Search results for: machine learning tools and techniques
14953 Empirical Analysis of Velocity Behavior for Collaborative Robots in Transient Contact Cases
Authors: C. Schneider, M. M. Seizmeir, T. Suchanek, M. Hutter-Mironovova, M. Bdiwi, M. Putz
Abstract:
In this paper, a suitable measurement setup is presented to conduct force and pressure measurements for transient contact cases at the example of lathe machine tending. Empirical measurements were executed on a selected collaborative robot’s behavior regarding allowable operating speeds under consideration of sensor- and workpiece-specific factors. Comparisons between the theoretic calculations proposed in ISO/TS 15066 and the practical measurement results reveal a basis for future research. With the created database, preliminary risk assessment and economic assessment procedures of collaborative machine tending cells can be facilitated.Keywords: biomechanical thresholds, collaborative robots, force and pressure measurements, machine tending, transient contact
Procedia PDF Downloads 24314952 Intelligent Building as a Pragmatic Approach towards Achieving a Sustainable Environment
Authors: Zahra Hamedani
Abstract:
Many wonderful technological developments in recent years has opened up the possibility of using intelligent buildings for a number of important applications, ranging from minimizing resource usage as well as increasing building efficiency to maximizing comfort, adaption to inhabitants and responsiveness to environmental changes. The concept of an intelligent building refers to the highly embedded, interactive environment within which by exploiting the use of artificial intelligence provides the ability to know its configuration, anticipate the optimum dynamic response to prevailing environmental stimuli, and actuate the appropriate physical reaction to provide comfort and efficiency. This paper contains a general identification of the intelligence paradigm and its impacts on the architecture arena, that with examining the performance of artificial intelligence, a mechanism to analyze and finally for decision-making to control the environment will be described. This mechanism would be a hierarchy of the rational agents which includes decision-making, information, communication and physical layers. This multi-agent system relies upon machine learning techniques for automated discovery, prediction and decision-making. Then, the application of this mechanism regarding adaptation and responsiveness of intelligent building will be provided in two scales of environmental and user. Finally, we review the identifications of sustainability and evaluate the potentials of intelligent building systems in the creation of sustainable architecture and environment.Keywords: artificial intelligence, intelligent building, responsiveness, adaption, sustainability
Procedia PDF Downloads 41014951 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text
Authors: Duncan Wallace, M-Tahar Kechadi
Abstract:
In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.Keywords: artificial neural networks, data-mining, machine learning, medical informatics
Procedia PDF Downloads 13114950 A System Dynamics Approach to Technological Learning Impact for Cost Estimation of Solar Photovoltaics
Authors: Rong Wang, Sandra Hasanefendic, Elizabeth von Hauff, Bart Bossink
Abstract:
Technological learning and learning curve models have been continuously used to estimate the photovoltaics (PV) cost development over time for the climate mitigation targets. They can integrate a number of technological learning sources which influence the learning process. Yet the accuracy and realistic predictions for cost estimations of PV development are still difficult to achieve. This paper develops four hypothetical-alternative learning curve models by proposing different combinations of technological learning sources, including both local and global technology experience and the knowledge stock. This paper specifically focuses on the non-linear relationship between the costs and technological learning source and their dynamic interaction and uses the system dynamics approach to predict a more accurate PV cost estimation for future development. As the case study, the data from China is gathered and drawn to illustrate that the learning curve model that incorporates both the global and local experience is more accurate and realistic than the other three models for PV cost estimation. Further, absorbing and integrating the global experience into the local industry has a positive impact on PV cost reduction. Although the learning curve model incorporating knowledge stock is not realistic for current PV cost deployment in China, it still plays an effective positive role in future PV cost reduction.Keywords: photovoltaic, system dynamics, technological learning, learning curve
Procedia PDF Downloads 9614949 Parameters Influencing Human Machine Interaction in Hospitals
Authors: Hind Bouami
Abstract:
