Search results for: physical-chemical features
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3844

Search results for: physical-chemical features

1894 New Quinazoline Derivative Exhibit Cytotoxic Effect agaisnt MCF-7 Human Breast Cancer Cell

Authors: Maryam Zahedifard, Fadhil Lafta Faraj, Nazia Abdul Majid, Hapipah Mohd Ali, Mahmood Ameen Abdulla

Abstract:

The new quinazoline Schiff bases have been synthesized through condensation reaction of 2-aminobenzhydrazide with 5-bromosalicylaldehyde and 3-methoxy-5-bromosalicylaldehyde. The compound was investigated for anticancer activity against MCF-7 human breast cancer cell line. It demonstrated a remarkable antiproliferative effect, with an IC50 value of 3.41±0.34, after 72 hours of treatment. Most apoptosis morphological features in treated MCF-7 cells were observed by AO/PI staining. The results of cell cycle analysis indicate that compounds did not induce S and M phase arrest in cell after 24 hours of treatment. Furthermore, MCF-7 cells treated with compound subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome C release as well as increase in ROS generation. We also found activation of caspases 3/7 and -9. Moreover, acute toxicity results demonstrated the nontoxic nature of the compounds in mice. Our results showed the selected compound significantly induce apoptosis in MCF-7 cells via intrinsic pathway, which might be considered as a potential candidate for further in vivo and clinical breast cancer studies.

Keywords: quinazoline Schiff base, apoptosis, MCF-7, caspase, cell cycle, acute toxicity

Procedia PDF Downloads 442
1893 Evaluation of a Hybrid Knowledge-Based System Using Fuzzy Approach

Authors: Kamalendu Pal

Abstract:

This paper describes the main features of a knowledge-based system evaluation method. System evaluation is placed in the context of a hybrid legal decision-support system, Advisory Support for Home Settlement in Divorce (ASHSD). Legal knowledge for ASHSD is represented in two forms, as rules and previously decided cases. Besides distinguishing the two different forms of knowledge representation, the paper outlines the actual use of these forms in a computational framework that is designed to generate a plausible solution for a given case, by using rule-based reasoning (RBR) and case-based reasoning (CBR) in an integrated environment. The nature of suitability assessment of a solution has been considered as a multiple criteria decision making process in ASHAD evaluation. The evaluation was performed by a combination of discussions and questionnaires with different user groups. The answers to questionnaires used in this evaluations method have been measured as a combination of linguistic variables, fuzzy numbers, and by using defuzzification process. The results show that the designed evaluation method creates suitable mechanism in order to improve the performance of the knowledge-based system.

Keywords: case-based reasoning, fuzzy number, legal decision-support system, linguistic variable, rule-based reasoning, system evaluation

Procedia PDF Downloads 367
1892 An Approach for Pattern Recognition and Prediction of Information Diffusion Model on Twitter

Authors: Amartya Hatua, Trung Nguyen, Andrew Sung

Abstract:

In this paper, we study the information diffusion process on Twitter as a multivariate time series problem. Our model concerns three measures (volume, network influence, and sentiment of tweets) based on 10 features, and we collected 27 million tweets to build our information diffusion time series dataset for analysis. Then, different time series clustering techniques with Dynamic Time Warping (DTW) distance were used to identify different patterns of information diffusion. Finally, we built the information diffusion prediction models for new hashtags which comprise two phrases: The first phrase is recognizing the pattern using k-NN with DTW distance; the second phrase is building the forecasting model using the traditional Autoregressive Integrated Moving Average (ARIMA) model and the non-linear recurrent neural network of Long Short-Term Memory (LSTM). Preliminary results of performance evaluation between different forecasting models show that LSTM with clustering information notably outperforms other models. Therefore, our approach can be applied in real-world applications to analyze and predict the information diffusion characteristics of selected topics or memes (hashtags) in Twitter.

Keywords: ARIMA, DTW, information diffusion, LSTM, RNN, time series clustering, time series forecasting, Twitter

Procedia PDF Downloads 391
1891 Reducing Crash Risk at Intersections with Safety Improvements

Authors: Upal Barua

Abstract:

Crash risk at intersections is a critical safety issue. This paper examines the effectiveness of removing an existing off-set at an intersection by realignment, in reducing crashes. Empirical Bayes method was applied to conduct a before-and-after study to assess the effect of this safety improvement. The Transportation Safety Improvement Program in Austin Transportation Department completed several safety improvement projects at high crash intersections with a view to reducing crashes. One of the common safety improvement techniques applied was the realignment of intersection approaches removing an existing off-set. This paper illustrates how this safety improvement technique is applied at a high crash intersection from inception to completion. This paper also highlights the significant crash reductions achieved from this safety improvement technique applying Empirical Bayes method in a before-and-after study. The result showed that realignment of intersection approaches removing an existing off-set can reduce crashes by 53%. This paper also features the state of the art techniques applied in planning, engineering, designing and construction of this safety improvement, key factors driving the success, and lessons learned in the process.

