Search results for: protein stability prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7695

Search results for: protein stability prediction

5745 Expression of Metallothionein Gen and Protein on Hepatopancreas, Gill and Muscle of Perna viridis Caused by Biotoxicity Hg, Pb and Cd

Authors: Yulia Irnidayanti , J. J. Josua, A. Sugianto

Abstract:

Jakarta Bay with 13 rivers that flow into, the environment has deteriorated and is the most polluted bays in Asia. The entry of waste into the waters of the Bay of Jakarta has caused pollution. Heavy metal contamination has led to pollution levels and may cause toxicity to organisms that live in the sea, down to the cellular level and may affect the ecological balance. Various ways have been conducted to measure the impact of environmental degradation, such as by measuring the levels of contaminants in the environment, including measuring the accumulation of toxic compounds in the tissues of organisms. Biological responses or biomarkers known as a sensitive indicator but need relevant predictions. In heavy metal pollution monitoring, analysis of aquatic biota is very important from the analysis of the water itself. The content of metals in aquatic biota will usually always be increased from time to time due to the nature of metal bioaccumulation, so the aquatic biota is best used as an indicator of metal pollution in aquatic environments. The results of the content analysis results of sea water in coastal estuaries Angke, Kaliadem and Panimbang detected heavy metals cadmium, mercury, lead, but did not find zinc metal. Based on the results of protein electrophoresis methallotionein found heavy metals in the tissues hepatopancreas, gills and muscles, and also the mRNA expression of has detected.

Keywords: gills, heavy metal, hepatopancreas, metallothionein, muscle

Procedia PDF Downloads 389
5744 Making Permanent Supportive Housing Work for Vulnerable Populations

Authors: Olayinka Ariba, Abe Oudshoorn, Steve Rolfe, Carrie Anne Marshall, Deanna Befus, Jason Gilliland, Miranda Crockett, Susana Caxaj, Sarah McLean, Amy Van Berkum, Natasha Thuemler

Abstract:

Background: Secure housing is a platform for health and well-being. Those who struggle with housing stability have complex life and health histories and often require some support services such as the provision of permanent supportive housing. Poor access to supportive resources creates an exacerbation of chronic homelessness, particularly affecting individuals who need immediate access to mental health and addiction supports. This paper presents the first phase of a three-part study examining how on-site support impacts housing stability for recently-re-housed persons. Method: This study utilized a community-based participatory research methodology. Twenty in-depth interviews were conducted with permanent supportive housing residents from a single-site dwelling. Interpretative description analysis was used to draw common themes and understand the experiences and challenges of housing support. Results: Three interconnected themes were identified: 1) Available and timely supports; 2) Affordability; and 3) Community, but with independence as desired. These interconnected components are helping residents transition from homelessness or long-term mental health inpatient care to live in the community. Despite some participant concerns about resident conflicts, staff availability, and affordability, this has been a welcome and successful move for most. Conclusion: Supportive housing is essential for successful tenancies as a platform for health and well-being among Canada’s most vulnerable and, from the perspective of persons recently re-housed, permanent supportive housing is a worthwhile investment.

Keywords: homelessness, supportive housing, rehoused, housing stability

Procedia PDF Downloads 106
5743 A Dual-Mode Infinite Horizon Predictive Control Algorithm for Load Tracking in PUSPATI TRIGA Reactor

Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha

Abstract:

The PUSPATI TRIGA Reactor (RTP), Malaysia reached its first criticality on June 28, 1982, with power capacity 1MW thermal. The Feedback Control Algorithm (FCA) which is conventional Proportional-Integral (PI) controller, was used for present power control method to control fission process in RTP. It is important to ensure the core power always stable and follows load tracking within acceptable steady-state error and minimum settling time to reach steady-state power. At this time, the system could be considered not well-posed with power tracking performance. However, there is still potential to improve current performance by developing next generation of a novel design nuclear core power control. In this paper, the dual-mode predictions which are proposed in modelling Optimal Model Predictive Control (OMPC), is presented in a state-space model to control the core power. The model for core power control was based on mathematical models of the reactor core, OMPC, and control rods selection algorithm. The mathematical models of the reactor core were based on neutronic models, thermal hydraulic models, and reactivity models. The dual-mode prediction in OMPC for transient and terminal modes was based on the implementation of a Linear Quadratic Regulator (LQR) in designing the core power control. The combination of dual-mode prediction and Lyapunov which deal with summations in cost function over an infinite horizon is intended to eliminate some of the fundamental weaknesses related to MPC. This paper shows the behaviour of OMPC to deal with tracking, regulation problem, disturbance rejection and caters for parameter uncertainty. The comparison of both tracking and regulating performance is analysed between the conventional controller and OMPC by numerical simulations. In conclusion, the proposed OMPC has shown significant performance in load tracking and regulating core power for nuclear reactor with guarantee stabilising in the closed-loop.

Keywords: core power control, dual-mode prediction, load tracking, optimal model predictive control

Procedia PDF Downloads 162
5742 Keratin Fiber Fabrication from Biowaste for Biomedical Application

Authors: Ashmita Mukherjee, Yogesh Harishchandra Kabutare, Suritra Bandyopadhyay, Paulomi Ghosh

Abstract:

Uncontrolled bleeding in the battlefield and the operation rooms can lead to serious injuries, trauma and even be lethal. Keratin was reported to be a haemostatic material which rapidly activates thrombin followed by activation of fibrinogen leading to the formation of insoluble fibrin. Also platelets, the main initiator of haemostasis are reported to adhere to keratin. However, the major limitation of pure keratin as a biomaterial is its poor physical property and corresponding low mechanical strength. To overcome this problem, keratin was cross-linked with alginate to increase its mechanical stability. In our study, Keratin extracted from feather waste showed yield of 80.5% and protein content of 8.05 ± 0.43 mg/mL (n=3). FTIR and CD spectroscopy confirmed the presence of the essential functional groups and preservation of the secondary structures of keratin. The keratin was then cross-linked with alginate to make a dope. The dope was used to draw fibers of desired diameters in a suitable coagulation bath using a customized wet spinning setup. The resultant morphology of keratin fibers was observed under a brightfield microscope. The FT-IR analysis implied that there was a presence of both keratin and alginate peaks in the fibers. The cross-linking was confirmed in the keratin alginate fibers by a shift of the amide A and amide B peaks towards the right and disappearance of the peak for N-H stretching (1534.68 cm-1). Blood was drawn in citrate vacutainers for whole blood clotting test and blood clotting kinetics, which showed that the keratin fibers could accelerate blood coagulation compared to that of alginate fibers and tissue culture plate. Additionally, cross-linked keratin-alginate fiber was found to have lower haemolytic potential compared to alginate fiber. Thus, keratin cross-linked fibers can have potential applications to combat unrestrained bleeding.

