Search results for: pollution emission
1204 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction
Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh
Abstract:
Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction
Procedia PDF Downloads 1711203 Satellite Technology Usage for Greenhouse Gas Emissions Monitoring and Verification: Policy Considerations for an International System
Authors: Timiebi Aganaba-Jeanty
Abstract:
Accurate and transparent monitoring, reporting and verification of Greenhouse Gas (GHG) emissions and removals is a requirement of the United Nations Framework Convention on Climate Change (UNFCCC). Several countries are obligated to prepare and submit an annual national greenhouse gas inventory covering anthropogenic emissions by sources and removals by sinks, subject to a review conducted by an international team of experts. However, the process is not without flaws. The self-reporting varies enormously in thoroughness, frequency and accuracy including inconsistency in the way such reporting occurs. The world’s space agencies are calling for a new generation of satellites that would be precise enough to map greenhouse gas emissions from individual nations. The plan is delicate politically because the global system could verify or cast doubt on emission reports from the member states of the UNFCCC. A level playing field is required and an idea that an international system should be perceived as an instrument to facilitate fairness and equality rather than to spy on or punish. This change of perspective is required to get buy in for an international verification system. The research proposes the viability of a satellite system that provides independent access to data regarding greenhouse gas emissions and the policy and governance implications of its potential use as a monitoring and verification system for the Paris Agreement. It assesses the foundations of the reporting monitoring and verification system as proposed in Paris and analyzes this in light of a proposed satellite system. The use of remote sensing technology has been debated for verification purposes and as evidence in courts but this is not without controversy. Lessons can be learned from its use in this context.Keywords: greenhouse gas emissions, reporting, monitoring and verification, satellite, UNFCCC
Procedia PDF Downloads 2861202 PM Air Quality of Windsor Regional Scale Transport’s Impact and Climate Change
Authors: Moustafa Osman Mohammed
Abstract:
This paper is mapping air quality model to engineering the industrial system that ultimately utilized in extensive range of energy systems, distribution resources, and end-user technologies. The model is determining long-range transport patterns contribution as area source can either traced from 48 hrs backward trajectory model or remotely described from background measurements data in those days. The trajectory model will be run within stable conditions and quite constant parameters of the atmospheric pressure at the most time of the year. Air parcel trajectory is necessary for estimating the long-range transport of pollutants and other chemical species. It provides a better understanding of airflow patterns. Since a large amount of meteorological data and a great number of calculations are required to drive trajectory, it will be very useful to apply HYPSLIT model to locate areas and boundaries influence air quality at regional location of Windsor. 2–days backward trajectories model at high and low concentration measurements below and upward the benchmark which was areas influence air quality measurement levels. The benchmark level will be considered as 30 (μg/m3) as the moderate level for Ontario region. Thereby, air quality model is incorporating a midpoint concept between biotic and abiotic components to broaden the scope of quantification impact. The later outcomes’ theories of environmental obligation suggest either a recommendation or a decision of what is a legislative should be achieved in mitigation measures of air emission impact ultimately.Keywords: air quality, management systems, environmental impact assessment, industrial ecology, climate change
Procedia PDF Downloads 2471201 Reinventing Urban Governance: Sustainable Transport Solutions for Mitigating Climate Risks in Smart Cities
Authors: Jaqueline Nichi, Leila Da Costa Ferreira, Fabiana Barbi Seleguim, Gabriela Marques Di Giulio, Mariana Barbieri
Abstract:
The transport sector is responsible for approximately 55% of global greenhouse gas (GHG) emissions, in addition to pollution and other negative externalities, such as road accidents and congestion, that impact the routine of those who live in large cities. The objective of this article is to discuss the application and use of distinct mobility technologies such as climate adaptation and mitigation measures in the context of smart cities in the Global South. The documentary analysis is associated with 22 semi structured interviews with managers who work with mobility technologies in the public and private sectors and in civil society organizations to explore solutions in multilevel governance for smart and low-carbon mobility based on the case study from the city of São Paulo, Brazil. The hypothesis that innovation and technology to mitigate and adapt to climate impacts are not yet sufficient to make mobility more sustainable has been confirmed. The results indicate four relevant aspects for advancing a climate agenda in smart cities: integrated planning, coproduction of knowledge, experiments in governance, and new means of financing to guarantee the sustainable sociotechnical transition of the sector.Keywords: urban mobility, climate change, smart cities, multilevel governance
Procedia PDF Downloads 551200 Heavy Metal Contamination in Soils: Detection and Assessment Using Machine Learning Algorithms Based on Hyperspectral Images
Authors: Reem El Chakik
Abstract:
The levels of heavy metals in agricultural lands in Lebanon have been witnessing a noticeable increase in the past few years, due to increased anthropogenic pollution sources. Heavy metals pose a serious threat to the environment for being non-biodegradable and persistent, accumulating thus to dangerous levels in the soil. Besides the traditional laboratory and chemical analysis methods, Hyperspectral Imaging (HSI) has proven its efficiency in the rapid detection of HMs contamination. In Lebanon, a continuous environmental monitoring, including the monitoring of levels of HMs in agricultural soils, is lacking. This is due in part to the high cost of analysis. Hence, this proposed research aims at defining the current national status of HMs contamination in agricultural soil, and to evaluate the effectiveness of using HSI in the detection of HM in contaminated agricultural fields. To achieve the two main objectives of this study, soil samples were collected from different areas throughout the country and were analyzed for HMs using Atomic Absorption Spectrophotometry (AAS). The results were compared to those obtained from the HSI technique that was applied using Hyspex SWIR-384 camera. The results showed that the Lebanese agricultural soils contain high contamination levels of Zn, and that the more clayey the soil is, the lower reflectance it has.Keywords: agricultural soils in Lebanon, atomic absorption spectrophotometer, hyperspectral imaging., heavy metals contamination
Procedia PDF Downloads 1121199 Moroccan Human Ecological Behavior: Grounded Theory Approach
Authors: Dalal Tarfaoui, Salah Zkim
Abstract:
Today, environmental sustainability is everyone’s concern as it contributes in many aspects to a country's development. Morocco is also aware of the increasing threats to its natural resources. Accordingly, many projects and research have been discussed pointing mainly to water security, pollution, desertification, and land degradation, but few studies bothered to dig into the human demeanor to disclose its ecological behavior. Human behavior is accountable for environment deterioration in the first place, but we keep fighting the symptoms instead of limiting the root causes. In the conceptual framework highlighted in the present article, semi-structured interviews have been conducted using a grounded theory approach. Initially this study will serve as a pilot study and a cornerstone to approve a bigger project now in progress. Beyond the existing general ecological measures (GEM), this study has chosen the grounded theory approach to bring out firsthand insights, and probe to which extent an ecological dimension exists in Morocco as a developing country. The discourse of the ecological behavior within the Moroccan context is seen in more realist, social, and community philosophy. The study has revealed an appreciative ecological behavior that is unfortunately repressed by variables beyond people’s control, which would prevent the people’s environmental good intentions to be translated into real ecological actions.Keywords: ecological behavior, ecological dimension, variables beyond people’s control, Morocco
Procedia PDF Downloads 4951198 Analysis of the Effect of Food Veils on the Preservation of Button and Oyster Mushrooms, Case Study: Zein Corn Coating
Authors: Mohamad Javad Shakouri, Hamid Tavakkolipour, Mahdis Jamshidi Tehranian
Abstract:
The inclination toward using food coatings is increasing daily, due to containing natural elements and not producing environmental pollution. Food coatings are uniform and thin layers of natural substances that cover the food product and act as a barrier against moisture, oxygen, and substances dissolved in food. Using food coatings on fruits and vegetables can delay water dissipation, losing aroma, decolorization, and improve the appearance of the product, and in general, preserve and protect the quality of fresh produce. When fruits and vegetables grow, they are equipped with a natural shield, called cuticle– a layer of wax. Washing the products, after harvest, the cuticle – this protective coating – is removed. In order to replace the cuticle, we can use an edible protective coating. This coating delays dehydration and deterioration and hence increases the life of the product while keeping its moisture. In this study, it was concluded that using food coatings, such as corn zein, carrageenan, and starch can have a substantial effect on the quantitative and qualitative preservation of food products, such as fruits, vegetables, and mushrooms.Keywords: food coating, corn zein, button and oyster mushrooms, ascorbic and citric acids
Procedia PDF Downloads 2991197 Photocatalysis with Fe/Ti-Pillared Clays for the Oxofunctionalization of Alkylaromatics by O2
Authors: Houria Rezala, Jose Luis Valverde, Amaya Romero, Alessandra Molinari, Andrea Maldotti
Abstract:
A pillared montmorillonite containing iron doped titania (Fe/Ti-PILC) has been prepared from a natural clay. This material has been characterized by X-ray diffraction, nitrogen adsorption, temperature programmed desorption of ammonia, inductively coupled plasma atomic emission spectroscopy, atomic absorption, and diffuse reflectance UV-VIS spectroscopy. The layer structure of Fe/Ti-PILC resulted to be ordered with an insertion of pillars, which caused a slight increase in the basal spacing of the clay. Its specific surface area was about three times larger than that of the parent Na-montmorillonite due principally to the creation of a remarkable microporous network. The doped material was a robust photocatalyst able to oxidize liquid alkyl aromatics to the corresponding carbonylic derivatives, using O2 as the oxidizing species, at mild pressure and temperature conditions. Accumulation of valuable carbonylic derivatives was possible since their over-oxidation to carbon dioxide was negligible. Fe/Ti-PILC was able to discriminate between toluene and cyclohexane in favor of the aromatic compound with an efficiency that is about three times higher than that of titanium pillared clays (Ti-PILC). It is likely that the addition of iron favored the formation of new acid sites able to interact with the aromatic substrate. Iron doping caused a significant TiO2 visible light-induced activity (wavelength > 400 nm) with only minor negative effects on its performance under UV-light irradiation (wavelength > 290 nm).Keywords: alkyl aromatics oxidation, heterogeneous photocatalysis, iron doping, pillared clays
Procedia PDF Downloads 4501196 Reuse of Wastewater from the Treated Water Pre-treatment Plant for Agricultural Purposes
Authors: Aicha Assal, El Mostapha Lotfi
Abstract:
According to data from the Directorate General of Meteorology (DGM), the average amount of precipitation recorded nationwide between September 1, 2021, and January 31, 2022, is 38.8 millimeters. This is well below the climatological normal of 106.8 millimeters for the same period between 1981 and 2010. This situation is becoming increasingly worrying, particularly for farmers who are finding it difficult to irrigate their land and feed their livestock. Drought is greatly influenced by the effects of climate change, mainly caused by pollution and greenhouse gases (GHGs). The aim of this work is to contribute to the purification of wastewater (considered as polluting) in order to reuse it for irrigation in agricultural areas or for livestock watering. This will be achieved once physico-chemical treatment tests on these waters have been carried out and validated. The main parameters analyzed in this study, after carrying out discoloration tests on domestic wastewater, include COD (chemical oxygen demand), BOD5 (biochemical oxygen demand), pH, conductivity, dissolved oxygen, suspended solids (SS), phosphate, nitrate, nitrite and ammonium ions, faecal and total coliforms, as well as monitoring heavy metal concentrations. This work is also aimed at reclaiming the sludge produced by the decantation process, which will enable the waste to be transformed and reused as compost in agriculture and gardening.Keywords: wastewater, irrigation, COD, COB, SS
Procedia PDF Downloads 681195 The Old Traditional Structures in Iran: A Suitable Model for Today's Greenhouse
Authors: Behbood Maashkar
Abstract:
One of the principles for societies’ development is the requirement to consider past experiences. Man should always take advantage of the predecessor’s experiences and analyze their works and methods. The predecessors have had a more friendly relationship with nature and their lives less damaged the nature, and it is one of the elements of green building. One of the things the ancients have observed in regard to green building in their houses, stores, sacred places, etc. was using wind-catchers as an air conditioning and cooling system which can be considered as the first foundations of green building. In designing houses Iranian architects have paid a great attention to the factor of making use of more shaded area in hot season and insulation of wall and ceiling against influence of hot weather and also air circulation inside the building. In order to circulate the air inside closed spaces and decrease the temperature, they have considered different winds which blow in Iran and its effective power, and in order to make use of it they invented wind catcher. Direction of wind blow and its height from the earth as well as the time and duration of wind blow and other factors have been effective in making different types of wind catchers. Using wind catchers has been and is prevalent mainly in central and south regions of Iran, coastal areas of Persian Gulf, and Khorasan, especially in cities like Yazd, Kashan, Bam, Abarghoo, Jahrom, and Tabas.Keywords: environment pollution, green building, Iran, wind catchers
Procedia PDF Downloads 2491194 A Review of Material and Methods Used in Liner Layers in Various Landfills
Authors: S. Taghvamanesh
Abstract:
Modern landfills are highly engineered containment systems that are designed to reduce the environmental and human health impacts of solid waste (trash). In modern landfills, waste is contained by a liner system. The primary goal of the liner system is to isolate the landfill contents from the environment, thereby protecting the soil and groundwater from pollution caused by the leachate of a landfill. Landfill leachate is the most serious threat to groundwater. Therefore, it is necessary to design a system that prevents the penetration of this dangerous substance into the environment. These layers are made up of two basic elements: clay and geosynthetics. Hydraulic conductivity and flexibility are two desirable properties of these materials. There are three different types of liner systems that will be discussed in this paper. According to available data, the current article analyzed materials and methods for constructing liner layers made of distinct leachates, including various harmful components and heavy metals from all around the world. Also, this study attempted to gather data on leachates for each of the sites discussed. In conclusion, every landfill requires a specific type of liner, which depends on the type of leachate that it produces daily. It should also be emphasized that, based on available data, this article focused on the number of landfills that each country or continent possesses.Keywords: landfill, liner layer, impervious layer, barrier layer
Procedia PDF Downloads 771193 Fabrication of a New Electrochemical Sensor Based on New Nanostructured Molecularly Imprinted Polypyrrole for Selective and Sensitive Determination of Morphine
Authors: Samaneh Nabavi, Hadi Shirzad, Arash Ghoorchian, Maryam Shanesaz, Reza Naderi
Abstract:
Morphine (MO), the most effective painkiller, is considered the reference by which analgesics are assessed. It is very necessary for the biomedical applications to detect and maintain the MO concentrations in the blood and urine with in safe ranges. To date, there are many expensive techniques for detecting MO. Recently, many electrochemical sensors for direct determination of MO were constructed. The molecularly imprinted polymer (MIP) is a polymeric material, which has a built-in functionality for the recognition of a particular chemical substance with its complementary cavity.This paper reports a sensor for MO using a combination of a molecularly imprinted polymer (MIP) and differential-pulse voltammetry (DPV). Electropolymerization of MO doped polypyrrole yielded poor quality, but a well-doped, nanostructure and increased impregnation has been obtained in the pH=12. Above a pH of 11, MO is in the anionic forms. The effect of various experimental parameters including pH, scan rate and accumulation time on the voltammetric response of MO was investigated. At the optimum conditions, the concentration of MO was determined using DPV in a linear range of 7.07 × 10−6 to 2.1 × 10−4 mol L−1 with a correlation coefficient of 0.999, and a detection limit of 13.3 × 10-8 mol L−1, respectively. The effect of common interferences on the current response of MO namely ascorbic acid (AA) and uric acid (UA) is studied. The modified electrode can be used for the determination of MO spiked into urine samples, and excellent recovery results were obtained. The nanostructured polypyrrole films were characterized by field emission scanning electron microscopy (FESEM) and furrier transforms infrared (FTIR).Keywords: morphine detection, sensor, polypyrrole, nanostructure, molecularly imprinted polymer
Procedia PDF Downloads 4231192 Thermo-Physical Properties and Solubility of CO2 in Piperazine Activated Aqueous Solutions of β-Alanine