Handling life-critical systems complexity requires to be equipped with appropriate technology and the right human agents’ functions such as knowledge, experience, and competence in problem’s prevention and solving. Human agents are involved in the management and control of human-machine system’s performance. Documenting human agent’s situation awareness is crucial to support human-machine designers’ decision-making. Knowledge about risks, critical parameters and factors that can impact and threaten automation system’s performance should be collected using preventive and retrospective approaches. This paper aims to document operators’ situation awareness through the analysis of automated organizations’ feedback. The analysis of automated hospital pharmacies feedbacks helps to identify and control critical parameters influencing human machine interaction in order to enhance system’s performance and security. Our human machine system evaluation approach has been deployed in Macon hospital center’s pharmacy which is equipped with automated drug dispensing systems since 2015. Automation’s specifications are related to technical aspects, human-machine interaction, and human aspects. The evaluation of drug delivery automation performance in Macon hospital center has shown that the performance of the automated activity depends on the performance of the automated solution chosen, and also on the control of systemic factors. In fact, 80.95% of automation specification related to the chosen Sinteco’s automated solution is met. The performance of the chosen automated solution is involved in 28.38% of automation specifications performance in Macon hospital center. The remaining systemic parameters involved in automation specifications performance need to be controlled.Keywords: life-critical systems, situation awareness, human-machine interaction, decision-making
Procedia PDF Downloads 18114948 A Student Centered Learning Environment in Engineering Education: Design and a Longitudinal Study of Impact
Authors: Tom O'Mahony
Abstract:
This article considers the design of a student-centered learning environment in engineering education. The learning environment integrates a number of components, including project-based learning, collaborative learning, two-stage assignments, active learning lectures, and a flipped-classroom. Together these elements place the individual learner and their learning at the center of the environment by focusing on understanding, enhancing relevance, applying learning, obtaining rich feedback, making choices, and taking responsibility. The evolution of this environment from 2014 to the present day is outlined. The impact of this environment on learners and their learning is evaluated via student questionnaires that consist of both open and closed-ended questions. The closed questions indicate that students found the learning environment to be really interesting and enjoyable (rated as 4.7 on a 5 point scale) and encouraged students to adopt a deep approach towards studying the course materials (rated as 4.0 on a 5 point scale). A content analysis of the open-ended questions provides evidence that the project, active learning lectures, and flipped classroom all contribute to the success of this environment. Furthermore, this analysis indicates that the two-stage assessment process, in which feedback is provided between a draft and final assignment, is the key component and the dominant theme. A limitation of the study is the small class size (less than 20 learners per year), but, to some degree, this is compensated for by the longitudinal nature of the study.Keywords: deep approaches, formative assessment, project-based learning, student-centered learning
Procedia PDF Downloads 11214947 Efficacy of Technology for Successful Learning Experience; Technology Supported Model for Distance Learning: Case Study of Botho University, Botswana
Authors: Ivy Rose Mathew
Abstract:
The purpose of this study is to outline the efficacy of technology and the opportunities it can bring to implement a successful delivery model in Distance Learning. Distance Learning has proliferated over the past few years across the world. Some of the current challenges faced by current students of distance education include lack of motivation, a sense of isolation and a need for greater and improved communication. Hence the author proposes a creative technology supported model for distance learning exactly mirrored on the traditional face to face learning that can be adopted by distance learning providers. This model suggests the usage of a range of technologies and social networking facilities, with the aim of creating a more engaging and sustaining learning environment to help overcome the isolation often noted by distance learners. While discussing the possibilities, the author also highlights the complexity and practical challenges of implementing such a model. Design/methodology/approach: Theoretical issues from previous research related to successful models for distance learning providers will be considered. And also the analysis of a case study from one of the largest private tertiary institution in Botswana, Botho University will be included. This case study illustrates important aspects of the distance learning delivery model and provides insights on how curriculum development is planned, quality assurance is done, and learner support is assured for successful distance learning experience. Research limitations/implications: While some of the aspects of this study may not be applicable to other contexts, a number of new providers of distance learning can adapt the key principles of this delivery model.Keywords: distance learning, efficacy, learning experience, technology supported model
Procedia PDF Downloads 24714946 Waste Prevention and Economic Policy: Policy Tools for Increasing Resource Efficiency and Savings
Authors: Sylvia Graczka
Abstract:
Waste related environmental problems are not only exploding but are also spotlighted for capacity shortages in recycling, as China announced its ban on waste imports. According to the waste hierarchy, prevention is the primary solution for waste, and also the cheapest. Waste related environmental pollution as externality puts an ever-growing burden on communities bearing the social costs. Economic policies often claim to be pro-environment, this often appears only theoretically, or at the level of principles. There are few concrete occurrences of tools in economic policies, such as green taxes, that are truly effective in stimulating the shift towards waste reduction. The paper presents theoretical economic policy tools based on literature review, and case studies on applied economic policy tools by analyzing policy papers, strategies in force, in line with ‘polluter pays’ and ‘extended producer responsibility’ principles. The study also emphasizes the differences between the broader notion of waste reduction and that of waste minimization, parallel to the difference between resource efficiency and resource savings. It also puts the issue in the context of neoclassical environmental economics and ecological economics, to present alternatives in approach. The research concludes in identifying effective economic policy tools that support the reduction of material use, and the prevention of waste. Consumer and producer awareness of waste problems and consciousness related to their choices are inevitable to make economic policy tools work effectively.Keywords: economic policy, producer responsibility, resource efficiency, waste prevention
Procedia PDF Downloads 14914945 Addressing Differentiation Using Mobile-Assisted Language Learning
Authors: Ajda Osifo, Fatma Elshafie
Abstract:
Mobile-assisted language learning favors social-constructivist and connectivist theories to learning and adaptive approaches to teaching. It offers many opportunities to differentiated instruction in meaningful ways as it enables learners to become more collaborative, engaged and independent through additional dimensions such as web-based media, virtual learning environments, online publishing to an imagined audience and digitally mediated communication. MALL applications can be a tool for the teacher to personalize and adjust instruction according to the learners’ needs and give continuous feedback to improve learning and performance in the process, which support differentiated instruction practices. This paper explores the utilization of Mobile Assisted Language Learning applications as a supporting tool for effective differentiation in the language classroom. It reports overall experience in terms of implementing MALL to shape and apply differentiated instruction and expand learning options. This session is structured in three main parts: first, a review of literature and effective practice of academically responsive instruction will be discussed. Second, samples of differentiated tasks, activities, projects and learner work will be demonstrated with relevant learning outcomes and learners’ survey results. Finally, project findings and conclusions will be given.Keywords: academically responsive instruction, differentiation, mobile learning, mobile-assisted language learning
Procedia PDF Downloads 41714944 Factors Affecting General Practitioners’ Transfer of Specialized Self-Care Knowledge to Patients
Authors: Weidong Xia, Malgorzata Kolotylo, Xuan Tan
Abstract:
This study examines the key factors that influence general practitioners’ learning and transfer of specialized arthritis knowledge and self-care techniques to patients during normal patient visits. Drawing on the theory of planed behavior and using matched survey data collected from general practitioners before and after training sessions provided by specialized orthopedic physicians, the study suggests that the general practitioner’s intention to use and transfer learned knowledge was influenced mainly by intrinsic motivation, organizational learning culture and absorptive capacity, but was not influenced by extrinsic motivation. The results provide both theoretical and practical implications.Keywords: empirical study, healthcare knowledge management, patient self-care, physician knowledge transfer
Procedia PDF Downloads 29914943 Root Mean Square-Based Method for Fault Diagnosis and Fault Detection and Isolation of Current Fault Sensor in an Induction Machine
Authors: Ahmad Akrad, Rabia Sehab, Fadi Alyoussef
Abstract:
Nowadays, induction machines are widely used in industry thankful to their advantages comparing to other technologies. Indeed, there is a big demand because of their reliability, robustness and cost. The objective of this paper is to deal with diagnosis, detection and isolation of faults in a three-phase induction machine. Among the faults, Inter-turn short-circuit fault (ITSC), current sensors fault and single-phase open circuit fault are selected to deal with. However, a fault detection method is suggested using residual errors generated by the root mean square (RMS) of phase currents. The application of this method is based on an asymmetric nonlinear model of Induction Machine considering the winding fault of the three axes frame state space. In addition, current sensor redundancy and sensor fault detection and isolation (FDI) are adopted to ensure safety operation of induction machine drive. Finally, a validation is carried out by simulation in healthy and faulty operation modes to show the benefit of the proposed method to detect and to locate with, a high reliability, the three types of faults.Keywords: induction machine, asymmetric nonlinear model, fault diagnosis, inter-turn short-circuit fault, root mean square, current sensor fault, fault detection and isolation
Procedia PDF Downloads 19914942 Twitter Ego Networks and the Capital Markets: A Social Network Analysis Perspective of Market Reactions to Earnings Announcement Events