Keywords: biomaterial, biowaste, fiber, keratin

Procedia PDF Downloads 194
5741 Capture of Co₂ From Natural Gas Using Modified Imidazolium Ionic Liquids

Authors: Alaa A. Ghanem, S. E. M. Desouky

Abstract:

Natural gas (NG) is considered one of the most essential global energy sources. NG fields are often far away from the market, and a long-distance transporting pipeline usually is required. Production of NG with high content of CO₂ leads to severe problems such as equipment corrosion along with the production line until refinery.in addition to a high level of toxicity and decreasing in calorific value of the NG. So it is recommended to remove or decrease the CO₂ percent to meet transport specifications. This can be reached using different removal techniques such as physical and chemical absorption, pressure swing adsorption, membrane separation, or low-temperature separation. Many solvents and chemicals are being used to capture carbon dioxide on a large scale; among them, Ionic liquids have great potential due to their tunable properties; low vapour pressure, low melting point, and sensible thermal stability. In this research, three modifiedimidazolium ionic liquids will be synthesized and characterized using different tools of analysis such as FT-IR, 1H NMR. Thermal stability and surface activity will be studied. The synthesized compounds will be evaluated as selective solvents for CO₂ removal from natural gas using PVT cell.

Keywords: natural gas, CO₂ capture, imidazolium ionic liquid, PVT cell

Procedia PDF Downloads 175
5740 Topping Failure Analysis of Anti-Dip Bedding Rock Slopes Subjected to Crest Loads

Authors: Chaoyi Sun, Congxin Chen, Yun Zheng, Kaizong Xia, Wei Zhang

Abstract:

Crest loads are often encountered in hydropower, highway, open-pit and other engineering rock slopes. Toppling failure is one of the most common deformation failure types of anti-dip bedding rock slopes. Analysis on such failure of anti-dip bedding rock slopes subjected to crest loads has an important influence on engineering practice. Based on the step-by-step analysis approach proposed by Goodman and Bray, a geo-mechanical model was developed, and the related analysis approach was proposed for the toppling failure of anti-dip bedding rock slopes subjected to crest loads. Using the transfer coefficient method, a formulation was derived for calculating the residual thrust of slope toe and the support force required to meet the requirements of the slope stability under crest loads, which provided a scientific reference to design and support for such slopes. Through slope examples, the influence of crest loads on the residual thrust and sliding ratio coefficient was investigated for cases of different block widths and slope cut angles. The results show that there exists a critical block width for such slope. The influence of crest loads on the residual thrust is non-negligible when the block thickness is smaller than the critical value. Moreover, the influence of crest loads on the slope stability increases with the slope cut angle and the sliding ratio coefficient of anti-dip bedding rock slopes increases with the crest loads. Finally, the theoretical solutions and numerical simulations using Universal Distinct Element Code (UDEC) were compared, in which the consistent results show the applicability of both approaches.

Keywords: anti-dip bedding rock slope, crest loads, stability analysis, toppling failure

Procedia PDF Downloads 179
5739 Investigating Salience Theory’s Implications for Real-Life Decision Making: An Experimental Test for Whether the Allais Paradox Exists under Subjective Uncertainty

Authors: Christoph Ostermair

Abstract:

We deal with the effect of correlation between prospects on human decision making under uncertainty as proposed by the comparatively new and promising model of “salience theory of choice under risk”. In this regard, we show that the theory entails the prediction that the inconsistency of choices, known as the Allais paradox, should not be an issue in the context of “real-life decision making”, which typically corresponds to situations of subjective uncertainty. The Allais paradox, probably the best-known anomaly regarding expected utility theory, would then essentially have no practical relevance. If, however, empiricism contradicts this prediction, salience theory might suffer a serious setback. Explanations of the model for variable human choice behavior are mostly the result of a particular mechanism that does not come to play under perfect correlation. Hence, if it turns out that correlation between prospects – as typically found in real-world applications – does not influence human decision making in the expected way, this might to a large extent cost the theory its explanatory power. The empirical literature regarding the Allais paradox under subjective uncertainty is so far rather moderate. Beyond that, the results are hard to maintain as an argument, as the presentation formats commonly employed, supposably have generated so-called event-splitting effects, thereby distorting subjects’ choice behavior. In our own incentivized experimental study, we control for such effects by means of two different choice settings. We find significant event-splitting effects in both settings, thereby supporting the suspicion that the so far existing empirical results related to Allais paradoxes under subjective uncertainty may not be able to answer the question at hand. Nevertheless, we find that the basic tendency behind the Allais paradox, which is a particular switch of the preference relation due to a modified common consequence, shared by two prospects, is still existent both under an event-splitting and a coalesced presentation format. Yet, the modal choice pattern is in line with the prediction of salience theory. As a consequence, the effect of correlation, as proposed by the model, might - if anything - only weaken the systematic choice pattern behind the Allais paradox.

Keywords: Allais paradox, common consequence effect, models of decision making under risk and uncertainty, salience theory

Procedia PDF Downloads 199
5738 Assessing Effectiveness of Outrigger and Belt Truss System for Tall Buildings under Wind Loadings

Authors: Nirand Anunthanakul

Abstract:

This paper is to investigate a 54-story reinforced concrete residential tall building structures—238.8 meters high. Shear walls, core walls, and columns are the primary vertical components. Other special lateral components—core-outrigger and belt trusses—are studied and combined with the structural system in order to increase the structural stability during severe lateral load events, particularly, wind loads. The wind tunnel tests are conducted using the force balance technique. The overall wind loads and dynamics response of the building are also measured for 360 degrees of azimuth—basis for 10-degree intervals. The results from numerical analysis indicate that an outrigger and belt truss system clearly engages perimeter columns to efficiently reduce acceleration index and lateral deformations at the top level so that the building structures achieve lateral stability, and meet standard provision values.

