirits and teachings of the Qur’an and the Sunnah. As the modern civilisation designed by the West takes place, the modern leadership theories has been dominating the world and literature including those in the Muslim countries. However, it is clear that values and principles derived from Islam and the West are distinct, as the Islamic ones are based on divine, the non-Islamics are not indeed as there are based on human rational and judgement. Recent development in business organisations and literature have seen the tendency towards moral, ethical, even spiritual and positive form of leadership such as servant leadership, ethical leadership, authentic leadership and spiritual leadership that found its root in the Islamic model of leadership.This development has surfaced after series of serious ethical dilemma, corporate scandals and leadership crisis in the West. This paper aims to draw a comparative discussions and analysis between the modern conventional leadership theories with the Islamic leadership by highlighting the key dimensions that distinguish the two. It is suggested in this paper that the core dimensions of Islamic leadership are spiritual dimension, moral and ethical dimension and physical dimension which is also paralleled with the roles of khalifah of Allah on earth; relationship with Allah, relationship with human beings and relationship with the environment respectively.

Keywords: conventional leadership, Islamic leadership, comparative, dimensions

Procedia PDF Downloads 528
19508 Modeling Environmental, Social, and Governance Financial Assets with Lévy Subordinated Processes and Option Pricing

Authors: Abootaleb Shirvani, Svetlozar Rachev

Abstract:

ESG stands for Environmental, Social, and Governance and is a non-financial factor that investors use to specify material risks and growth opportunities in their analysis process. ESG ratings provide a quantitative measure of socially responsible investment, and it is essential to incorporate ESG ratings when modeling the dynamics of asset returns. In this article, we propose a triple subordinated Lévy process for incorporating numeric ESG ratings into dynamic asset pricing theory to model the time series properties of the stock returns. The motivation for introducing three layers of subordinator is twofold. The first two layers of subordinator capture the skew and fat-tailed properties of the stock return distribution that cannot be explained well by the existing Lévy subordinated model. The third layer of the subordinator introduces ESG valuation and incorporates numeric ESG ratings into dynamic asset pricing theory and option pricing. We employ the triple subordinator Lévy model for developing the ESG-valued stock return model, derive the implied ESG score surfaces for Microsoft, Apple, and Amazon stock returns, and compare the shape of the ESG implied surface scores for these stocks.

Keywords: ESG scores, dynamic asset pricing theory, multiple subordinated modeling, Lévy processes, option pricing

Procedia PDF Downloads 89
19507 The Unsteady Non-Equilibrium Distribution Function and Exact Equilibrium Time for a Dilute Gas Affected by Thermal Radiation Field

Authors: Taha Zakaraia Abdel Wahid

Abstract:

The behavior of the unsteady non-equilibrium distribution function for a dilute gas under the effect of non-linear thermal radiation field is presented. For the best of our knowledge this is done for the first time at all. The distinction and comparisons between the unsteady perturbed and the unsteady equilibrium velocity distribution functions are illustrated. The equilibrium time for the dilute gas is determined for the first time. The non-equilibrium thermodynamic properties of the system (gas+the heated plate) are investigated. The results are applied to the Argon gas, for various values of radiation field intensity. 3D-Graphics illustrating the calculated variables are drawn to predict their behavior. The results are discussed.

Keywords: dilute gas, radiation field, exact solutions, travelling wave method, unsteady BGK model, irreversible thermodynamics, unsteady non-equilibrium distribution functions

Procedia PDF Downloads 498
19506 Design of an Arbitrary Signal Generator Based on Time-Domain Superposition

Authors: Yu JunLiang

Abstract:

This paper introduces the design principles and methods of a time-domain signal generator. It explores the spectral characteristics of pulse signals and proposes a signal synthesis method based on the superposition of Gaussian signals. By adjusting the amplitude parameters of the Gaussian functions, the synthesis of arbitrary spectral signals can be achieved. The synthesis method considers the calculation of synthesis coefficients for signals with known frequency domain functions. Finally, simulation experiments verify the time-domain and frequency-domain characteristics of the synthesized signals and discuss the degree of fit between the synthesized and original signals in both domains. This paper provides valuable insights for understanding the design principles and implementation methods of time-domain signal generators.