Keywords: crash risk, intersection, off-set, safety improvement technique, before-and-after study, empirical Bayes method

Procedia PDF Downloads 245
1890 Relationships between Financial, Cultural, Emotional, and General Wellbeing: A Structural Equation Modeling Study

Authors: Michael Alsop, Hannah Heitz, Prathiba Natesan Batley, Marion Hambrick, Jason Immekus

Abstract:

The impacts of cultural engagement on individuals’ health and well-being have been well documented. The purposes of this study were to create an instrument to measure wellbeing constructs, including cultural wellbeing, and explore the relationships between cultural wellbeing and other wellbeing constructs (e.g., emotional, social, physical, spiritual). A sample of 358 participants attending concerts performed by a civic orchestra in the southeastern United States completed a questionnaire designed to measure eight wellbeing constructs. Split-half exploratory, confirmatory factor analyses resulted in the retention of four wellbeing constructs: general, emotional, financial, and cultural. Structural equation modeling showed statistically significant relationships between cultural wellbeing and other wellbeing constructs. In addition to the indirect effect of financial wellbeing on emotional and general wellbeing through cultural wellbeing, there were also direct statistically significant relationships (i.e., moderator). This highlights the importance of removing financial barriers to cultural engagement and the relationship between cultural wellbeing on emotional and general wellbeing. Additionally, the retained cultural wellbeing items focused primarily on community features, indicating the value of community-based cultural engagement opportunities.

Keywords: cultural wellbeing, cultural engagement, factor analysis, structural equation modeling

Procedia PDF Downloads 82
1889 Signal Strength Based Multipath Routing for Mobile Ad Hoc Networks

Authors: Chothmal

Abstract:

In this paper, we present a route discovery process which uses the signal strength on a link as a parameter of its inclusion in the route discovery method. The proposed signal-to-interference and noise ratio (SINR) based multipath reactive routing protocol is named as SINR-MP protocol. The proposed SINR-MP routing protocols has two following two features: a) SINR-MP protocol selects routes based on the SINR of the links during the route discovery process therefore it select the routes which has long lifetime and low frame error rate for data transmission, and b) SINR-MP protocols route discovery process is multipath which discovers more than one SINR based route between a given source destination pair. The multiple routes selected by our SINR-MP protocol are node-disjoint in nature which increases their robustness against link failures, as failure of one route will not affect the other route. The secondary route is very useful in situations where the primary route is broken because we can now use the secondary route without causing a new route discovery process. Due to this, the network overhead caused by a route discovery process is avoided. This increases the network performance greatly. The proposed SINR-MP routing protocol is implemented in the trail version of network simulator called Qualnet.

Keywords: ad hoc networks, quality of service, video streaming, H.264/SVC, multiple routes, video traces

Procedia PDF Downloads 249
1888 Automatic Tagging and Accuracy in Assamese Text Data

Authors: Chayanika Hazarika Bordoloi

Abstract:

This paper is an attempt to work on a highly inflectional language called Assamese. This is also one of the national languages of India and very little has been achieved in terms of computational research. Building a language processing tool for a natural language is not very smooth as the standard and language representation change at various levels. This paper presents inflectional suffixes of Assamese verbs and how the statistical tools, along with linguistic features, can improve the tagging accuracy. Conditional random fields (CRF tool) was used to automatically tag and train the text data; however, accuracy was improved after linguistic featured were fed into the training data. Assamese is a highly inflectional language; hence, it is challenging to standardizing its morphology. Inflectional suffixes are used as a feature of the text data. In order to analyze the inflections of Assamese word forms, a list of suffixes is prepared. This list comprises suffixes, comprising of all possible suffixes that various categories can take is prepared. Assamese words can be classified into inflected classes (noun, pronoun, adjective and verb) and un-inflected classes (adverb and particle). The corpus used for this morphological analysis has huge tokens. The corpus is a mixed corpus and it has given satisfactory accuracy. The accuracy rate of the tagger has gradually improved with the modified training data.