Keywords: outrigger, belt truss, tall buildings, wind loadings

Procedia PDF Downloads 569
5737 Substitution of Silver-Thiosulfate (STS) with Some Essential Oils on Vase-Life of Cut Carnation cv. Liberty

Authors: Mohammad Bagher Hassanpouraghdam, Mohammad Ali Aazami Mavaloo

Abstract:

Due to the huge side-effects of chemicals; essential oils have been considered as suitable alternatives for keeping the vase-life of cut flowers mainly owing to the availability and environment-friend nature of these bio-chemicals. In the present experiment, 50% substitution of STS was achieved and tested on cut carnation flowers cv. Liberty by using the essential oils from four plants; Satureja sahendica Bornm., Echinophora platyloba DC., Tanacetum balsamita L. and Cupressus arizonica Greene., as CRD with five treatments and 3 replications. Vase-life and flower diameter were affected with 50% substitution of STS by essential oils from C. arizonica and T. balsamita. Membrane stability index, Malondialdehyde (MDA) content and Hydrogen peroxide (H2O2) amounts were affected by the substitution treatments as well. The main preservative effect belonged to the substitution with C. arizonica. So that, 50% STS substitution with Cupressus oil holds the highest membrane integrity and the least data for MDA and H2O2 content.

Keywords: Carnation, essential oil, Membrane stability index (MSI), vase life

Procedia PDF Downloads 496
5736 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study

Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa

Abstract:

The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.

Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity

Procedia PDF Downloads 415
5735 Visualizing Matrix Metalloproteinase-2 Activity Using Extracellular Matrix-Immobilized Fluorescence Resonance Energy Transfer Bioprobe in Cancer Cells

Authors: Hawon Lee, Young-Pil Kim

Abstract:

Visualizing matrix metalloproteinases (MMPs) activity is necessary for understanding cancer metastasis because they are implicated in cell migration and invasion by degrading the extracellular matrix (ECM). While much effort has been made to sense the MMP activity, but extracellularly long-term monitoring of MMP activity still remains challenging. Here, we report a collagen-bound fluorescent bioprobe for the detection of MMP-2 activity in the extracellular environment. This bioprobe consists of ECM-immobilized part (including collagen-bound protein) and MMP-sensing part (including peptide substrate linked with fluorescence resonance energy transfer (FRET) coupler between donor green fluorescent protein (GFP) and acceptor TAMRA dye), which was constructed through intein-mediated self-splicing conjugation. Upon being immobilized on the collagen-coated surface, this bioprobe enabled efficient long-lasting observation of MMP-2 activity in the cultured cells without affecting cell growth and viability. As a result, the FRET ratio (acceptor/donor) decreased as the MMP2 activity increased in cultured cancer cells. Furthermore, unlike wild-type MMP-2, mutated MMP-2 expression (Y580A in the hemopexin region) gave rise to lowering the secretion of MMP-2 in HeLa. Conclusively, our method is anticipated to find applications for tracing and visualizing enzyme activity.

Keywords: collagen, ECM, FRET, MMP

Procedia PDF Downloads 202
5734 Biosurfactants Produced by Antarctic Bacteria with Hydrocarbon Cleaning Activity

Authors: Claudio Lamilla, Misael Riquelme, Victoria Saez, Fernanda Sepulveda, Monica Pavez, Leticia Barrientos

Abstract:

Biosurfactants are compounds synthesized by microorganisms that show various chemical structures, including glycolipids, lipopeptides, polysaccharide-protein complex, phospholipids, and fatty acids. These molecules have attracted attention in recent years due to the amphipathic nature of these compounds, which allows their application in various activities related to emulsification, foaming, detergency, wetting, dispersion and solubilization of hydrophobic compounds. Microorganisms that produce biosurfactants are ubiquitous, not only present in water, soil, and sediments but in extreme conditions of pH, salinity or temperature such as those present in Antarctic ecosystems. Due to this, it is of interest to study biosurfactants producing bacterial strains isolated from Antarctic environments, with the potential to be used in various biotechnological processes. The objective of this research was to characterize biosurfactants produced by bacterial strains isolated from Antarctic environments, with potential use in biotechnological processes for the cleaning of sites contaminated with hydrocarbons. The samples were collected from soils and sediments in the South Shetland Islands and the Antarctic Peninsula, during the Antarctic Research Expedition INACH 2016, from both pristine and human occupied areas (influenced). The bacteria isolation was performed from solid R2A, M1 and LB media. The selection of strains producing biosurfactants was done by hemolysis test on blood agar plates (5%) and blue agar (CTAB). From 280 isolates, it was determined that 10 bacterial strains produced biosurfactants after stimulation with different carbon sources. 16S rDNA taxonomic markers, using the universal primers 27F-1492R, were used to identify these bacterias. Biosurfactants production was carried out in 250 ml flasks using Bushnell Hass liquid culture medium enriched with different carbon sources (olive oil, glucose, glycerol, and hexadecane) during seven days under constant stirring at 20°C. Each cell-free supernatant was characterized by physicochemical parameters including drop collapse, emulsification and oil displacement, as well as stability at different temperatures, salinity, and pH. In addition, the surface tension of each supernatant was quantified using a tensiometer. The strains with the highest activity were selected, and the production of biosurfactants was stimulated in six liters of culture medium. Biosurfactants were extracted from the supernatants with chloroform methanol (2:1). These biosurfactants were tested against crude oil and motor oil, to evaluate their displacement activity (detergency). The characterization by physicochemical properties of 10 supernatants showed that 80% of them produced the drop collapse, 60% had stability at different temperatures, and 90% had detergency activity in motor and olive oil. The biosurfactants obtained from two bacterial strains showed a high activity of dispersion of crude oil and motor oil with halos superior to 10 cm. We can conclude that bacteria isolated from Antarctic soils and sediments provide biological material of high quality for the production of biosurfactants, with potential applications in the biotechnological industry, especially in hydrocarbons -contaminated areas such as petroleum.