Authors: Ghulam Murshid
Abstract:
Carbon dioxide is one of the major greenhouse gas (GHG) contributors. It is an obligation of the industry to reduce the amount of carbon dioxide emission to the acceptable limits. Tremendous research and studies are reported in the past and still the quest to find the suitable and economical solution of this problem needed to be explored in order to develop the most plausible absorber for carbon dioxide removal. Amino acids are reported by the researchers as a potential solvent for absorption of carbon dioxide to replace alkanolamines due to its ability to resist oxidative degradation, low volatility due to its ionic structure and higher surface tension. In addition, the introduction of promoter-like piperazine to amino acid helps to further enhance the solubility. In this work, the effect of piperazine on thermophysical properties and solubility of β-Alanine aqueous solutions were studied for various concentrations. The measured physicochemical properties data was correlated as a function of temperature using least-squares method and the correlation parameters are reported together with it respective standard deviations. The effect of activator piperazine on the CO2 loading performance of selected amino acid under high-pressure conditions (1bar to 10bar) at temperature range of (30 to 60)oC was also studied. Solubility of CO2 decreases with increasing temperature and increases with increasing pressure. Quadratic representation of solubility using Response Surface Methodology (RSM) shows that the most important parameter to optimize solubility is system pressure. The addition of promoter increases the solubility effect of the solvent.Keywords: amino acids, co2, global warming, solubility
Procedia PDF Downloads 4141191 Novel Poly Schiff Bases as Corrosion Inhibitors for Carbon Steel in Sour Petroleum Conditions
Authors: Shimaa A. Higazy, Olfat E. El-Azabawy, Ahmed M. Al-Sabagh, Notaila M. Nasser, Eman A. Khamis
Abstract:
In this work, two novel Schiff base polymers (PSB1 and PSB₂) with extra-high protective barrier features were facilely prepared via Polycondensation reactions. They were applied for the first time as effective corrosion inhibitors in the sour corrosive media of petroleum environments containing hydrogen sulfide (H₂S) gas. For studying the polymers' inhibitive action on the carbon steel, numerous corrosion testing methods including potentiodynamic polarization (PDP), open circuit potential, and electrochemical impedance spectroscopy (EIS) have been employed at various temperatures (298-328 K) in the oil wells formation water with H₂S concentrations of 100, 400, and 700 ppm as aggressive media. The activation energy (Ea) and other thermodynamic parameters were computed to describe the mechanism of adsorption. The corrosion morphological traits and steel samples' surfaces composition were analyzed by field emission scanning electron microscope and energy dispersive X-ray analysis. The PSB2 inhibited sour corrosion more effectively than PSB1 when subjected to electrochemical testing. The 100 ppm concentration of PSB2 exhibited 82.18 % and 81.14 % inhibition efficiencies at 298 K in PDP and EIS measurements, respectively. While at 328 K, the inhibition efficiencies were 61.85 % and 67.4 % at the same dosage and measurements. These poly Schiff bases exhibited fascinating performance as corrosion inhibitors in sour environment. They provide a great corrosion inhibition platform for the sustainable future environment.Keywords: schiff base polymers, corrosion inhibitors, sour corrosive media, potentiodynamic polarization, H₂S concentrations
Procedia PDF Downloads 1011190 Recent Progress in Wave Rotor Combustion
Authors: Mohamed Razi Nalim, Shahrzad Ghadiri
Abstract:
With current concerns regarding global warming, demand for a society with greater environmental awareness significantly increases. With gradual development in hybrid and electric vehicles and the availability of renewable energy resources, increasing efficiency in fossil fuel and combustion engines seems a faster solution toward sustainability and reducing greenhouse gas emissions. This paper aims to provide a comprehensive review of recent progress in wave rotor combustor, one of the combustion concepts with considerable potential to improve power output and emission standards. A wave rotor is an oscillatory flow device that uses the unsteady gas dynamic concept to transfer energy by generating pressure waves. From a thermodynamic point of view, unlike conventional positive-displacement piston engines which follow the Brayton cycle, wave rotors offer higher cycle efficiency due to pressure gain during the combustion process based on the Humphrey cycle. First, the paper covers all recent and ongoing computational and experimental studies around the world with a quick look at the milestones in the history of wave rotor development. Second, the main similarity and differences in the ignition system of the wave rotor with piston engines are considered. Also, the comparison is made with another pressure gain device, rotating detonation engines. Next, the main challenges and research needs for wave rotor combustor commercialization are discussed.Keywords: wave rotor combustor, unsteady gas dynamic, pre-chamber jet ignition, pressure gain combustion, constant-volume combustion
Procedia PDF Downloads 841189 Role of Nano-Technology on Remediation of Poly- and Perfluoroalkyl Substances Contaminated Soil and Ground Water
Authors: Leila Alidokht
Abstract:
PFAS (poly- and perfluoroalkyl substances) are a large collection of environmentally persistent organic chemicals of industrial origin that have a negative influence on human health and ecosystems. Many distinct PFAS are being utilized in a wide range of applications (on the order of thousands), and there is no comprehensive source of information on the many different compounds and their roles in diverse applications. Facilities are increasingly looking into ways to reduce waste from cleanup projects. PFAS are widespread in the environment, have been found in a wide range of human biomonitoring investigations, and are a rising source of regulatory concern for federal, state, and local governments. Nanotechnology has the potential to contribute considerably to the creation of a cleaner, greener technologies with considerable environmental and health benefits. Nanotechnology approaches are being studied for their potential to provide pollution management and mitigation options, as well as to increase the effectiveness of standard environmental cleanup procedures. Diversified nanoparticles have shown useful in removing certain pollutants from their original environment, such as sewage spills and landmines. Furthermore, they have a low hazardous effect during production rates and can thus be thoroughly explored in the future to make them more compatible with lower production costs.Keywords: PFOS, PFOA, PFAS, soil remediation