Keywords: time-domain signal generator, pulse signal, arbitrary signal generator, signal synthesis

Procedia PDF Downloads 7
19505 Effects of Screen Time on Children from a Systems Engineering Perspective

Authors: Misagh Faezipour

Abstract:

This paper explores the effects of screen time on children from a systems engineering perspective. We reviewed literature from several related works on the effects of screen time on children to explore all factors and interrelationships that would impact children that are subjected to using long screen times. Factors such as kids' age, parent attitudes, parent screen time influence, amount of time kids spend with technology, psychosocial and physical health outcomes, reduced mental imagery, problem-solving and adaptive thinking skills, obesity, unhealthy diet, depressive symptoms, health problems, disruption in sleep behavior, decrease in physical activities, problematic relationship with mothers, language, social, emotional delays, are examples of some factors that could be either a cause or effect of screen time. A systems engineering perspective is used to explore all the factors and factor relationships that were discovered through literature. A causal model is used to illustrate a graphical representation of these factors and their relationships. Through the causal model, the factors with the highest impacts can be realized. Future work would be to develop a system dynamics model to view the dynamic behavior of the relationships and observe the impact of changes in different factors in the model. The different changes on the input of the model, such as a healthier diet or obesity rate, would depict the effect of the screen time in the model and portray the effect on the children’s health and other factors that are important, which also works as a decision support tool.

Keywords: children, causal model, screen time, systems engineering, system dynamics

Procedia PDF Downloads 148
19504 A Low-Latency Quadratic Extended Domain Modular Multiplier for Bilinear Pairing Based on Non-Least Positive Multiplication

Authors: Yulong Jia, Xiang Zhang, Ziyuan Wu, Shiji Hu

Abstract:

The calculation of bilinear pairing is the core of the SM9 algorithm, which relies on the underlying prime domain algorithm and the quadratic extension domain algorithm. Among the field algorithms, modular multiplication operation is the most time-consuming part. Therefore, the underlying modular multiplication algorithm is optimized to maximize the operation speed of bilinear pairings. This paper uses a modular multiplication method based on non-least positive (NLP) combined with Karatsuba and schoolbook multiplication to improve the Montgomery algorithm. At the same time, according to the characteristics of multiplication operation in quadratic extension domain, a quadratic extension domain FP2-NLP modular multiplication algorithm for bilinear pairings is proposed, which effectively reduces the operation time of modular multiplication in quadratic extension domain. The subexpanded domain 𝐹ₚ₂ -NLP modular multiplication algorithm effectively reduces the operation time of modular multiplication under the second-expanded domain. The multiplication unit in the quadratic extension domain is implemented using SMIC55nm process, and two different implementation architectures are designed to cope with different application scenarios. Compared with the existing related literature, the output latency of this design can reach a minimum of 15 cycles. The shortest time for calculating the (𝐴𝐵 + 𝐶𝐷)𝑟⁻¹ mod 𝑀 form is 37.5ns, and the comprehensive area-time product (AT) is 11400. The final R-ate pairing algorithm hardware accelerator consumes 2670k equivalent logic gates and 1.8ms computing time in 55nm process.

Keywords: sm9, hardware, NLP, Montgomery

Procedia PDF Downloads 21
19503 Radial Basis Surrogate Model Integrated to Evolutionary Algorithm for Solving Computation Intensive Black-Box Problems

Authors: Abdulbaset Saad, Adel Younis, Zuomin Dong

Abstract:

For design optimization with high-dimensional expensive problems, an effective and efficient optimization methodology is desired. This work proposes a series of modification to the Differential Evolution (DE) algorithm for solving computation Intensive Black-Box Problems. The proposed methodology is called Radial Basis Meta-Model Algorithm Assisted Differential Evolutionary (RBF-DE), which is a global optimization algorithm based on the meta-modeling techniques. A meta-modeling assisted DE is proposed to solve computationally expensive optimization problems. The Radial Basis Function (RBF) model is used as a surrogate model to approximate the expensive objective function, while DE employs a mechanism to dynamically select the best performing combination of parameters such as differential rate, cross over probability, and population size. The proposed algorithm is tested on benchmark functions and real life practical applications and problems. The test results demonstrate that the proposed algorithm is promising and performs well compared to other optimization algorithms. The proposed algorithm is capable of converging to acceptable and good solutions in terms of accuracy, number of evaluations, and time needed to converge.