Keywords: antarctic, bacteria, biosurfactants, hydrocarbons

Procedia PDF Downloads 279
5733 Verification of Simulated Accumulated Precipitation

Authors: Nato Kutaladze, George Mikuchadze, Giorgi Sokhadze

Abstract:

Precipitation forecasts are one of the most demanding applications in numerical weather prediction (NWP). Georgia, as the whole Caucasian region, is characterized by very complex topography. The country territory is prone to flash floods and mudflows, quantitative precipitation estimation (QPE) and quantitative precipitation forecast (QPF) at any leading time are very important for Georgia. In this study, advanced research weather forecasting model’s skill in QPF is investigated over Georgia’s territory. We have analyzed several convection parameterization and microphysical scheme combinations for different rainy episodes and heavy rainy phenomena. We estimate errors and biases in accumulated 6 h precipitation using different spatial resolution during model performance verification for 12-hour and 24-hour lead time against corresponding rain gouge observations and satellite data. Various statistical parameters have been calculated for the 8-month comparison period, and some skills of model simulation have been evaluated. Our focus is on the formation and organization of convective precipitation systems in a low-mountain region. Several problems in connection with QPF have been identified for mountain regions, which include the overestimation and underestimation of precipitation on the windward and lee side of the mountains, respectively, and a phase error in the diurnal cycle of precipitation leading to the onset of convective precipitation in model forecasts several hours too early.

Keywords: extremal dependence index, false alarm, numerical weather prediction, quantitative precipitation forecasting

Procedia PDF Downloads 147
5732 Replacing an Old PFN System with a Solid State Modulator without Changing the Klystron Transformer

Authors: Klas Elmquist, Anders Larsson

Abstract:

Until the year 2000, almost all short pulse modulators in the accelerator world were made with the pulse forming network (PFN) technique. The pulse forming network systems have since then been replaced with solid state modulators that have better efficiency, better stability, and lower cost of ownership, and they are much smaller. In this paper, it is shown that it is possible to replace a pulse forming network system with a solid-state system without changing the klystron tank and the klystron transformer. The solid-state modulator uses semiconductors switching at 1 kV level. A first pulse transformer transforms the voltage up to 10 kV. The 10 kV pulse is finally fed into the original transformer that is placed under the klystron. A flatness of 0.8 percent and stability of 100 PPM is achieved. The test is done with a CPI 8262 type of klystron. It is also shown that it is possible to run such a system with long cables between the transformers. When using this technique, it will be possible to keep original sub-systems like filament systems, vacuum systems, focusing solenoid systems, and cooling systems for the klystron. This will substantially reduce the cost of an upgrade and prolong the life of the klystron system.

Keywords: modulator, solid-state, PFN-system, thyratron

Procedia PDF Downloads 134
5731 Sulfur-Doped Hierarchically Porous Boron Nitride Nanosheets as an Efficient Carbon Dioxide Adsorbent

Authors: Sreetama Ghosh, Sundara Ramaprabhu

Abstract:

Carbon dioxide gas has been a major cause for the worldwide increase in green house effect, which leads to climate change and global warming. So CO₂ capture & sequestration has become an effective way to reduce the concentration of CO₂ in the environment. One such way to capture CO₂ in porous materials is by adsorption process. A potential material in this aspect is porous hexagonal boron nitride or 'white graphene' which is a well-known two-dimensional layered material with very high thermal stability. It had been investigated that the sample with hierarchical pore structure and high specific surface area shows excellent performance in capturing carbon dioxide gas and thereby mitigating the problem of environmental pollution to the certain extent. Besides, the presence of sulfur as well as nitrogen in the sample synergistically helps in the increase in adsorption capacity. In this work, a cost effective single step synthesis of highly porous boron nitride nanosheets doped with sulfur had been demonstrated. Besides, the CO₂ adsorption-desorption studies were carried on using a pressure reduction technique. The studies show that the nanosheets exhibit excellent cyclic stability in storage performance. Thermodynamic studies suggest that the adsorption takes place mainly through physisorption. The studies show that the nanosheets exhibit excellent cyclic stability in storage performance. Further, the surface modification of the highly porous nano sheets carried out by incorporating ionic liquids had further enhanced the capturing capability of CO₂ gas in the nanocomposite, revealing that this particular material has the potential to be an excellent adsorbent of carbon dioxide gas.

Keywords: CO₂ capture, hexagonal boron nitride nanosheets, porous network, sulfur doping

Procedia PDF Downloads 242
5730 Integrating Artificial Neural Network and Taguchi Method on Constructing the Real Estate Appraisal Model

Authors: Mu-Yen Chen, Min-Hsuan Fan, Chia-Chen Chen, Siang-Yu Jhong

Abstract:

In recent years, real estate prediction or valuation has been a topic of discussion in many developed countries. Improper hype created by investors leads to fluctuating prices of real estate, affecting many consumers to purchase their own homes. Therefore, scholars from various countries have conducted research in real estate valuation and prediction. With the back-propagation neural network that has been popular in recent years and the orthogonal array in the Taguchi method, this study aimed to find the optimal parameter combination at different levels of orthogonal array after the system presented different parameter combinations, so that the artificial neural network obtained the most accurate results. The experimental results also demonstrated that the method presented in the study had a better result than traditional machine learning. Finally, it also showed that the model proposed in this study had the optimal predictive effect, and could significantly reduce the cost of time in simulation operation. The best predictive results could be found with a fewer number of experiments more efficiently. Thus users could predict a real estate transaction price that is not far from the current actual prices.