Keywords: CRF, morphology, tagging, tagset

Procedia PDF Downloads 194
1887 Interaction with Earth’s Surface in Remote Sensing

Authors: Spoorthi Sripad

Abstract:

Remote sensing is a powerful tool for acquiring information about the Earth's surface without direct contact, relying on the interaction of electromagnetic radiation with various materials and features. This paper explores the fundamental principle of "Interaction with Earth's Surface" in remote sensing, shedding light on the intricate processes that occur when electromagnetic waves encounter different surfaces. The absorption, reflection, and transmission of radiation generate distinct spectral signatures, allowing for the identification and classification of surface materials. The paper delves into the significance of the visible, infrared, and thermal infrared regions of the electromagnetic spectrum, highlighting how their unique interactions contribute to a wealth of applications, from land cover classification to environmental monitoring. The discussion encompasses the types of sensors and platforms used to capture these interactions, including multispectral and hyperspectral imaging systems. By examining real-world applications, such as land cover classification and environmental monitoring, the paper underscores the critical role of understanding the interaction with the Earth's surface for accurate and meaningful interpretation of remote sensing data.

Keywords: remote sensing, earth's surface interaction, electromagnetic radiation, spectral signatures, land cover classification, archeology and cultural heritage preservation

Procedia PDF Downloads 59
1886 Modular, Responsive, and Interactive Green Walls - A Case Study

Authors: Flaviu Mihai Frigura-Lliasa, Andreea Anamaria Anghel, Attila Simo

Abstract:

Due to the beauty, usefulness, science, constantly changing, constantly evolving features, and most of the time, mystery it involves, nature-based art is seen as a both modern and timeless direction that has been extensively used in design. The goal of the team's activities was to experiment with ways of fusing the two most common contemporary ways of referring to green installations, that is, either in a pure artistic or in an ecological manner, and creating a living, dynamic, interactive installation capable of both receiving and interpreting external factors, such as natural and human stimuli, that would not only determine some of the mechanism's presets. By consequent, a complex experiment made up of various research and project stages was elaborated in order to transform an idea into an actual interactive green installation within months thanks to the interaction, teamwork, and design processes undertaken throughout the academic years by both university lecturers and some of our students. The outcomes would lead to the development of a dynamic artwork called "Modgrew" as well as the introduction of experiment-based learning at the Timisoara Faculty of Architecture and Urban Planning, as well as at the Faculty of Electrical and Power Engineering, for the green wall automation issues.

Keywords: green design, living walls, modular structure, interactive proof of concept

Procedia PDF Downloads 76
1885 From Waste to Wealth: A Future Paradigm for Plastic Management Using Blockchain Technology

Authors: Jim Shi, Jasmine Chang, Nesreen El-Rayes

Abstract:

The world has been experiencing a steadily increasing trend in both the production and consumption of plastic. The global consumer revolution should not have been possible without plastic, thanks to its salient feature of inexpensiveness and durability. But, as a two-edged sword, its durable quality has returned to haunt and even jeopardized us. That exacerbating the plastic crisis has attracted various global initiatives and actions. Simultaneously, firms are eager to adopt new technology as they witness and perceive more potential and merit of Industry 4.0 technologies. For example, Blockchain technology (BCT) is drawing the attention of numerous stakeholders because of its wide range of outstanding features that promise to enhance supply chain operations. However, from a research perspective, most of the literature addresses the plastic crisis from either environmental or social perspectives. In contrast, analysis from the data science perspective and technology is relatively scarce. To this end, this study aims to fill this gap and cover the plastic crisis from a holistic view of environmental, social, technological, and business perspectives. In particular, we propose a mathematical model to examine the inclusion of BCT to enhance and improve the efficiency on the upstream and the downstream sides of the plastic value, where the whole value chain is coordinated systematically, and its interoperability can be optimized. Consequently, the Environmental, Social, and Governance (ESG) goal and Circular Economics (CE) sustainability can be maximized.

Keywords: blockchain technology, plastic, circular economy, sustainability

Procedia PDF Downloads 81
1884 Study the Effect of Leading-Edge Serration at Owl Wing Feathers on Flow-Induced Noise Generation

Authors: Suprabha Islam, Sifat Ullah Tanzil

Abstract:

During past few decades, being amazed by the excellent silent flight of owl, scientists have been trying to demystify the unique features of its wing feathers. Our present study is dedicated to taking our understanding further on this phenomenon. In this present study, a numerical investigation was performed to analyze how the shape of the leading-edge serration at owl wing feathers effects the flow-induced noise generation. For the analysis, an owl inspired single feather wing model was prepared for both with and without serrations at the leading edge. The serration profiles were taken at different positions of the vane length for a single feather. The broadband noise was studied to quantify the local contribution to the total acoustic power generated by the flow, where the results clearly showed the effect of serrations in reducing the noise generation. It was also clearly visible that the shape of the serration has a very strong influence on noise generation. The frequency spectrum of noise was also analyzed and a strong relation was found between the shape of the serration and the noise generation. It showed that the noise suppression is strongly influenced by the height to length ratio of the serration. With the increase in height to length ratio, the noise suppression is enhanced further.