Procedia PDF Downloads 1111188 Developing Value Chain of Synthetic Methane for Net-zero Carbon City Gas Supply in Japan
Authors: Ryota Kuzuki, Mitsuhiro Kohara, Noboru Kizuki, Satoshi Yoshida, Hidetaka Hirai, Yuta Nezasa
Abstract:
About fifty years have passed since Japan's gas supply industry became the first in the world to switch from coal and oil to LNG as a city gas feedstock. Since the Japanese government target of net-zero carbon emission in 2050 was announced in October 2020, it has now entered a new era of challenges to commit to the requirement for decarbonization. This paper describes the situation that synthetic methane, produced from renewable energy-derived hydrogen and recycled carbon, is a promising national policy of transition toward net-zero society. In November 2020, the Japan Gas Association announced the 'Carbon Neutral Challenge 2050' as a vision to contribute to the decarbonization of society by converting the city gas supply to carbon neutral. The key technologies is methanation. This paper shows that methanation is a realistic solution to contribute to the decarbonization of the whole country at a lower social cost, utilizing the supply chain that already exists, from LNG plants to burner chips. The challenges during the transition period (2030-2050), as CO2 captured from exhaust of thermal power plants and industrial factories are expected to be used, it is proposed that a system of guarantee of origin (GO) for H2 and CO2 should be established and harmonize international rules for calculating and allocating greenhouse gas emissions in the supply chain, a platform is also needed to manage tracking information on certified environmental values.Keywords: synthetic methane, recycled carbon fuels, methanation, transition period, environmental value transfer platform
Procedia PDF Downloads 1081187 Sustainable Use of Fresh Groundwater Lens of Pleistocene Aquifer in Nam Dinh, Vietnam
Authors: Tran Thanh Le, Pham Trong Duc
Abstract:
The fresh groundwater lens of the Pleistocene aquifer in Nam Dinh was formed since 12,900 years ago. Currently, the Pleistocene aquifer has been continuously exploited on average of 154,163m3/day, distributed mainly in the districts of Nghia Hung, Hai Hau, a part of Truc Ninh, Y Yen, Nam Truc and Giao Thuy. The groundwater level is still on a declining trend, saltwater intrusion in this freshwater lens can occur if the growth rate in exploitation is maintained. This study focused on groundwater sustainable use by means of 4 groups of criteria including: Groundwater quality and pollution; Aquifers’ productivity and capacity; Environment impacts due to exploitation (groundwater level decline, land subsidence due to water exploitation); Social and economic impacts. Using a combination of methods including field surveys, geophysics, hydrogeochemistry, isotope and numerical models to determine safe groundwater exploitation thresholds for the whole study area has been determined to be 544,314m3/day and the actual exploitation amount is currently about 30% compared to the safe exploitation threshold. However, it should also be noted that the current groundwater exploitation threshold and level of its exploitation compared to the safe exploitation threshold of each locality are not the same. From this result, the groundwater exploitation threshold map of the study area was established to serve the management, licensing and orientation of groundwater exploitation.Keywords: criteria, groundwater, fresh groundwater lens, pleistocene, Nam Dinh
Procedia PDF Downloads 1591186 Aluminum Based Hexaferrite and Reduced Graphene Oxide a Suitable Microwave Absorber for Microwave Application
Authors: Sanghamitra Acharya, Suwarna Datar
Abstract:
Extensive use of digital and smart communication createsprolong expose of unwanted electromagnetic (EM) radiations. This harmful radiation creates not only malfunctioning of nearby electronic gadgets but also severely affects a human being. So, a suitable microwave absorbing material (MAM) becomes a necessary urge in the field of stealth and radar technology. Initially, Aluminum based hexa ferrite was prepared by sol-gel technique and for carbon derived composite was prepared by the simple one port chemical reduction method. Finally, composite films of Poly (Vinylidene) Fluoride (PVDF) are prepared by simple gel casting technique. Present work demands that aluminum-based hexaferrite phase conjugated with graphene in PVDF matrix becomes a suitable candidate both in commercially important X and Ku band. The structural and morphological nature was characterized by X-Ray diffraction (XRD), Field emission-scanning electron microscope (FESEM) and Raman spectra which conforms that 30-40 nm particles are well decorated over graphene sheet. Magnetic force microscopy (MFM) and conducting force microscopy (CFM) study further conforms the magnetic and conducting nature of composite. Finally, shielding effectiveness (SE) of the composite film was studied by using Vector network analyzer (VNA) both in X band and Ku band frequency range and found to be more than 30 dB and 40 dB, respectively. As prepared composite films are excellent microwave absorbers.Keywords: carbon nanocomposite, microwave absorbing material, electromagnetic shielding, hexaferrite
Procedia PDF Downloads 1781185 Suspended Sediment Sources Fingerprinting in Ashebeka River Catchment, Assela, Central Ethiopia
Authors: Getachew Mekaa, Bezatu Mengisteb, Tena Alamirewc
Abstract:
Ashebeka River is the main source of drinking water supply for Assela City and its surrounding inhabitants. Apart from seasonal water reliability disruption, the cost of treating water downstream of the river has been increasing over time due to increased pollutants and suspended sediments. Therefore, this research aimed to identify geo-location and prioritize suspended sediment sources in the Ashebeka River catchment using sediment fingerprinting. We collected 58 composite soil samples and a river water sample for suspended sediment samples from the outlet, which were then filtered using Whatman filter paper. The samples were quantified for geochemical tracers with multi-element capability, and inductively coupled plasma-optical emission spectrometry (ICP-OES). Tracers with significant p-value and that passed the Kruskal-Wallis (KW) test were analyzed for stepwise discriminant function analysis (DFA). The DFA results revealed tracers with good discrimination were subsequently used for the mixed model analysis. The relative significant sediment source contributions from sub-catchments (km2): 3, 4, 1, and 2 were estimated as 49.31% (8), 26.71% (5), 23.65% (5.6), and 0.33% (28.4) respectively. The findings of this study will help the water utilities to prioritize areas of intervention, and the approach used could be followed for catchment prioritization in water safety plan development. Moreover, the findings of this research shed light on the integration of sediment fingerprinting into water safety plans to ensure the reliability of drinking water supplies.Keywords: disruption of drinking water reliability, ashebeka river catchment, sediment fingerprinting, sediment source contribution, mixed model
Procedia PDF Downloads 241184 Developing a Mathematical Model for Trade-Off Analysis of New Green Products
Authors: M. R. Gholizadeh, N. Bhuiyan, M. Salari
Abstract:
In the near future, companies will be increasingly forced to shift their activities along a new road in order to decrease the harmful effects of their design, production and after-life on our environment. Products must meet environmental standards to not only prevent penalties but to consider the sustainability for future generations. However, the most important factor that companies will face is selecting a reasonable strategy to maximize their profit. Thus, companies need to have precise forecast from their profit after design stage through Trade-off analysis. This paper is an attempt to introduce a mathematical model that considers effective factors that impact the total profit when products are designed for resource and energy efficiency or recyclability. The modification is according to different strategies based on a Cost-Volume-Profit model. Here, the cost structure consists of Recycling cost, Development cost, Ramp-up cost, Production cost, and Pollution cost. Also, the model shows the effect of implementation of design for recyclable on revenue structure through revenue of used parts and revenue of recycled materials. A numerical example is used to evaluate the proposed model. Results show that fulfillment of Green Product Development not only can reduce the environmental impact of products but also it will increase profit of company in long term.Keywords: green product, design for environment, C-V-P model, trade-off analysis
Procedia PDF Downloads 3161183 Development of Expanded Perlite-Caprylicacid Composite for Temperature Maintainance in Buildings
Authors: Akhila Konala, Jagadeeswara Reddy Vennapusa, Sujay Chattopadhyay
Abstract:
The energy consumption of humankind is growing day by day due to an increase in the population, industrialization and their needs for living. Fossil fuels are the major source of energy to satisfy energy needs, which are non-renewable energy resources. So, there is a need to develop green resources for energy production and storage. Phase change materials (PCMs) derived from plants (green resources) are well known for their capacity to store the thermal energy as latent heat during their phase change from solid to liquid. This property of PCM could be used for storage of thermal energy. In this study, a composite with fatty acid (caprylic acid; M.P 15°C, Enthalpy 179kJ/kg) as a phase change material and expanded perlite as support porous matrix was prepared through direct impregnation method for thermal energy storage applications. The prepared composite was characterized using Differential scanning calorimetry (DSC), Field Emission Scanning Electron Microscope (FESEM), Thermal Gravimetric Analysis (TGA), and Fourier Transform Infrared (FTIR) spectrometer. The melting point of the prepared composite was 15.65°C, and the melting enthalpy was 82kJ/kg. The surface nature of the perlite was observed through FESEM. It was observed that there are micro size pores in the perlite surface, which were responsible for the absorption of PCM into perlite. In TGA thermogram, the PCM loss from composite was started at ~90°C. FTIR curves proved there was no chemical interaction between the perlite and caprylic acid. So, the PCM composite prepared in this work could be effective to use in temperature maintenance of buildings.Keywords: caprylic acid, composite, phase change materials, PCM, perlite, thermal energy
Procedia PDF Downloads 1231182 Stakeholders Perceptions of the Linkage between Reproductive Rights and Environmental Sustainability: Environmental Mainstreaming, Injustice and Population Reductionism
Authors: Celine Delacroix
Abstract:
Analyses of global emission scenarios demonstrate that slowing population growth could lead to substantial emissions reductions and play an important role to avoid dangerous climate change. For this reason, the advancement of individual reproductive rights might represent a valid climate change mitigation and adaptation option. With this focus, we reflected on population ethics and the ethical dilemmas associated with environmental degradation and climate change. We conducted a mixed-methods qualitative data study consisting of an online survey followed by in-depth interviews with stakeholders of the reproductive health and rights and environmental sustainability movements to capture the ways in which the linkages between family planning, population growth, and environmental sustainability are perceived by these actors. We found that the multi-layered marginalization of this issue resulted in two processes, the polarization of opinions and its eschewal from the public fora through population reductionism. Our results indicate that stakeholders of the reproductive rights and environmental sustainability movements find that population size and family planning influence environmental sustainability and overwhelmingly find that the reproductive health and rights ideological framework should be integrated in a wider sustainability frame reflecting environmental considerations. This position, whilst majoritarily shared by all participants, was more likely to be adopted by stakeholders of the environmental sustainability sector than those from the reproductive health and rights sector. We conclude that these processes, taken in the context of a context of a climate emergency, threaten to weaken the reproductive health and rights movement.Keywords: environmental sustainability, family planning, population growth, population ethics, reproductive rights