Keywords: artificial neural network, Taguchi method, real estate valuation model, investors

Procedia PDF Downloads 489
5729 Drug Delivery of Cyclophosphamide Functionalized Zigzag (8,0) CNT, Armchair (4,4) CNT, and Nanocone Complexes in Water

Authors: Morteza Keshavarz

Abstract:

In this work, using density functional theory (DFT) thermodynamic stability and quantum molecular descriptors of cyclophoshphamide (an anticancer drug)-functionalized zigzag (8,0) CNT, armchair (4,4) CNT and nanocone complexes in water, for two attachment namely the sidewall and tip, is considered. Calculation of the total electronic energy (Et) and binding energy (Eb) of all complexes indicates that the most thermodynamic stability belongs to the sidewall-attachment of cyclophosphamide into functional nanocone. On the other hand, results from chemical hardness show that drug-functionalized zigzag (8,0) and armchair (4,4) complexes in the tip-attachment configuration possess the smallest and greatest chemical hardness, respectively. By computing the solvation energy, it is found that the solution of the drug and all complexes are spontaneous in water. Furthermore, chirality, type of nanovector (nanotube or nanocone), or attachment configuration have no effects on solvation energy of complexes.

Keywords: carbon nanotube, drug delivery, cyclophosphamide drug, density functional theory (DFT)

Procedia PDF Downloads 370
5728 Scoring System for the Prognosis of Sepsis Patients in Intensive Care Units

Authors: Javier E. García-Gallo, Nelson J. Fonseca-Ruiz, John F. Duitama-Munoz

Abstract:

Sepsis is a syndrome that occurs with physiological and biochemical abnormalities induced by severe infection and carries a high mortality and morbidity, therefore the severity of its condition must be interpreted quickly. After patient admission in an intensive care unit (ICU), it is necessary to synthesize the large volume of information that is collected from patients in a value that represents the severity of their condition. Traditional severity of illness scores seeks to be applicable to all patient populations, and usually assess in-hospital mortality. However, the use of machine learning techniques and the data of a population that shares a common characteristic could lead to the development of customized mortality prediction scores with better performance. This study presents the development of a score for the one-year mortality prediction of the patients that are admitted to an ICU with a sepsis diagnosis. 5650 ICU admissions extracted from the MIMICIII database were evaluated, divided into two groups: 70% to develop the score and 30% to validate it. Comorbidities, demographics and clinical information of the first 24 hours after the ICU admission were used to develop a mortality prediction score. LASSO (least absolute shrinkage and selection operator) and SGB (Stochastic Gradient Boosting) variable importance methodologies were used to select the set of variables that make up the developed score; each of this variables was dichotomized and a cut-off point that divides the population into two groups with different mean mortalities was found; if the patient is in the group that presents a higher mortality a one is assigned to the particular variable, otherwise a zero is assigned. These binary variables are used in a logistic regression (LR) model, and its coefficients were rounded to the nearest integer. The resulting integers are the point values that make up the score when multiplied with each binary variables and summed. The one-year mortality probability was estimated using the score as the only variable in a LR model. Predictive power of the score, was evaluated using the 1695 admissions of the validation subset obtaining an area under the receiver operating characteristic curve of 0.7528, which outperforms the results obtained with Sequential Organ Failure Assessment (SOFA), Oxford Acute Severity of Illness Score (OASIS) and Simplified Acute Physiology Score II (SAPSII) scores on the same validation subset. Observed and predicted mortality rates within estimated probabilities deciles were compared graphically and found to be similar, indicating that the risk estimate obtained with the score is close to the observed mortality, it is also observed that the number of events (deaths) is indeed increasing as the outcome go from the decile with the lowest probabilities to the decile with the highest probabilities. Sepsis is a syndrome that carries a high mortality, 43.3% for the patients included in this study; therefore, tools that help clinicians to quickly and accurately predict a worse prognosis are needed. This work demonstrates the importance of customization of mortality prediction scores since the developed score provides better performance than traditional scoring systems.

Keywords: intensive care, logistic regression model, mortality prediction, sepsis, severity of illness, stochastic gradient boosting

Procedia PDF Downloads 222
5727 Development of Ferric Citrate Complex Draw Solute and Its Application for Liquid Product Enrichment through Forward Osmosis

Authors: H. Li, L. Ji, J. Su

Abstract:

Forward osmosis is an emerging technology for separation and has great potential in the concentration of liquid products such as protein, pharmaceutical, and natural products. In pharmacy industry, one of the very tough talks is to concentrate the product in a gentle way since some of the key components may lose bioactivity when exposed to heating or pressurization. Therefore, forward osmosis (FO), which uses inherently existed osmosis pressure instead of externally applied hydraulic pressure, is attractive for pharmaceutical enrichments in a much efficient and energy-saving way. Recently, coordination complexes have been explored as the new class of draw solutes in FO processes due to their bulky configuration and excellent performance in terms of high water flux and low reverse solute flux. Among these coordination complexes, ferric citrate complex with lots of hydrophilic groups and ionic species which make them good solubility and high osmotic pressure in aqueous solution, as well as its low toxicity, has received much attention. However, the chemistry of ferric complexation by citrate is complicated, and disagreement prevails in the literature, especially for the structure of the ferric citrate. In this study, we investigated the chemical reaction with various molar ratio of iron and citrate. It was observed that the ferric citrate complex (Fe-CA2) with molar ratio of 1:1 for iron and citrate formed at the beginning of the reaction, then Fecit would convert to ferric citrate complex at the molar ratio of 1:2 with the proper excess of citrate in the base solution. The structures of the ferric citrate complexes synthesized were systematically characterized by X-ray diffraction (XRD), UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR) and Thermogravimetric analysis (TGA). Fe-CA2 solutions exhibit osmotic pressures more than twice of that for NaCl solutions at the same concentrations. Higher osmotic pressure means higher driving force, and this is preferable for the FO process. Fe-CA2 and NaCl draw solutions were prepared with the same osmotic pressure and used in FO process for BSA protein concentration. Within 180 min, BSA concentration was enriched from 0.2 to 0.27 L using Fe-CA draw solutions. However, it was only increased from 0.20 to 0.22 g/L using NaCl draw solutions. A reverse flux of 11 g/m²h was observed for NaCl draw solutes while it was only 0.1 g/m²h for Fe-CA2 draw solutes. It is safe to conclude that Fe-CA2 is much better than NaCl as draw solute and it is suitable for the enrichment of liquid product.