Authors: Gregory D. Saxton
Abstract:
Networks are everywhere: lunch ties among co-workers, golfing partnerships among employees, interlocking board-of-director connections, Facebook friendship ties, etc. Each network varies in terms of its structure -its size, how inter-connected network members are, and the prevalence of sub-groups and cliques. At the same time, within any given network, some network members will have a more important, more central position on account of their greater number of connections or their capacity as “bridges” connecting members of different network cliques. The logic of network structure and position is at the heart of what is known as social network analysis, and this paper applies this logic to the study of the stock market. Using an array of data analytics and machine learning tools, this study will examine 17 million Twitter messages discussing the stocks of the firms in the S&P 1,500 index in 2018. Each of these 1,500 stocks has a distinct Twitter discussion network that varies in terms of core network characteristics such as size, density, influence, norms and values, level of activity, and embedded resources. The study’s core proposition is that the ultimate effect of any market-relevant information is contingent on the characteristics of the network through which it flows. To test this proposition, this study operationalizes each of the core network characteristics and examines their influence on market reactions to 2018 quarterly earnings announcement events.Keywords: data analytics, investor-to-investor communication, social network analysis, Twitter
Procedia PDF Downloads 12114941 Adaption Model for Building Agile Pronunciation Dictionaries Using Phonemic Distance Measurements
Authors: Akella Amarendra Babu, Rama Devi Yellasiri, Natukula Sainath
Abstract:
Where human beings can easily learn and adopt pronunciation variations, machines need training before put into use. Also humans keep minimum vocabulary and their pronunciation variations are stored in front-end of their memory for ready reference, while machines keep the entire pronunciation dictionary for ready reference. Supervised methods are used for preparation of pronunciation dictionaries which take large amounts of manual effort, cost, time and are not suitable for real time use. This paper presents an unsupervised adaptation model for building agile and dynamic pronunciation dictionaries online. These methods mimic human approach in learning the new pronunciations in real time. A new algorithm for measuring sound distances called Dynamic Phone Warping is presented and tested. Performance of the system is measured using an adaptation model and the precision metrics is found to be better than 86 percent.Keywords: pronunciation variations, dynamic programming, machine learning, natural language processing
Procedia PDF Downloads 17514940 Experiential Learning: A Case Study for Teaching Operating System Using C and Unix
Authors: Shamshuddin K., Nagaraj Vannal, Diwakar Kulkarni, Raghavendra Nakod
Abstract:
In most of the universities and colleges Operating System (OS) course is treated as theoretical and usually taught in a classroom using conventional teaching methods. In this paper we are presenting a new approach of teaching OS through experiential learning, the course is designed to suit the requirement of undergraduate engineering program of Instrumentation Technology. This new approach has benefited us to improve our student’s programming skills, presentation skills and understanding of the operating system concepts.Keywords: pedagogy, interactive learning, experiential learning, OS, C, UNIX
Procedia PDF Downloads 60614939 The Impact of E-Learning on the Performance of History Learners in Eswatini General Certificate of Secondary Education
Authors: Joseph Osodo, Motsa Thobekani Phila
Abstract:
The study investigated the impact of e-learning on the performance of history learners in Eswatini general certificate of secondary education in the Manzini region of Eswatini. The study was guided by the theory of connectivism. The study had three objectives which were to find out the significance of e-learning during the COVID-19 era in learning History subject; challenges faced by history teachers’ and learners’ in e-learning; and how the challenges were mitigated. The study used a qualitative research approach and descriptive research design. Purposive sampling was used to select eight History teachers and eight History learners from four secondary schools in the Manzini region. Data were collected using face to face interviews. The collected data were analyzed and presented in thematically. The findings showed that history teachers had good knowledge on what e-learning was, while students had little understanding of e-learning. Some of the forms of e-learning that were used during the pandemic in teaching history in secondary schools included TV, radio, computer, projectors, and social media especially WhatsApp. E-learning enabled the continuity of teaching and learning of history subject. The use of e-learning through the social media was more convenient to the teacher and the learners. It was concluded that in some secondary school in the Manzini region, history teacher and learners encountered challenges such as lack of finances to purchase e-learning gadgets and data bundles, lack of skills as well as access to the Internet. It was recommended that History teachers should create more time to offer additional learning support to students whose performance was affected by the COVID-19 pandemic effects.Keywords: e-learning, performance, COVID-19, history, connectivism