Procedia PDF Downloads 1631181 Biogeochemical Study of Polycuclic Aromatic Hydrocarbons and Its Physiological Response in Mudskippre (B. dussumieri) along the North western Coasts of the Persian Gulf
Authors: Ali Mashinchian Moradi, Mahmood Sinaei
Abstract:
Study on the biomarkers to assess health status of marine ecosystems has an important value in biomonitoring of marine environment. Accordingly, accumulation of polycyclic aromatic hydrocarbons in sediment, water and tissues (liver and gill) of mudskipper (Boleophthalmus dussmieri) and some physiological responses like lysosomal membrane change in haemocytes and the Glutathione-S Transferase (GST) activity in the liver were measured in mudskippers. Samples were collected from five sites along the noth western cost of the Persian Gulf. PAHs concentration was measured by HPLC method. The activity of GST enzyme was analysed by spectrophotometric method. Total PAH concentration in coastal seawater, sediments, liver and gill tissues ranged between 0.80-18.34 ug/L, 113.550-3384.34 ng/g dw, 3.99-46.64 ng/g dw and 3.11-17.This study showed that PAH concentrations in this region are not higher than available standards. The findings revile that lysosomal membrane destabilization and liver GST activities are highly sensitive to PAHs in mudskipper, B. dussumieri. Sediment PAH concentrations were strongly correlated with biomarkers, indicating PAHs were biologically available to fish. Thus, mudskipper perceived to be good sentinel organism for PAH pollution biomonitoring.Keywords: PAHs, biomarker, mudskipper, Persian Gulf
Procedia PDF Downloads 3461180 Recovery of Copper from Edge Trims of Printed Circuit Boards Using Acidithiobacillus Ferrooxidans: Bioleaching
Authors: Shashi Arya, Nand L. Singh, Samiksha Singh, Pradeep K. Mishra, Siddh N. Upadhyay
Abstract:
The enormous generation of E- waste and its recycling have greater environmental concern especially in developing countries like India. A major part of this waste comprises printed circuit boards (PCBs). Edge trims of PCBs have high copper content ranging between 25-60%. The extraction of various metals out of these PCBs is more or less a proven technology, wherein various hazardous chemicals are being used in the resource recovery, resulting into secondary pollution. The current trend of extracting of valuable metals is the utilization of microbial strains to eliminate the problem of a secondary pollutant. Keeping the above context in mind, this work aims at the enhanced recovery of copper from edge trims, through bioleaching using bacterial strain Acidithiobacillus ferrooxidans. The raw material such as motherboards, hard drives, floppy drives and DVD drives were obtained from the warehouse of the University. More than 90% copper could be extracted through bioleaching using Acidithiobacillus ferrooxidans. Inoculate concentration has merely insignificant effect over copper recovery above 20% inoculate concentration. Higher concentration of inoculation has the only initial advantage up to 2-4 days. The complete recovery has been obtained between 14- 24 days.Keywords: acidithiobacillus ferrooxidans, bioleaching, e-waste, printed circuit boards
Procedia PDF Downloads 3301179 Efficient HVAC System in Green Building Design
Authors: Omid Khabiri, Maryam Ghavami
Abstract:
Buildings designed and built as high performance, sustainable or green are the vanguard in a movement to make buildings more energy efficient and less environmentally harmful. Although Heating, Ventilating, and Air Conditioning (HVAC) systems offer many opportunities for recovery and re-use of thermal energy; however, the amount of energy used annually by these systems typically ranges from 40 to 60 percent of the overall energy consumption in a building, depending on the building design, function, condition, climate, and the use of renewable energy strategies. HVAC systems may also damage the environment by unnecessary use of non-renewable energy sources, which contribute to environmental pollution, and by creating noise and discharge of contaminated water and air containing chemicals, lubricating oils, refrigerants, heat transfer fluids, and particulate (gases matter). In fact, HVAC systems will significantly impact how “green” a building is, where an efficient HVAC system design can result in considerable energy, emissions and cost savings as well as providing increased user thermal comfort. This paper presents the basic concepts of green building design and discusses the role of efficient HVAC system and practical strategies for ensuring high performance sustainable buildings in design and operation.Keywords: green building, hvac system, design strategies, high-performance equipment, efficient technologies
Procedia PDF Downloads 5771178 Ammonia Adsorption Properties of Composite Ammonia Carriers Obtained by Supporting Metal Chloride on Porous Materials
Authors: Cheng Shen, LaiHong Shen
Abstract:
Ammonia is an important carrier of hydrogen energy, with the characteristics of high hydrogen content density and no carbon dioxide emission. Ammonia synthesis by the Haber process is the main method for industrial ammonia synthesis, but the conversion rate of ammonia per pass is only about 12%, while the conversion rate of biomass synthesis ammonia is as high as 56%. Therefore, safe and efficient ammonia capture for ammonia synthesis from biomass is an important way to alleviate the energy crisis and solve the energy problem. Metal chloride has a chemical adsorption effect on ammonia, and can be desorbed at high temperature to obtain high-concentration ammonia after combining with ammonia, which has a good development prospect in ammonia capture and separation technology. In this paper, the ammonia adsorption properties of CuCl₂ were measured, and the composite adsorbents were prepared by using silicon and multi-walled carbon nanotubes respectively to support CuCl₂, and the ammonia adsorption properties of the composite adsorbents were studied. The study found that the ammonia adsorption capacity of the three adsorbents decreased with the increase in temperature, so metal chlorides were more suitable for the low-temperature adsorption of ammonia. Silicon and multi-walled carbon nanotubes have an enhanced effect on the ammonia adsorption of CuCl₂. The reason is that the porous material itself has a physical adsorption effect on ammonia, and silicon can play the role of skeleton support in cupric chloride particles, which enhances the pore structure of the adsorbent, thereby alleviating sintering.Keywords: ammonia, adsorption properties, metal chloride, silicon, MWCNTs