Keywords: aeroacoustics, aerodynamic, biomimetics, serrations

Procedia PDF Downloads 169
1883 The Enhancement of Training of Military Pilots Using Psychophysiological Methods

Authors: G. Kloudova, M. Stehlik

Abstract:

Optimal human performance is a key goal in the professional setting of military pilots, which is a highly challenging atmosphere. The aviation environment requires substantial cognitive effort and is rich in potential stressors. Therefore, it is important to analyze variables such as mental workload to ensure safe conditions. Pilot mental workload could be measured using several tools, but most of them are very subjective. This paper details research conducted with military pilots using psychophysiological methods such as electroencephalography (EEG) and heart rate (HR) monitoring. The data were measured in a simulator as well as under real flight conditions. All of the pilots were exposed to highly demanding flight tasks and showed big individual response differences. On that basis, the individual pattern for each pilot was created counting different EEG features and heart rate variations. Later on, it was possible to distinguish the most difficult flight tasks for each pilot that should be more extensively trained. For training purposes, an application was developed for the instructors to decide which of the specific tasks to focus on during follow-up training. This complex system can help instructors detect the mentally demanding parts of the flight and enhance the training of military pilots to achieve optimal performance.

Keywords: cognitive effort, human performance, military pilots, psychophysiological methods

Procedia PDF Downloads 231
1882 Air Quality Analysis Using Machine Learning Models Under Python Environment

Authors: Salahaeddine Sbai

Abstract:

Air quality analysis using machine learning models is a method employed to assess and predict air pollution levels. This approach leverages the capabilities of machine learning algorithms to analyze vast amounts of air quality data and extract valuable insights. By training these models on historical air quality data, they can learn patterns and relationships between various factors such as weather conditions, pollutant emissions, and geographical features. The trained models can then be used to predict air quality levels in real-time or forecast future pollution levels. This application of machine learning in air quality analysis enables policymakers, environmental agencies, and the general public to make informed decisions regarding health, environmental impact, and mitigation strategies. By understanding the factors influencing air quality, interventions can be implemented to reduce pollution levels, mitigate health risks, and enhance overall air quality management. Climate change is having significant impacts on Morocco, affecting various aspects of the country's environment, economy, and society. In this study, we use some machine learning models under python environment to predict and analysis air quality change over North of Morocco to evaluate the climate change impact on agriculture.

Keywords: air quality, machine learning models, pollution, pollutant emissions

Procedia PDF Downloads 91
1881 Robot Navigation and Localization Based on the Rat’s Brain Signals

Authors: Endri Rama, Genci Capi, Shigenori Kawahara

Abstract:

The mobile robot ability to navigate autonomously in its environment is very important. Even though the advances in technology, robot self-localization and goal directed navigation in complex environments are still challenging tasks. In this article, we propose a novel method for robot navigation based on rat’s brain signals (Local Field Potentials). It has been well known that rats accurately and rapidly navigate in a complex space by localizing themselves in reference to the surrounding environmental cues. As the first step to incorporate the rat’s navigation strategy into the robot control, we analyzed the rats’ strategies while it navigates in a multiple Y-maze, and recorded Local Field Potentials (LFPs) simultaneously from three brain regions. Next, we processed the LFPs, and the extracted features were used as an input in the artificial neural network to predict the rat’s next location, especially in the decision-making moment, in Y-junctions. We developed an algorithm by which the robot learned to imitate the rat’s decision-making by mapping the rat’s brain signals into its own actions. Finally, the robot learned to integrate the internal states as well as external sensors in order to localize and navigate in the complex environment.

Keywords: brain-machine interface, decision-making, mobile robot, neural network

Procedia PDF Downloads 297
1880 Attention Based Fully Convolutional Neural Network for Simultaneous Detection and Segmentation of Optic Disc in Retinal Fundus Images

Authors: Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, Goutam Kumar Ghorai, Gautam Sarkar, Ashis K. Dhara

Abstract:

Accurate segmentation of the optic disc is very important for computer-aided diagnosis of several ocular diseases such as glaucoma, diabetic retinopathy, and hypertensive retinopathy. The paper presents an accurate and fast optic disc detection and segmentation method using an attention based fully convolutional network. The network is trained from scratch using the fundus images of extended MESSIDOR database and the trained model is used for segmentation of optic disc. The false positives are removed based on morphological operation and shape features. The result is evaluated using three-fold cross-validation on six public fundus image databases such as DIARETDB0, DIARETDB1, DRIVE, AV-INSPIRE, CHASE DB1 and MESSIDOR. The attention based fully convolutional network is robust and effective for detection and segmentation of optic disc in the images affected by diabetic retinopathy and it outperforms existing techniques.