Keywords: differential evolution, engineering design, expensive computations, meta-modeling, radial basis function, optimization

Procedia PDF Downloads 402
19502 Intermediate-Term Impact of Taiwan High-Speed Rail (HSR) and Land Use on Spatial Patterns of HSR Travel

Authors: Tsai Yu-hsin, Chung Yi-Hsin

Abstract:

The employment of an HSR system, resulting in elevation in the inter-city/-region accessibility, is likely to promote spatial interaction between places in the HSR and extended territory. The inter-city/-region travel via HSR could be, among others, affected by the land use, transportation, and location of the HSR station at both trip origin and destination ends. However, relatively few insights have been shed on these impacts and spatial patterns of the HSR travel. The research purposes, as phase one of a series of HSR related research, of this study are threefold: to analyze the general spatial patterns of HSR trips, such as the spatial distribution of trip origins and destinations; to analyze if specific land use, transportation characteristics, and trip characteristics affect HSR trips in terms of the use of HSR, the distribution of trip origins and destinations, and; to analyze the socio-economic characteristics of HSR travelers. With the Taiwan HSR starting operation in 2007, this study emphasizes on the intermediate-term impact of HSR, which is made possible with the population and housing census and industry and commercial census data and a station area intercept survey conducted in the summer 2014. The analysis will be conducted at the city, inter-city, and inter-region spatial levels, as necessary and required. The analysis tools include descriptive statistics and multivariate analysis with the assistance of SPSS, HLM and ArcGIS. The findings, on the one hand, can provide policy implications for associated land use, transportation plan and the site selection of HSR station. On the other hand, on the travel the findings are expected to provide insights that can help explain how land use and real estate values could be affected by HSR in following phases of this series of research.

Keywords: high speed rail, land use, travel, spatial pattern

Procedia PDF Downloads 465
19501 Rapid Detection of MBL Genes by SYBR Green Based Real-Time PCR

Authors: Taru Singh, Shukla Das, V. G. Ramachandran

Abstract:

Objectives: To develop SYBR green based real-time PCR assay to detect carbapenemases (NDM, IMP) genes in E. coli. Methods: A total of 40 E. coli from stool samples were tested. Six were previously characterized as resistant to carbapenems and documented by PCR. The remaining 34 isolates previously tested susceptible to carbapenems and were negative for these genes. Bacterial RNA was extracted using manual method. The real-time PCR was performed using the Light Cycler III 480 instrument (Roche) and specific primers for each carbapenemase target were used. Results: Each one of the two carbapenemase gene tested presented a different melting curve after PCR amplification. The melting temperature (Tm) analysis of the amplicons identified was as follows: blaIMP type (Tm 82.18°C), blaNDM-1 (Tm 78.8°C). No amplification was detected among the negative samples. The results showed 100% concordance with the genotypes previously identified. Conclusions: The new assay was able to detect the presence of two different carbapenemase gene type by real-time PCR.

Keywords: resistance, b-lactamases, E. coli, real-time PCR

Procedia PDF Downloads 413
19500 Modelling of Cavity Growth in Underground Coal Gasification

Authors: Preeti Aghalayam, Jay Shah

Abstract:

Underground coal gasification (UCG) is the in-situ gasification of unmineable coals to produce syngas. In UCG, gasifying agents are injected into the coal seam, and a reactive cavity is formed due to coal consumption. The cavity formed is typically hemispherical, and this report consists of the MATLAB model of the UCG cavity to predict the composition of the output gases. There are seven radial and two time-variant ODEs. A MATLAB solver (ode15s) is used to solve the radial ODEs from the above equations. Two for-loops are implemented in the model, i.e., one for time variations and another for radial variation. In the time loop, the radial odes are solved using the MATLAB solver. The radial loop is nested inside the time loop, and the density odes are numerically solved using the Euler method. The model is validated by comparing it with the literature results of laboratory-scale experiments. The model predicts the radial and time variation of the product gases inside the cavity.

Keywords: gasification agent, MATLAB model, syngas, underground coal gasification (UCG)

Procedia PDF Downloads 211
19499 A Generalized Weighted Loss for Support Vextor Classification and Multilayer Perceptron

Authors: Filippo Portera

Abstract:

Usually standard algorithms employ a loss where each error is the mere absolute difference between the true value and the prediction, in case of a regression task. In the present, we present several error weighting schemes that are a generalization of the consolidated routine. We study both a binary classification model for Support Vextor Classification and a regression net for Multylayer Perceptron. Results proves that the error is never worse than the standard procedure and several times it is better.

Keywords: loss, binary-classification, MLP, weights, regression

Procedia PDF Downloads 101
19498 Feature Based Unsupervised Intrusion Detection

Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein

Abstract:

The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.

Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka

Procedia PDF Downloads 299
19497 Analysis of Biomarkers Intractable Epileptogenic Brain Networks with Independent Component Analysis and Deep Learning Algorithms: A Comprehensive Framework for Scalable Seizure Prediction with Unimodal Neuroimaging Data in Pediatric Patients

Authors: Bliss Singhal

Abstract:

Epilepsy is a prevalent neurological disorder affecting approximately 50 million individuals worldwide and 1.2 million Americans. There exist millions of pediatric patients with intractable epilepsy, a condition in which seizures fail to come under control. The occurrence of seizures can result in physical injury, disorientation, unconsciousness, and additional symptoms that could impede children's ability to participate in everyday tasks. Predicting seizures can help parents and healthcare providers take precautions, prevent risky situations, and mentally prepare children to minimize anxiety and nervousness associated with the uncertainty of a seizure. This research proposes a comprehensive framework to predict seizures in pediatric patients by evaluating machine learning algorithms on unimodal neuroimaging data consisting of electroencephalogram signals. The bandpass filtering and independent component analysis proved to be effective in reducing the noise and artifacts from the dataset. Various machine learning algorithms’ performance is evaluated on important metrics such as accuracy, precision, specificity, sensitivity, F1 score and MCC. The results show that the deep learning algorithms are more successful in predicting seizures than logistic Regression, and k nearest neighbors. The recurrent neural network (RNN) gave the highest precision and F1 Score, long short-term memory (LSTM) outperformed RNN in accuracy and convolutional neural network (CNN) resulted in the highest Specificity. This research has significant implications for healthcare providers in proactively managing seizure occurrence in pediatric patients, potentially transforming clinical practices, and improving pediatric care.

Keywords: intractable epilepsy, seizure, deep learning, prediction, electroencephalogram channels

Procedia PDF Downloads 89
19496 Parametric Non-Linear Analysis of Reinforced Concrete Frames with Supplemental Damping Systems

Authors: Daniele Losanno, Giorgio Serino

Abstract:

This paper focuses on parametric analysis of reinforced concrete structures equipped with supplemental damping braces. Practitioners still luck sufficient data for current design of damper added structures and often reduce the real model to a pure damper braced structure even if this assumption is neither realistic nor conservative. In the present study, the damping brace is modelled as made by a linear supporting brace connected in series with the viscous/hysteretic damper. Deformation capacity of existing structures is usually not adequate to undergo the design earthquake. In spite of this, additional dampers could be introduced strongly limiting structural damage to acceptable values, or in some cases, reducing frame response to elastic behavior. This work is aimed at providing useful considerations for retrofit of existing buildings by means of supplemental damping braces. The study explicitly takes into consideration variability of (a) relative frame to supporting brace stiffness, (b) dampers’ coefficient (viscous coefficient or yielding force) and (c) non-linear frame behavior. Non-linear time history analysis has been run to account for both dampers’ behavior and non-linear plastic hinges modelled by Pivot hysteretic type. Parametric analysis based on previous studies on SDOF or MDOF linear frames provide reference values for nearly optimal damping systems design. With respect to bare frame configuration, seismic response of the damper-added frame is strongly improved, limiting deformations to acceptable values far below ultimate capacity. Results of the analysis also demonstrated the beneficial effect of stiffer supporting braces, thus highlighting inadequacy of simplified pure damper models. At the same time, the effect of variable damping coefficient and yielding force has to be treated as an optimization problem.

Keywords: brace stiffness, dissipative braces, non-linear analysis, plastic hinges, reinforced concrete frames

Procedia PDF Downloads 296
19495 QSAR Modeling of Germination Activity of a Series of 5-(4-Substituent-Phenoxy)-3-Methylfuran-2(5H)-One Derivatives with Potential of Strigolactone Mimics toward Striga hermonthica

Authors: Strahinja Kovačević, Sanja Podunavac-Kuzmanović, Lidija Jevrić, Cristina Prandi, Piermichele Kobauri

Abstract:

The present study is based on molecular modeling of a series of twelve 5-(4-substituent-phenoxy)-3-methylfuran-2(5H)-one derivatives which have potential of strigolactones mimics toward Striga hermonthica. The first step of the analysis included the calculation of molecular descriptors which numerically describe the structures of the analyzed compounds. The descriptors ALOGP (lipophilicity), AClogS (water solubility) and BBB (blood-brain barrier penetration), served as the input variables in multiple linear regression (MLR) modeling of germination activity toward S. hermonthica. Two MLR models were obtained. The first MLR model contains ALOGP and AClogS descriptors, while the second one is based on these two descriptors plus BBB descriptor. Despite the braking Topliss-Costello rule in the second MLR model, it has much better statistical and cross-validation characteristics than the first one. The ALOGP and AClogS descriptors are often very suitable predictors of the biological activity of many compounds. They are very important descriptors of the biological behavior and availability of a compound in any biological system (i.e. the ability to pass through the cell membranes). BBB descriptor defines the ability of a molecule to pass through the blood-brain barrier. Besides the lipophilicity of a compound, this descriptor carries the information of the molecular bulkiness (its value strongly depends on molecular bulkiness). According to the obtained results of MLR modeling, these three descriptors are considered as very good predictors of germination activity of the analyzed compounds toward S. hermonthica seeds. This article is based upon work from COST Action (FA1206), supported by COST (European Cooperation in Science and Technology).