Keywords: draw solutes, ferric citrate complex, forward osmosis, protein enrichment

Procedia PDF Downloads 153
5726 Estrogen Controls Hepatitis C Virus Entry and Spread through the GPR30 Pathway

Authors: Laura Ulitzky, Dougbeh-Chris Nyan, Manuel M. Lafer, Erica Silberstein, Nicoleta Cehan, Deborah R. Taylor

Abstract:

Hepatitis C virus (HCV)-associated hepatocellular carcinoma, fibrosis and cirrhosis are more frequent in men and postmenopausal women than in premenopausal women and women receiving hormone replacement therapy, suggesting that β-estradiol (estrogen) plays an innate role in preventing viral infection and liver disease. Estrogen classically acts through nuclear estrogen receptors or, alternatively, through the membrane-bound G-protein-coupled estrogen receptor (GPR30 or GPER). We observed a marked decrease in detectable virus when HCV-infected human hepatoma cells were treated with estrogen. The effect was mimicked by both Tamoxifen (Tam) and G1, a GPR30-specific agonist, and was reversed by the GPR30-specific antagonist, G15. Through GPR30, estrogen-mediated the down-regulation of occludin; a tight junction protein and HCV receptor, by promoting activation of matrix metalloproteinases (MMPs). Activated MMP-9 was secreted in response to estrogen, cleaving occludin in the extracellular Domain D, the motif required for HCV entry and spread. This pathway gives new insight into a novel innate immune pathway and the disparate host-virus responses to HCV demonstrated by the two sexes. Moreover, these data suggest that hormone replacement therapy may have beneficial antiviral properties for HCV-infected postmenopausal women and show promise for new antiviral treatments for both men and women.

Keywords: HCV, estrogen, occludin, MMPs

Procedia PDF Downloads 437
5725 Functional Ingredients from Potato By-Products: Innovative Biocatalytic Processes

Authors: Salwa Karboune, Amanda Waglay

Abstract:

Recent studies indicate that health-promoting functional ingredients and nutraceuticals can help support and improve the overall public health, which is timely given the aging of the population and the increasing cost of health care. The development of novel ‘natural’ functional ingredients is increasingly challenging. Biocatalysis offers powerful approaches to achieve this goal. Our recent research has been focusing on the development of innovative biocatalytic approaches towards the isolation of protein isolates from potato by-products and the generation of peptides. Potato is a vegetable whose high-quality proteins are underestimated. In addition to their high proportion in the essential amino acids, potato proteins possess angiotensin-converting enzyme-inhibitory potency, an ability to reduce plasma triglycerides associated with a reduced risk of atherosclerosis, and stimulate the release of the appetite regulating hormone CCK. Potato proteins have long been considered not economically feasible due to the low protein content (27% dry matter) found in tuber (Solanum tuberosum). However, potatoes rank the second largest protein supplying crop grown per hectare following wheat. Potato proteins include patatin (40-45 kDa), protease inhibitors (5-25 kDa), and various high MW proteins. Non-destructive techniques for the extraction of proteins from potato pulp and for the generation of peptides are needed in order to minimize functional losses and enhance quality. A promising approach for isolating the potato proteins was developed, which involves the use of multi-enzymatic systems containing selected glycosyl hydrolase enzymes that synergistically work to open the plant cell wall network. This enzymatic approach is advantageous due to: (1) the use of milder reaction conditions, (2) the high selectivity and specificity of enzymes, (3) the low cost and (4) the ability to market natural ingredients. Another major benefit to this enzymatic approach is the elimination of a costly purification step; indeed, these multi-enzymatic systems have the ability to isolate proteins, while fractionating them due to their specificity and selectivity with minimal proteolytic activities. The isolated proteins were used for the enzymatic generation of active peptides. In addition, they were applied into a reduced gluten cookie formulation as consumers are putting a high demand for easy ready to eat snack foods, with high nutritional quality and limited to no gluten incorporation. The addition of potato protein significantly improved the textural hardness of reduced gluten cookies, more comparable to wheat flour alone. The presentation will focus on our recent ‘proof-of principle’ results illustrating the feasibility and the efficiency of new biocatalytic processes for the production of innovative functional food ingredients, from potato by-products, whose potential health benefits are increasingly being recognized.

Keywords: biocatalytic approaches, functional ingredients, potato proteins, peptides

Procedia PDF Downloads 379
5724 Magnetic Levitation Control: A Comparative Analysis of Two-Position and Tuned PID Methods Using Arduino Microcontrollers

Authors: Charles Anthony S. Santillan, Jude Noel P. Jarina, Patricia Mae A. Cuevas, Julito B. Añora Jr.

Abstract:

The research examines the effectiveness of Two-Position and Tuned PID controllers in magnetic levitation systems. Magnetic levitation, a crucial technology in diverse industries, depends on meticulous control mechanisms for stability and performance. The study seeks to compare these two control strategies to ascertain their efficacy in practical applications. The paper explores the theoretical foundations of the controllers, presents an experimental methodology emphasizing setup and installation, and examines the results about stability, response time, and susceptibility to disturbances. By interpreting and discussing the findings, the research provides valuable perspectives on the practical ramifications of utilizing Two-Position and Tuned PID controllers in magnetic levitation systems. The conclusion encapsulates significant outcomes and proposes avenues for future research, thereby contributing to the progress of control strategies in magnetic levitation technology.