Procedia PDF Downloads 1121177 Preparation and Removal Properties of Hollow Fiber Membranes for Drinking Water
Authors: Seung Moon Woo, Youn Suk Chung, Sang Yong Nam
Abstract:
In the present time, we need advanced water treatment technology for separation of virus and bacteria in effluent which occur epidemic and waterborne diseases. Water purification system is mainly divided into two categorizations like reverse osmosis (RO) and ultrafiltration (UF). Membrane used in these systems requires higher durability because of operating in harsh condition. Of these, the membrane using in UF system has many advantages like higher efficiency and lower energy consume for water treatment compared with RO system. In many kinds of membrane, hollow fiber type membrane is possible to make easily and to get optimized property by control of various spinning conditions such as temperature of coagulation bath, concentration of polymer, addition of additive, air gap and internal coagulation. In this study, polysulfone hollow fiber membrane was successfully prepared by phase inversion method for separation of virus and bacteria. When we prepare the hollow fiber membrane, we controlled various factors such as the polymer concentration, air gap and internal coagulation to investigate effect to membrane property. Morphology of surface and cross section of membrane were measured by field emission scanning electron microscope (FE-SEM). Water flux of membrane was measured using test modules. Mean pore diameter of membrane was calculated using rejection of polystyrene (PS) latex beads for separation of virus and bacteria. Flux and mean flow pore diameter of prepared membrane show 1.5 LPM, 0.03 μm at 1.0 kgf/cm2. The bacteria and virus removal performance of prepared UF membranes were over 6 logs.Keywords: hollow fiber membrane, drinking water, ultrafiltration, bacteria
Procedia PDF Downloads 2481176 Synergistic Effect of Zr-Modified Cu-ZnO-Al₂O₃ and Bio-Templated HZSM-5 Catalysts in CO₂ Hydrogenation to Methanol and DME
Authors: Abrar Hussain, Kuen-Song Lin, Sayed Maeen Badshah, Jamshid Hussain
Abstract:
The conversion of CO₂ into versatile, useful compounds such as fuels and other chemicals remains a challenging frontier in research, demanding the innovation of increasingly effective catalysts. In the present work, a catalyst-incorporating zirconium (Zr) modification within CuO–ZnO–Al₂O₃ (CZA) was synthesized via a co-precipitation method to convert CO₂ into methanol. Furthermore, bio-HZSM-5 was used to promote methanol dehydration to produce dimethyl ether (DME). We prepared the porous hierarchy bio-HZSM-5 with remarkable pore connectivity by utilizing an economical loofah sponge and rice husks as biotemplates. The synthesized catalysts were characterized using Field Emission Scanning Electron Microscopy (FE-SEM), X–ray diffraction (XRD), N₂ adsorption (BET), temperature-programmed desorption (NH₃-TPD) and thermogravimetric analysis (TGA). The Zr addition improved the performance of the CZZA catalyst as a structural promoter, leading to increased DME selectivity and total carbon conversion by enhancing active sites, surface area, and the synergistic interfaces between CuO and ZnO. The presence of silicon in the biomass, notably from the loofah sponge (0.016 wt %) and rice husks (8.3 wt %), also performed a pivotal role in the preparation of bio-HZSM-5. Furthermore, contrasted to the CZZA/com-ZSM-5 catalyst, the integration of CZZA with bio-HZSM-5-L bifunctional catalyst achieved the highest DME yield (12.1 %), DME selectivity (58.6%), CO₂ conversion (22.5%) at 280 °C and 30 bar. The payback time for 5 and 10-tons per day (5 and10-TPD) DME formation using the catalytic process of CO₂ from petrochemical refinery plant waste gas emissions was 2.98 and 2.44 years, respectively.Keywords: Cost assessment, Dimethyl ether, low-cost bio-HZSM-5, CZZA catalyst, CO₂ hydrogenation
Procedia PDF Downloads 101175 Removal of Lead (Pb) by the Microorganism Isolated from the Effluent of Lead Acid Battery Scrap
Authors: Harikrishna Yadav Nanganuru, Narasimhulu Korrapati
Abstract:
The demand for the lead (Pb) in the battery industry has been growing for last twenty years. On an average about 2.35 million tons of lead is used in the battery industry. According to the survey of supply and demand battery industry is using 75% of lead produced every year. Due to the increase in battery scrap, secondary lead production has been increasing in this decade. Europe and USA together account for 75% of the world’s secondary lead production. The effluent from used battery scrap consists of high concentrations of lead. Unauthorized disposal of spent batteries, which contain intolerable concentration of lead, into landfills or municipal water canals causes release of Pb into the environment. Lead is one of the toxic heavy metals that have large damaging effects on the human health. Due to its persistence and toxicity, the presence of Pb in drinking water is considered as a special concern. Accumulation of Pb in the human body for long period of time can result in the malfunctioning of some organs. Many technologies have been developed for the removal of lead using microorganisms. In this paper, effluent was taken from the spent battery scrap and was characterized by inductively coupled plasma atomic emission spectrometer. Microorganisms play an important role in removal of lead from the contaminated sites. So, the bacteria were isolated from the effluent. Optimum conditions for the microbial growth and applied for the lead removal. These bacterial cells were immobilized and used for the removal of Pb from the known concentration of metal solution. Scanning electron microscopic (SEM) studies were shown that the Pb was efficiently adsorbed by the immobilized bacteria. From the results of Atomic Absorption Spectroscopy (AAS), 83.40 percentage of Pb was removed in a batch culture.Keywords: adsorption, effluent, immobilization, lead (Pb)
Procedia PDF Downloads 456