Keywords: attention-based fully convolutional network, optic disc detection and segmentation, retinal fundus image, screening of ocular diseases

Procedia PDF Downloads 142
1879 Selecting Answers for Questions with Multiple Answer Choices in Arabic Question Answering Based on Textual Entailment Recognition

Authors: Anes Enakoa, Yawei Liang

Abstract:

Question Answering (QA) system is one of the most important and demanding tasks in the field of Natural Language Processing (NLP). In QA systems, the answer generation task generates a list of candidate answers to the user's question, in which only one answer is correct. Answer selection is one of the main components of the QA, which is concerned with selecting the best answer choice from the candidate answers suggested by the system. However, the selection process can be very challenging especially in Arabic due to its particularities. To address this challenge, an approach is proposed to answer questions with multiple answer choices for Arabic QA systems based on Textual Entailment (TE) recognition. The developed approach employs a Support Vector Machine that considers lexical, semantic and syntactic features in order to recognize the entailment between the generated hypotheses (H) and the text (T). A set of experiments has been conducted for performance evaluation and the overall performance of the proposed method reached an accuracy of 67.5% with C@1 score of 80.46%. The obtained results are promising and demonstrate that the proposed method is effective for TE recognition task.

Keywords: information retrieval, machine learning, natural language processing, question answering, textual entailment

Procedia PDF Downloads 145
1878 Physical Properties and Elastic Studies of Fluoroaluminate Glasses Based on Alkali

Authors: C. Benhamideche

Abstract:

Fluoroaluminate glasses have been reported as the earliest heavy metal fluoride glasses. By comparison with flurozirconate glasses, they offer a set of similar optical features, but also some differences in their elastic and chemical properties. In practice they have been less developed because their stability against devitrification is smaller than that of the most stable fluoroziconates. The purpose of this study was to investigate glass formation in systems AlF3-YF3-PbF2-MgF2-MF2 (M= Li, Na, K). Synthesis was implemented at room atmosphere using the ammonium fluoride processing. After fining, the liquid was into a preheated brass mold, then annealed below the glass transition temperature for several hours. The samples were polished for optical measurements. Glass formation has been investigated in a systematic way, using pseudo ternary systems in order to allow parameters to vary at the same time. We have chosen the most stable glass compositions for the determination of the physical properties. These properties including characteristic temperatures, density and proprieties elastic. Glass stability increases in multicomponent glasses. Bulk samples have been prepared for physical characterization. These glasses have a potential interest for passive optical fibers because they are less sensitive to water attack than ZBLAN glass, mechanically stronger. It is expected they could have a larger damage threshold for laser power transmission.

Keywords: fluoride glass, aluminium fluoride, thermal properties, density, proprieties elastic

Procedia PDF Downloads 241
1877 Immigration Of Language From Anatolia To Greenland

Authors: Onur Kaya

Abstract:

Languages date back thousands of years of formation and journeys through the world. In these journeys and formations, they travel, reach and mixes to the very far corners and languages of the world. In this perspective, in order to analyze such language examples, the analysis of the formation, affection, travel, thus immigration of Anatolian Turkish and Inuit of Greenland is significant. Firstly, it is significant to analyze the historical connections between the Turks in Anatolia and the Inuit people in Greenland. So, the intersection of Turks and Inuit's immigrations in history and all these connections to Greenland and Anatolia will be revealed. Then, it is necessary to analyze the linguistic qualities of Turkish and Inuit languages. For this aim, the linguistic theories and linguistic features of the two languages and their common points will be emphasized. After all these explanations and analyses, the effects of the two languages two each other, common words, and the existence of all these in written and literary works of the two languages will be analyzed and exemplified. Finally, the lecture will focus on two different geographies as, Anatolia and Greenland. The two societies’ historical commonness will be revealed. The immigration and the intersecting locations of the two societies will be analyzed. By means of all this information and within the light of the linguistic theories, the commonness of the two languages, the affections caused by each other, the result of these affections, and their examples in written works will be revealed.