Keywords: chemometrics, germination activity, molecular modeling, QSAR analysis, strigolactones

Procedia PDF Downloads 293
19494 Neural Networks Underlying the Generation of Neural Sequences in the HVC

Authors: Zeina Bou Diab, Arij Daou

Abstract:

The neural mechanisms of sequential behaviors are intensively studied, with songbirds a focus for learned vocal production. We are studying the premotor nucleus HVC at a nexus of multiple pathways contributing to song learning and production. The HVC consists of multiple classes of neuronal populations, each has its own cellular, electrophysiological and functional properties. During singing, a large subset of motor cortex analog-projecting HVCRA neurons emit a single 6-10 ms burst of spikes at the same time during each rendition of song, a large subset of basal ganglia-projecting HVCX neurons fire 1 to 4 bursts that are similarly time locked to vocalizations, while HVCINT neurons fire tonically at average high frequency throughout song with prominent modulations whose timing in relation to song remains unresolved. This opens the opportunity to define models relating explicit HVC circuitry to how these neurons work cooperatively to control learning and singing. We developed conductance-based Hodgkin-Huxley models for the three classes of HVC neurons (based on the ion channels previously identified from in vitro recordings) and connected them in several physiologically realistic networks (based on the known synaptic connectivity and specific glutaminergic and gabaergic pharmacology) via different architecture patterning scenarios with the aim to replicate the in vivo firing patterning behaviors. We are able, through these networks, to reproduce the in vivo behavior of each class of HVC neurons, as shown by the experimental recordings. The different network architectures developed highlight different mechanisms that might be contributing to the propagation of sequential neural activity (continuous or punctate) in the HVC and to the distinctive firing patterns that each class exhibits during singing. Examples of such possible mechanisms include: 1) post-inhibitory rebound in HVCX and their population patterns during singing, 2) different subclasses of HVCINT interacting via inhibitory-inhibitory loops, 3) mono-synaptic HVCX to HVCRA excitatory connectivity, and 4) structured many-to-one inhibitory synapses from interneurons to projection neurons, and others. Replication is only a preliminary step that must be followed by model prediction and testing.

Keywords: computational modeling, neural networks, temporal neural sequences, ionic currents, songbird

Procedia PDF Downloads 75
19493 Determining Coordinates of Ultra-Light Drones Based on the Time Difference of Arrival (TDOA) Method

Authors: Nguyen Huy Hoang, Do Thanh Quan, Tran Vu Kien

Abstract:

The use of the active radar to measure the coordinates of ultra-light drones is frequently difficult due to long-distance, absolutely small radar cross-section (RCS) and obstacles. Since ultra-light drones are usually controlled by the Time Difference of Arrival (RF), the paper proposed a method to measure the coordinates of ultra-light drones in the space based on the arrival time of the signal at receiving antennas and the time difference of arrival (TDOA). The experimental results demonstrate that the proposed method is really potential and highly accurate.

Keywords: ultra-light drone, TDOA, radar cross-section (RCS), RF

Procedia PDF Downloads 211
19492 Designing User Interfaces for Just in Time Enterprise Solution

Authors: Romi Dey

Abstract:

Introduction: One of the most important criteria for technology to sustain and grow is through it’s elaborate and intuitive design methodology and design thinking. Designing for enterprise applications that cater to Just in Time Technology is one of the most challenging and detailed processes any User Experience Designer would come across. Description: The basic principles of Design, when applied to tailor to these technologies, creates an immense challenge and that’s how a set of redefined and revised design principles that can be applied to designing any Just In Time manufacturing solution. Findings: The thorough process of understanding the end user, their existing pain points which they’ve faced in the real world, their responsibilities and expectations, the core needs and last but not the least the demands, creates havoc nurturing of the design methodologies for the Just in Time solutions. With respect to the business aspect, design and design principles play a strong role in any form of innovation. Conclusion: Innovation and knowledge about the latest technologies are the keywords in the manufacturing industry. It becomes crucial for the product development team to be precise in their understanding of the technology and being sure of end users expectation.

Keywords: design thinking, enterprise application, Just in Time, user experience design

Procedia PDF Downloads 175