Keywords: arduino, comparative analysis, magnetic levitation, tuned PID controller, two-position controller

Procedia PDF Downloads 71
5723 Biomass and Biogas Yield of Maize as Affected by Nitrogen Rates with Varying Harvesting under Semi-Arid Condition of Pakistan

Authors: Athar Mahmood, Asad Ali

Abstract:

Management considerations including harvesting time and nitrogen application considerably influence the biomass yield, quality and biogas production. Therefore, a field study was conducted to determine the effect of various harvesting times and nitrogen rates on the biomass yield, quality and biogas yield of maize crop. This experiment was consisted of various harvesting times i.e., harvesting after 45, 55 and 65 days of sowing (DAS) and nitrogen rates i.e., 0, 100, 150 and 200 kg ha-1 respectively. The data indicated that maximum plant height, leaf area, dry matter (DM) yield, protein, acid detergent fiber, neutral detergent fiber, crude fiber contents and biogas yield were recorded 65 days after sowing while lowest was recorded 45 days after sowing. In contrary to that significantly higher chlorophyll contents were observed at 45 DAS. In case of nitrogen rates maximum plant height, leaf area, and DM yield, protein contents, ash contents, acid detergent fiber, neutral detergent fiber, crude fiber contents and chlorophyll contents were determined with nitrogen at the rate of 200 kg ha-1, while minimum was observed when no N was applied. Therefore, harvesting 65 DAS and N application @ 200 kg ha-1 can be suitable for getting the higher biomass and biogas production.

Keywords: chemical composition, fiber contents, biogas, nitrogen, harvesting time

Procedia PDF Downloads 160
5722 Single Ion Conductors for Lithium-Ion Battery Application

Authors: Seyda Tugba Gunday Anil, Ayhan Bozkurt

Abstract:

Next generation lithium batteries are taking more attention and single-ion polymer electrolytes are expected to play a significant role in the development of these kinds of energy storage systems. In the present work we used a different strategy to design of novel solid single-ion conducting inorganic polymer electrolytes based on lithium polyvinyl alcohol oxalate borate (Li(PVAOB), lithium polyacrylic acid oxalate borate (LiPAAOB) and poly (ethylene glycol) methacrylate (PEGMA). Free radical polymerization was used to convert PEGMA into PPEGMA and LiPAAOB is prepared from poly (acrylic acid), oxalic acid and boric acid. Blend polymer electrolytes were produced by mixing of LiPAAOB or Li (PVAOB with PPEGMA at different stoichiometric ratios to enhance the single ion conductivity of the systems. To exploit the flexible chemistry and increase the segmental mobility of the blend electrolyte, the composition was changed up to 80% with respect to the guest polymer, PPEGMA. FT-IR and differential scanning calorimeter techniques confirmed the interaction between the host and guest polymers. TGA verified that the thermal stability of the blends increased up to approximately 200 C. Scanning electron microscopy images confirm the homogeneity of the blend electrolytes. CV studies showed that electrochemical stability electrochemical stability window is approximately 5 V versus Li/Li⁺. The effect of PPEGMA on to the Lithium-ion conductivity was investigated using dielectric impedance analyzer. The maximum single ion conductivity was measured as 1.3 × 10⁻⁴ S/cm at 100 C for the sample LiPAAOB-80PPEGMA. Clearly, the results confirmed the positive effect to the increment in ionic conductivity of the blend electrolytes with the addition of PPEGMA.

Keywords: single-ion conductor, inorganic polymer, blends, polymer electrolyte

Procedia PDF Downloads 167
5721 Protein Stabilized Foam Structures as Protective Carrier Systems during Microwave Drying of Probiotics

Authors: Jannika Dombrowski, Sabine Ambros, Ulrich Kulozik

Abstract:

Due to the increasing popularity of healthy products, probiotics are still of rising importance in food manufacturing. With the aim to amplify the field of probiotic application to non-chilled products, the cultures have to be preserved by drying. Microwave drying has proved to be a suitable technique to achieve relatively high survival rates, resulting from drying at gentle temperatures, among others. However, diffusion limitation due to compaction of cell suspension during drying can prolong drying times as well as deteriorate product properties (grindability, rehydration performance). Therefore, we aimed to embed probiotics in an aerated matrix of whey proteins (surfactants) and di-/polysaccharides (foam stabilization, probiotic protection) during drying. As a result of the manifold increased inner surface of the cell suspension, drying performance was enhanced significantly as compared to non-foamed suspensions. This work comprises investigations on suitable foam matrices, being stable under vacuum (variation of protein concentration, type and concentration of di-/polysaccharide) as well as development of an applicable microwave drying process in terms of microwave power, chamber pressure and maximum product temperatures. Performed analyses included foam characteristics (overrun, drainage, firmness, bubble sizes), and properties of the dried cultures (survival, activity). In addition, efficiency of the drying process was evaluated.

Keywords: foam structure, microwave drying, polysaccharides, probiotics

Procedia PDF Downloads 262
5720 The Study of the Mutual Effect of Genotype in Environment by Percent of Oil Criterion in Sunflower

Authors: Seyed Mohammad Nasir Mousavi, Pasha Hejazi, Maryam Ebrahimian Dehkordi

Abstract:

In order to study the Mutual effect of genotype × environment for the percent of oil index in sunflower items, an experiment was accomplished in form of complete random block designs in four iteration in four diverse researching station comprising Esfahan, Birjand, Sari, and Karaj. Complex variance analysis showed that there is an important diversity between the items under investigation. The results pertaining the coefficient variation of items Azargol and Vidoc has respectively allocated the minimum coefficient of variations. According to the results extrapolated from Shokla stability variance, the Items Brocar, Allison and Fabiola, are among the stable genotypes for oil percent respectively. in the biplot GGE, the location under investigations divided in two super-environment, first one comprised of locations naming Esfahan, Karaj, and Birjand, and second one were such a location as Sari. By this point of view, in the first super-environment, the Item Fabiola and in the second Almanzor item was among the best items and crops.