Keywords: greenland, anatolia, turk, inuit, immigration

Procedia PDF Downloads 60
1876 A Comprehensive Safety Analysis for a Pressurized Water Reactor Fueled with Mixed-Oxide Fuel as an Accident Tolerant Fuel

Authors: Mohamed Y. M. Mohsen

Abstract:

The viability of utilising mixed-oxide fuel (MOX) ((U₀.₉, rgPu₀.₁) O₂) as an accident-tolerant fuel (ATF) has been thoroughly investigated. MOX fuel provides the best example of a nuclear waste recycling process. The MCNPX 2.7 code was used to determine the main neutronic features, especially the radial power distribution, to identify the hot channel on which the thermal-hydraulic (TH) study was performed. Based on the computational fluid dynamics technique, the simulation of the rod-centered thermal-hydraulic subchannel model was implemented using COMSOL Multiphysics. TH analysis was utilised to determine the axially and radially distributed temperatures of the fuel and cladding materials, as well as the departure from the nucleate boiling ratio (DNBR) along the coolant channel. COMSOL Multiphysics can simulate reality by coupling multiphysics, such as coupling between heat transfer and solid mechanics. The main solid structure parameters, such as the von Mises stress, volumetric strain, and displacement, were simulated using this coupling. When the neutronic, TH, and solid structure performances of UO₂ and ((U₀.₉, rgPu₀.₁) O₂) were compared, the results showed considerable improvement and an increase in safety margins with the use of ((U₀.₉, rgPu₀.₁) O₂).

Keywords: mixed-oxide, MCNPX, neutronic analysis, COMSOL-multiphysics, thermal-hydraulic, solid structure

Procedia PDF Downloads 106
1875 Forensic Analysis of Signal Messenger on Android

Authors: Ward Bakker, Shadi Alhakimi

Abstract:

The amount of people moving towards more privacy focused instant messaging applications has grown significantly. Signal is one of these instant messaging applications, which makes Signal interesting for digital investigators. In this research, we evaluate the artifacts that are generated by the Signal messenger for Android. This evaluation was done by using the features that Signal provides to create artifacts, whereafter, we made an image of the internal storage and the process memory. This image was analysed manually. The manual analysis revealed the content that Signal stores in different locations during its operation. From our research, we were able to identify the artifacts and interpret how they were used. We also examined the source code of Signal. Using our obtain knowledge from the source code, we developed a tool that decrypts some of the artifacts using the key stored in the Android Keystore. In general, we found that most artifacts are encrypted and encoded, even after decrypting some of the artifacts. During data visualization, some artifacts were found, such as that Signal does not use relationships between the data. In this research, two interesting groups of artifacts were identified, those related to the database and those stored in the process memory dump. In the database, we found plaintext private- and group chats, and in the memory dump, we were able to retrieve the plaintext access code to the application. Nevertheless, we conclude that Signal contains a wealth of artifacts that could be very valuable to a digital forensic investigation.

Keywords: forensic, signal, Android, digital

Procedia PDF Downloads 82
1874 Tectonic Inversion Manifestations in the Jebel Rouas-Ruissate (Northeastern Tunisia)

Authors: Aymen Arfaoui, Abdelkader Soumaya, Noureddine Ben Ayed

Abstract:

The Rouas-Ruissateis a part of TunisianAtlas system. Analyze of the collected field data allowed us to propose a new interpretation for the main structural features of thisregion. Tectonic inversions along NE-SW trending fault of Zaghouan and holokinetic movements are the main factors controlling the architecture and geometry of the Jebel Rouas-Ruissate. The presence of breccias, Slumps, and synsedimentaryfaults along NW-SE and N-S trending major faults show that they were active during the Mesozoicextensionalepisodes. During Cenozoic inversion period, this structurewas shaped as imbricatefansformed byNE-SW trending thrust faults. The angularunconformitybetweenupperEocene- Oligocene, and Cretaceousdeposits reveals a compressive Eocene tectonic phase (called Pyrenean phase)occurred duringPaleocene-lower Eocene.The Triassicsaltsacted as a decollementlevel in the NE-SW trendingfault propagation fold model of the Rouas-Ruissate.The inversion of fault-slip data along the main regional fault zones reveals a coexistence of strike-slip and reverse fault stress regimes with NW-SE maximum horizontal stress(SHmax) characterizing the Alpine compressive phase (Upper Tortonian).

Keywords: tunisia, imbricate fans, triassic decollement level, fault propagation fold

Procedia PDF Downloads 152
1873 Imp_hist-Si: Improved Hybrid Image Segmentation Technique for Satellite Imagery to Decrease the Segmentation Error Rate

Authors: Neetu Manocha

Abstract:

Image segmentation is a technique where a picture is parted into distinct parts having similar features which have a place with similar items. Various segmentation strategies have been proposed as of late by prominent analysts. But, after ultimate thorough research, the novelists have analyzed that generally, the old methods do not decrease the segmentation error rate. Then author finds the technique HIST-SI to decrease the segmentation error rates. In this technique, cluster-based and threshold-based segmentation techniques are merged together. After then, to improve the result of HIST-SI, the authors added the method of filtering and linking in this technique named Imp_HIST-SI to decrease the segmentation error rates. The goal of this research is to find a new technique to decrease the segmentation error rates and produce much better results than the HIST-SI technique. For testing the proposed technique, a dataset of Bhuvan – a National Geoportal developed and hosted by ISRO (Indian Space Research Organisation) is used. Experiments are conducted using Scikit-image & OpenCV tools of Python, and performance is evaluated and compared over various existing image segmentation techniques for several matrices, i.e., Mean Square Error (MSE) and Peak Signal Noise Ratio (PSNR).