Procedia PDF Downloads 7614938 A Context Aware Mobile Learning System with a Cognitive Recommendation Engine
Authors: Jalal Maqbool, Gyu Myoung Lee
Abstract:
Using smart devices for context aware mobile learning is becoming increasingly popular. This has led to mobile learning technology becoming an indispensable part of today’s learning environment and platforms. However, some fundamental issues remain - namely, mobile learning still lacks the ability to truly understand human reaction and user behaviour. This is due to the fact that current mobile learning systems are passive and not aware of learners’ changing contextual situations. They rely on static information about mobile learners. In addition, current mobile learning platforms lack the capability to incorporate dynamic contextual situations into learners’ preferences. Thus, this thesis aims to address these issues highlighted by designing a context aware framework which is able to sense learner’s contextual situations, handle data dynamically, and which can use contextual information to suggest bespoke learning content according to a learner’s preferences. This is to be underpinned by a robust recommendation system, which has the capability to perform these functions, thus providing learners with a truly context-aware mobile learning experience, delivering learning contents using smart devices and adapting to learning preferences as and when it is required. In addition, part of designing an algorithm for the recommendation engine has to be based on learner and application needs, personal characteristics and circumstances, as well as being able to comprehend human cognitive processes which would enable the technology to interact effectively and deliver mobile learning content which is relevant, according to the learner’s contextual situations. The concept of this proposed project is to provide a new method of smart learning, based on a capable recommendation engine for providing an intuitive mobile learning model based on learner actions.Keywords: aware, context, learning, mobile
Procedia PDF Downloads 24514937 Human Machine Interface for Controlling a Robot Using Image Processing
Authors: Ambuj Kumar Gautam, V. Vasu
Abstract:
This paper introduces a head movement based Human Machine Interface (HMI) that uses the right and left movements of head to control a robot motion. Here we present an approach for making an effective technique for real-time face orientation information system, to control a robot which can be efficiently used for Electrical Powered Wheelchair (EPW). Basically this project aims at application related to HMI. The system (machine) identifies the orientation of the face movement with respect to the pixel values of image in a certain areas. Initially we take an image and divide that whole image into three parts on the basis of its number of columns. On the basis of orientation of face, maximum pixel value of approximate same range of (R, G, and B value of a pixel) lie in one of divided parts of image. This information we transfer to the microcontroller through serial communication port and control the motion of robot like forward motion, left and right turn and stop in real time by using head movements.Keywords: electrical powered wheelchair (EPW), human machine interface (HMI), robotics, microcontroller
Procedia PDF Downloads 29214936 Deep learning with Noisy Labels : Learning True Labels as Discrete Latent Variable
Authors: Azeddine El-Hassouny, Chandrashekhar Meshram, Geraldin Nanfack
Abstract:
In recent years, learning from data with noisy labels (Label Noise) has been a major concern in supervised learning. This problem has become even more worrying in Deep Learning, where the generalization capabilities have been questioned lately. Indeed, deep learning requires a large amount of data that is generally collected by search engines, which frequently return data with unreliable labels. In this paper, we investigate the Label Noise in Deep Learning using variational inference. Our contributions are : (1) exploiting Label Noise concept where the true labels are learnt using reparameterization variational inference, while observed labels are learnt discriminatively. (2) the noise transition matrix is learnt during the training without any particular process, neither heuristic nor preliminary phases. The theoretical results shows how true label distribution can be learned by variational inference in any discriminate neural network, and the effectiveness of our approach is proved in several target datasets, such as MNIST and CIFAR32.Keywords: label noise, deep learning, discrete latent variable, variational inference, MNIST, CIFAR32
Procedia PDF Downloads 12814935 Introducing Transcending Pedagogies
Authors: Wajeehah Aayeshah, Joy Higgs
Abstract:
The term “transcending pedagogies” has been created to refer to teaching and learning strategies that transcend the mode of student enrolment, the needs of different students, and different learning spaces. The value of such pedagogies in the current arena when learning spaces, technologies and preferences are more volatile than ever before, is a key focus of this paper. The paper will examine current and emerging pedagogies that transcend the learning spaces and enrollment modes of on campus, distance, virtual and workplace learning contexts. A further point of interest is how academics in professional and higher education settings interpret and implement pedagogies in the current global conversation space and re-creation of higher education. This study questioned how the notion and practice of transcending pedagogies enables us to re-imagine and reshape university curricula. It explored the nature of teaching and learning spaces and those professional and higher education (current and emerging) pedagogies that can be implemented across these spaces. We set out to identify how transcending pedagogies can assist students in learning to deal with complexity, uncertainty and change in the practice worlds and better appeal to students who are making decisions on where to enrol. The data for this study was collected through in-depth interviews and focus groups with academics and policy makers within academia.Keywords: Transcending Pedagogies, teaching and learning strategies, learning spaces, pedagogies
Procedia PDF Downloads 53814934 A Convolutional Neural Network Based Vehicle Theft Detection, Location, and Reporting System
Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala
Abstract:
One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets especially in the motorist industry, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. Sixty (60) vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.Keywords: CNN, location identification, tracking, GPS, GSM
Procedia PDF Downloads 16614933 Tackling the Digital Divide: Enhancing Video Consultation Access for Digital Illiterate Patients in the Hospital
Authors: Wieke Ellen Bouwes
Abstract:
This study aims to unravel which factors enhance accessibility of video consultations (VCs) for patients with low digital literacy. Thirteen in-depth interviews with patients, hospital employees, eHealth experts, and digital support organizations were held. Patients with low digital literacy received in-home support during real-time video consultations and are observed during the set-up of these consultations. Key findings highlight the importance of patient acceptance, emphasizing video consultations benefits and avoiding standardized courses. The lack of a uniform video consultation system across healthcare providers poses a barrier. Familiarity with support organizations – to support patients in usage of digital tools - among healthcare practitioners enhances accessibility. Moreover, considerations regarding the Dutch General Data Protection Regulation (GDPR) law influence support patients receive. Also, provider readiness to use video consultations influences patient access. Further, alignment between learning styles and support methods seems to determine abilities to learn how to use video consultations. Future research could delve into tailored learning styles and technological solutions for remote access to further explore effectiveness of learning methods.Keywords: video consultations, digital literacy skills, effectiveness of support, intra- and inter-organizational relationships, patient acceptance of video consultations
Procedia PDF Downloads 7414932 Investigating The Use Of Socially Assistive Robots To Support Learner Engagement For Students With Learning Disabilities In One-to-one Instructional Settings
Authors: Jennifer Fane, Mike Gray, Melissa Sager
Abstract:
Children with diagnosed or suspected learning disabilities frequently experience significant skill gaps in foundational learning areas such as reading, writing, and math. Remedial one-to-one instruction is a highly effective means of supporting children with learning differences in building these foundational skills and closing the learning gap between them and their same-age peers. However, due to the learning challenges children with learning disabilities face, and ensuing challenges with self-confidence, many children with learning differences struggle with motivation and self-regulation within remedial one-to-one learning environments - despite the benefits of these sessions. Socially Assistive Robots (SARs) are an innovative educational technology tool that has been trialled in a range of educational settings to support diverse learning needs. Yet, little is known about the impact of SARs on the learning of children with learning differences in a one-to-one remedial instructional setting. This study sought to explore the impact of SARs on the engagement of children (n=9) with learning differences attending one-to-one remedial instruction sessions at a non-profit remedial education provider. The study used a mixed-methods design to explore learner engagement during learning tasks both with and without the use of a SAR to investigate how the use of SARs impacts student learning. The study took place over five weeks, with each session within the study followed the same procedure with the SAR acting as a teaching assistant when in use. Data from the study included analysis of time-sample video segments of the instructional sessions, instructor recorded information about the student’s progress towards their session learning goal and student self-reported mood and energy levels before and after the session. Analysis of the findings indicates that the use of SARs resulted in fewer instances of off-task behaviour and less need for instructor re-direction during learning tasks, allowing students to work in more sustained ways towards their learning goals. This initial research indicates that the use of SARs does have a material and measurable impact on learner engagement for children with learning differences and that further exploration of the impact of SARs during one-to-one remedial instruction is warranted.Keywords: engagement, learning differences, learning disabilities, instruction, social robotics.