Keywords: sunflower, stability, GGE bipilot, super-environment

Procedia PDF Downloads 546
5719 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 94
5718 Optimization of a High-Growth Investment Portfolio for the South African Market Using Predictive Analytics

Authors: Mia Françoise

Abstract:

This report aims to develop a strategy for assisting short-term investors to benefit from the current economic climate in South Africa by utilizing technical analysis techniques and predictive analytics. As part of this research, value investing and technical analysis principles will be combined to maximize returns for South African investors while optimizing volatility. As an emerging market, South Africa offers many opportunities for high growth in sectors where other developed countries cannot grow at the same rate. Investing in South African companies with significant growth potential can be extremely rewarding. Although the risk involved is more significant in countries with less developed markets and infrastructure, there is more room for growth in these countries. According to recent research, the offshore market is expected to outperform the local market over the long term; however, short-term investments in the local market will likely be more profitable, as the Johannesburg Stock Exchange is predicted to outperform the S&P500 over the short term. The instabilities in the economy contribute to increased market volatility, which can benefit investors if appropriately utilized. Price prediction and portfolio optimization comprise the two primary components of this methodology. As part of this process, statistics and other predictive modeling techniques will be used to predict the future performance of stocks listed on the Johannesburg Stock Exchange. Following predictive data analysis, Modern Portfolio Theory, based on Markowitz's Mean-Variance Theorem, will be applied to optimize the allocation of assets within an investment portfolio. By combining different assets within an investment portfolio, this optimization method produces a portfolio with an optimal ratio of expected risk to expected return. This methodology aims to provide a short-term investment with a stock portfolio that offers the best risk-to-return profile for stocks listed on the JSE by combining price prediction and portfolio optimization.

Keywords: financial stocks, optimized asset allocation, prediction modelling, South Africa

Procedia PDF Downloads 97
5717 Expression of Fused Plasmodium falciparum Orotate Phosphoribosyltransferase and Orotidine 5'-Monophosphate Decarboxylase in Escherichia coli

Authors: Waranya Imprasittichai, Patsarawadee Paojinda, Sudaratana R. Krungkrai, Nirianne Marie Q. Palacpac, Toshihiro Horii, Jerapan Krungkrai

Abstract:

Fusion of the last two enzymes in the pyrimidine biosynthetic pathway in the inversed order by having COOH-terminal orotate phosphoribosyltransferase (OPRT) and NH2-terminal orotidine 5'-monophosphate decarboxylase (OMPDC), as OMPDC-OPRT, are described in many organisms. In this study, we constructed gene fusions of Plasmodium falciparum OMPDC-OPRT (1,836 bp) in pTrcHisA vector and expressed as an 6xHis-tag bifunctional protein in three Escherichia coli strains (BL21, Rosetta, TOP10) at 18 °C, 25 °C and 37 °C. The recombinant bifunctional protein was partially purified by Ni-Nitrilotriacetic acid-affinity chromatography. Specific activities of OPRT and OMPDC domains in the bifunctional enzyme expressed in E. coli TOP10 cells were approximately 3-4-fold higher than those in BL21 cells. There were no enzymatic activities when the construct vector expressed in Rosetta cells. Maximal expression of the fused gene was observed at 18 °C and the bifunctional enzyme had specific activities of OPRT and OMPDC domains in a ratio of 1:2. These results provide greater yields and better catalytic activities of the bifunctional OMPDC-OPRT enzyme for further purification and kinetic study.

Keywords: bifunctional enzyme, orotate phosphoribosyltransferase, orotidine 5'-monophosphate decarboxylase, plasmodium falciparum

Procedia PDF Downloads 354
5716 Isolation and Characterization of a Narrow-Host Range Aeromonas hydrophila Lytic Bacteriophage

Authors: Sumeet Rai, Anuj Tyagi, B. T. Naveen Kumar, Shubhkaramjeet Kaur, Niraj K. Singh

Abstract:

Since their discovery, indiscriminate use of antibiotics in human, veterinary and aquaculture systems has resulted in global emergence/spread of multidrug-resistant bacterial pathogens. Thus, the need for alternative approaches to control bacterial infections has become utmost important. High selectivity/specificity of bacteriophages (phages) permits the targeting of specific bacteria without affecting the desirable flora. In this study, a lytic phage (Ahp1) specific to Aeromonas hydrophila subsp. hydrophila was isolated from finfish aquaculture pond. The host range of Ahp1 range was tested against 10 isolates of A. hydrophila, 7 isolates of A. veronii, 25 Vibrio cholerae isolates, 4 V. parahaemolyticus isolates and one isolate each of V. harveyi and Salmonella enterica collected previously. Except the host A. hydrophila subsp. hydrophila strain, no lytic activity against any other bacterial was detected. During the adsorption rate and one-step growth curve analysis, 69.7% of phage particles were able to get adsorbed on host cell followed by the release of 93 ± 6 phage progenies per host cell after a latent period of ~30 min. Phage nucleic acid was extracted by column purification methods. After determining the nature of phage nucleic acid as dsDNA, phage genome was subjected to next-generation sequencing by generating paired-end (PE, 2 x 300bp) reads on Illumina MiSeq system. De novo assembly of sequencing reads generated circular phage genome of 42,439 bp with G+C content of 58.95%. During open read frame (ORF) prediction and annotation, 22 ORFs (out of 49 total predicted ORFs) were functionally annotated and rest encoded for hypothetical proteins. Proteins involved in major functions such as phage structure formation and packaging, DNA replication and repair, DNA transcription and host cell lysis were encoded by the phage genome. The complete genome sequence of Ahp1 along with gene annotation was submitted to NCBI GenBank (accession number MF683623). Stability of Ahp1 preparations at storage temperatures of 4 °C, 30 °C, and 40 °C was studied over a period of 9 months. At 40 °C storage, phage counts declined by 4 log units within one month; with a total loss of viability after 2 months. At 30 °C temperature, phage preparation was stable for < 5 months. On the other hand, phage counts decreased by only 2 log units over a period of 9 during storage at 4 °C. As some of the phages have also been reported as glycerol sensitive, the stability of Ahp1 preparations in (0%, 15%, 30% and 45%) glycerol stocks were also studied during storage at -80 °C over a period of 9 months. The phage counts decreased only by 2 log units during storage, and no significant difference in phage counts was observed at different concentrations of glycerol. The Ahp1 phage discovered in our study had a very narrow host range and it may be useful for phage typing applications. Moreover, the endolysin and holin genes in Ahp1 genome could be ideal candidates for recombinant cloning and expression of antimicrobial proteins.

Keywords: Aeromonas hydrophila, endolysin, phage, narrow host range

Procedia PDF Downloads 162