Keywords: satellite image, image segmentation, edge detection, error rate, MSE, PSNR, HIST-SI, linking, filtering, imp_HIST-SI

Procedia PDF Downloads 141
1872 Identifying the Structural Components of Old Buildings from Floor Plans

Authors: Shi-Yu Xu

Abstract:

The top three risk factors that have contributed to building collapses during past earthquake events in Taiwan are: "irregular floor plans or elevations," "insufficient columns in single-bay buildings," and the "weak-story problem." Fortunately, these unsound structural characteristics can be directly identified from the floor plans. However, due to the vast number of old buildings, conducting manual inspections to identify these compromised structural features in all existing structures would be time-consuming and prone to human errors. This study aims to develop an algorithm that utilizes artificial intelligence techniques to automatically pinpoint the structural components within a building's floor plans. The obtained spatial information will be utilized to construct a digital structural model of the building. This information, particularly regarding the distribution of columns in the floor plan, can then be used to conduct preliminary seismic assessments of the building. The study employs various image processing and pattern recognition techniques to enhance detection efficiency and accuracy. The study enables a large-scale evaluation of structural vulnerability for numerous old buildings, providing ample time to arrange for structural retrofitting in those buildings that are at risk of significant damage or collapse during earthquakes.

Keywords: structural vulnerability detection, object recognition, seismic capacity assessment, old buildings, artificial intelligence

Procedia PDF Downloads 89
1871 Translingual English: New languages and new identities

Authors: Sender Dovchin

Abstract:

The recent bi/multilingual scholarship shows that the knowledge of ‘translingual English’ is understood in terms of transcultural flows of linguistic, semiotic and cultural resources, where these resources re-transform and are recontextualised to form new specific languages and perform new identities in diverse societal contexts. Drawing on linguistic ethnographic data from contemporary popular music artist in Mongolia, this paper addresses two main critical questions: (1) how new forms of specific languages are created when English becomes translingual English in local contexts; and (2) how new varieties of local identities are constructed and performed when English transforms into translingual English. The paper argues that popular music artists in post-socialist Mongolia should better be understood as active cultural producers, contrary to those dominant discourses which position artists in the periphery as passive recipients of popular culture. Positioned within the creative nature of the global digital resources and the increasing transcultural spread of linguistic and cultural modes and features, these young Mongolian popular music artists produce not only new forms of linguistic practices in the local contexts but also create varied new forms of identities of what it means to be a young Mongolian person in the modern society.

Keywords: multilingualism, translingualism, mongolia, english

Procedia PDF Downloads 62
1870 Bcl-2: A Molecule to Detect Oral Cancer and Precancer

Authors: Vandana Singh, Subash Singh

Abstract:

Introduction: Oral squamous cell carcinoma is the most common malignant tumor of the oral cavity. Normally the death of cell and the growth are active processes and depend not only on external factors but also on the expression of genes like Bcl-2, which activate and inhibit apoptosis. The term Bcl-2 is an acronym for B-cell lymphoma/ leukemia -2 genes. Objectives: An attempt was made to evaluate Bcl-2 oncoprotein expression in patients with oral precancer and cancer and to assess possible correlation between Bcl-2 oncoprotein expression and clinicopathological features of oral precancer and cancer. Material and Methods: This is a selective prospective clinical and immunohistochemical study. Clinicopathological examination is correlated with immunohistochemical findings. The immunolocalization of Bcl-2 protein is performed using the labeled streptavidin biotin (LSAB) method. To visualize the reaction, 3, 3-diaminobenzidine (DAB) is used. Results: Bcl-2 expression was positive in 11 [36.66 %, low Bcl-2 expression 3 (10.00 %), moderate Bcl-2 expression 7 (23.33 %), and high Bcl-2 expression 1 (3.33 %)] oral cancer cases and in 14 [87.50 %, low expression 8 (50 %), moderate expression 6 (37.50 %)] precancer cases. Conclusion: On the basis of the results of our study we conclude that positive Bcl-2 expression may be an indicator of poor prognosis in oral cancer and precancer. Relevance: It has been reported that there is deregulation of Bcl-2 expression during progression from oral epithelial dysplasia to squamous cell carcinoma. It can be used for revealing progression of epithelial dysplasia to malignancy and as a prognostic marker in oral precancer and cancer.