Procedia PDF Downloads 21314931 Deep Reinforcement Learning Approach for Trading Automation in The Stock Market
Authors: Taylan Kabbani, Ekrem Duman
Abstract:
The design of adaptive systems that take advantage of financial markets while reducing the risk can bring more stagnant wealth into the global market. However, most efforts made to generate successful deals in trading financial assets rely on Supervised Learning (SL), which suffered from various limitations. Deep Reinforcement Learning (DRL) offers to solve these drawbacks of SL approaches by combining the financial assets price "prediction" step and the "allocation" step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with its environment to make optimal decisions through trial and error. In this paper, a continuous action space approach is adopted to give the trading agent the ability to gradually adjust the portfolio's positions with each time step (dynamically re-allocate investments), resulting in better agent-environment interaction and faster convergence of the learning process. In addition, the approach supports the managing of a portfolio with several assets instead of a single one. This work represents a novel DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem, or what is referred to as The Agent Environment as Partially observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. More specifically, we design an environment that simulates the real-world trading process by augmenting the state representation with ten different technical indicators and sentiment analysis of news articles for each stock. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm, which can learn policies in high-dimensional and continuous action spaces like those typically found in the stock market environment. From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of deep reinforcement learning in financial markets over other types of machine learning such as supervised learning and proves its credibility and advantages of strategic decision-making.Keywords: the stock market, deep reinforcement learning, MDP, twin delayed deep deterministic policy gradient, sentiment analysis, technical indicators, autonomous agent
Procedia PDF Downloads 17814930 Big Data in Construction Project Management: The Colombian Northeast Case
Authors: Sergio Zabala-Vargas, Miguel Jiménez-Barrera, Luz VArgas-Sánchez
Abstract:
In recent years, information related to project management in organizations has been increasing exponentially. Performance data, management statistics, indicator results have forced the collection, analysis, traceability, and dissemination of project managers to be essential. In this sense, there are current trends to facilitate efficient decision-making in emerging technology projects, such as: Machine Learning, Data Analytics, Data Mining, and Big Data. The latter is the most interesting in this project. This research is part of the thematic line Construction methods and project management. Many authors present the relevance that the use of emerging technologies, such as Big Data, has taken in recent years in project management in the construction sector. The main focus is the optimization of time, scope, budget, and in general mitigating risks. This research was developed in the northeastern region of Colombia-South America. The first phase was aimed at diagnosing the use of emerging technologies (Big-Data) in the construction sector. In Colombia, the construction sector represents more than 50% of the productive system, and more than 2 million people participate in this economic segment. The quantitative approach was used. A survey was applied to a sample of 91 companies in the construction sector. Preliminary results indicate that the use of Big Data and other emerging technologies is very low and also that there is interest in modernizing project management. There is evidence of a correlation between the interest in using new data management technologies and the incorporation of Building Information Modeling BIM. The next phase of the research will allow the generation of guidelines and strategies for the incorporation of technological tools in the construction sector in Colombia.Keywords: big data, building information modeling, tecnology, project manamegent
Procedia PDF Downloads 12814929 Technology Impact in Learning and Teaching English Language Writing
Authors: Laura Naka
Abstract:
The invention of computer writing programs has changed the way of teaching second language writing. This artificial intelligence engine can provide students with feedback on their essays, on their grammatical and spelling errors, convenient writing and editing tools to facilitate student’s writing process. However, it is not yet proved if this technology is helping students to improve their writing skills. There are several programs that are of great assistance for students concerning their writing skills. New technology provides students with different software programs which enable them to be more creative, to express their opinions and ideas in words, pictures and sounds, but at the end main and most correct feedback should be given by their teachers. No matter how new technology affects in writing skills, always comes from their teachers. This research will try to present some of the advantages and disadvantages that new technology has in writing process for students. The research takes place in the University of Gjakova ‘’Fehmi Agani’’ Faculty of Education-Preschool Program. The research aims to provide random sample response by using questionnaires and observation.Keywords: English language learning, technology, academic writing, teaching L2.