Keywords: BcL-2, immunohistochemistry, oral cancer, oral precancer

Procedia PDF Downloads 269
1869 The 5G Communication Technology Radiation Impact on Human Health and Airports Safety

Authors: Ashraf Aly

Abstract:

The aim of this study is to examine the impact of 5G communication technology radiation on human health and airport safety. The term 5G refers to the fifth generation of wireless mobile technology. The 5G wireless technology will increase the number of high-frequency-powered base stations and other devices and browsing and download speeds, as well as improve the network connectivity and play a big part in improving the performance of integrated applications, such as self-driving cars, medical devices, and robotics. 4G was the latest embedded version of mobile networking technology called 4G, and 5G is the new version of wireless technology. 5G networks have more features than 4G networks, such as lower latency, higher capacity, and increased bandwidth compared to 4G. 5G network improvements over 4G will have big impacts on how people live, business, and work all over the world. But neither 4G nor 5G have been tested for safety and show harmful effects from this wireless radiation. This paper presents biological factors on the effects of 5G radiation on human health. 5G services use C-band radio frequencies; these frequencies are close to those used by radio altimeters, which represent important equipment for airport and aircraft safety. The aviation industry, telecommunications companies, and their regulators have been discussing and weighing these interference concerns for years.

Keywords: wireless communication, radiofrequency, Electromagnetic field, environmental issues

Procedia PDF Downloads 65
1868 Towards Long-Range Pixels Connection for Context-Aware Semantic Segmentation

Authors: Muhammad Zubair Khan, Yugyung Lee

Abstract:

Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with bi-directional LSTM embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization for reducing internal covariate shift in data distributions. The empirical evidence shows a promising response to our method compared with other semantic segmentation techniques.

Keywords: deep learning, semantic segmentation, image analysis, pixels connection, convolution neural network

Procedia PDF Downloads 103
1867 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks

Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam

Abstract:

In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.

Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion

Procedia PDF Downloads 123
1866 Gender Difference in the Association between Different Components of the Metabolic Syndrome and Vitamin D Levels in Saudi Patients

Authors: Amal Baalash, Shazia Mukaddam, M. Adel El-Sayed

Abstract:

Background: Several studies have suggested non-skeletal effects of vitamin D and linked its deficiency with features of many chronic conditions. In this study, We aimed to investigate the relationship between vitamin D levels and different components of the metabolic syndrome in male and female Saudi patients. Methods: the study population consisted of 111 patients with metabolic syndrome (71 females and 40 males) aged 37-63 years enrolled from patients attending the internal medicine outpatient clinics of King Fahad Medical City. The parameters for diagnosis of the metabolic syndrome according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) were measured, which included waist circumference, TG, HDL-C, Blood pressure and fasting blood glucose (FBS). The association between each parameter and serum 25-hydroxyvitamin D (25(OH) D) was studied in both male and female patients separately. Results: in male patients, 25(OH) D levels were inversely associated with FBS and TG and positively associated with HDL-C and diastolic blood pressure, With highest association with the HDL-C levels. On the other hand 25(OH) D, Showed no significant association with any of the measured metabolic syndrome parameters in female patients. Conclusion: in Saudi patients with metabolic syndrome, the association between the parameters of metabolic syndrome and the levels of 25 (OH) D is more pronounced in males rather than females.

Keywords: gender, metabolic syndrome, Saudi patients, vitamin D

Procedia PDF Downloads 374
1865 Techno-Economic Analysis of Offshore Hybrid Energy Systems with Hydrogen Production

Authors: Anna Crivellari, Valerio Cozzani

Abstract:

Even though most of the electricity produced in the entire world still comes from fossil fuels, new policies are being implemented in order to promote a more sustainable use of energy sources. Offshore renewable resources have become increasingly attractive thanks to the huge entity of power potentially obtained. However, the intermittent nature of renewables often limits the capacity of the systems and creates mismatches between supply and demand. Hydrogen is foreseen to be a promising vector to store and transport large amounts of excess renewable power by using existing oil and gas infrastructure. In this work, an offshore hybrid energy system integrating wind energy conversion with hydrogen production was conceptually defined and applied to offshore gas platforms. A techno-economic analysis was performed by considering two different locations for the installation of the innovative power system, i.e., the North Sea and the Adriatic Sea. The water depth, the distance of the platform from the onshore gas grid, the hydrogen selling price and the green financial incentive were some of the main factors taken into account in the comparison. The results indicated that the use of well-defined indicators allows to capture specifically different cost and revenue features of the analyzed systems, as well as to evaluate their competitiveness in the actual and future energy market.

Keywords: cost analysis, energy efficiency assessment, hydrogen production, offshore wind energy

Procedia PDF Downloads 126