Procedia PDF Downloads 57114928 The Impact of WhatsApp Groups as Supportive Technology in Teaching
Authors: Pinn Tsin Isabel Yee
Abstract:
With the advent of internet technologies, students are increasingly turning toward social media and cross-platform messaging apps such as WhatsApp, Line, and WeChat to support their teaching and learning processes. Although each messaging app has varying features, WhatsApp remains one of the most popular cross-platform apps that allow for fast, simple, secure messaging and free calls anytime, anywhere. With a plethora of advantages, students could easily assimilate WhatsApp as a supportive technology in their learning process. There could be peer to peer learning, and a teacher will be able to share knowledge digitally via the creation of WhatsApp groups. Content analysis techniques were utilized to analyze data collected by closed-ended question forms. Studies demonstrated that 98.8% of college students (n=80) from the Monash University foundation year agreed that the employment of WhatsApp groups was helpful as a learning tool. Approximately 71.3% disagreed that notifications and alerts from the WhatsApp group were disruptions in their studies. Students commented that they could silence the notifications and hence, it would not disturb their flow of thoughts. In fact, an overwhelming majority of students (95.0%) found it enjoyable to participate in WhatsApp groups for educational purposes. It was a common perception that some students felt pressured to post a reply in such groups, but data analysis showed that 72.5% of students did not feel pressured to comment or reply. It was good that 93.8% of students felt satisfactory if their posts were not responded to speedily, but was eventually attended to. Generally, 97.5% of students found it useful if their teachers provided their handphone numbers to be added to a WhatsApp group. If a teacher posts an explanation or a mathematical working in the group, all students would be able to view the post together, as opposed to individual students asking their teacher a similar question. On whether students preferred using Facebook as a learning tool, there was a 50-50 divide in the replies from the respondents as 51.3% of students liked WhatsApp, while 48.8% preferred Facebook as a supportive technology in teaching and learning. Taken altogether, the utilization of WhatsApp groups as a supportive technology in teaching and learning should be implemented in all classes to continuously engage our generation Y students in the ever-changing digital landscape.-Keywords: education, learning, messaging app, technology, WhatsApp groups
Procedia PDF Downloads 15714927 Artificial Intelligence for Traffic Signal Control and Data Collection
Authors: Reggie Chandra
Abstract:
Trafficaccidents and traffic signal optimization are correlated. However, 70-90% of the traffic signals across the USA are not synchronized. The reason behind that is insufficient resources to create and implement timing plans. In this work, we will discuss the use of a breakthrough Artificial Intelligence (AI) technology to optimize traffic flow and collect 24/7/365 accurate traffic data using a vehicle detection system. We will discuss what are recent advances in Artificial Intelligence technology, how does AI work in vehicles, pedestrians, and bike data collection, creating timing plans, and what is the best workflow for that. Apart from that, this paper will showcase how Artificial Intelligence makes signal timing affordable. We will introduce a technology that uses Convolutional Neural Networks (CNN) and deep learning algorithms to detect, collect data, develop timing plans and deploy them in the field. Convolutional Neural Networks are a class of deep learning networks inspired by the biological processes in the visual cortex. A neural net is modeled after the human brain. It consists of millions of densely connected processing nodes. It is a form of machine learning where the neural net learns to recognize vehicles through training - which is called Deep Learning. The well-trained algorithm overcomes most of the issues faced by other detection methods and provides nearly 100% traffic data accuracy. Through this continuous learning-based method, we can constantly update traffic patterns, generate an unlimited number of timing plans and thus improve vehicle flow. Convolutional Neural Networks not only outperform other detection algorithms but also, in cases such as classifying objects into fine-grained categories, outperform humans. Safety is of primary importance to traffic professionals, but they don't have the studies or data to support their decisions. Currently, one-third of transportation agencies do not collect pedestrian and bike data. We will discuss how the use of Artificial Intelligence for data collection can help reduce pedestrian fatalities and enhance the safety of all vulnerable road users. Moreover, it provides traffic engineers with tools that allow them to unleash their potential, instead of dealing with constant complaints, a snapshot of limited handpicked data, dealing with multiple systems requiring additional work for adaptation. The methodologies used and proposed in the research contain a camera model identification method based on deep Convolutional Neural Networks. The proposed application was evaluated on our data sets acquired through a variety of daily real-world road conditions and compared with the performance of the commonly used methods requiring data collection by counting, evaluating, and adapting it, and running it through well-established algorithms, and then deploying it to the field. This work explores themes such as how technologies powered by Artificial Intelligence can benefit your community and how to translate the complex and often overwhelming benefits into a language accessible to elected officials, community leaders, and the public. Exploring such topics empowers citizens with insider knowledge about the potential of better traffic technology to save lives and improve communities. The synergies that Artificial Intelligence brings to traffic signal control and data collection are unsurpassed.Keywords: artificial intelligence, convolutional neural networks, data collection, signal control, traffic signal
Procedia PDF Downloads 16914926 The Impact of Content Familiarity of Receptive Skills on Language Learning
Authors: Sara Fallahi
Abstract:
This paper reviews the importance of content familiarity of receptive skills and offers solutions to the issue of content unfamiliarity in language learning materials. Presently, language learning materials are mainly comprised of global issues and target language speakers’ culture(s) in receptive skills. This might leadlearners to focus on content rather than the language. As a solution, materials on receptive skills can be developed with a focus on learners’culture and social concerns, especially in the beginner levels of learning. Language learners often learn their target language through the receptive skills of listening and reading before language production ensues through speaking and writing. Students’ journey from receptive skills to productive skills is mainly concentrated on by teachers. There are barriers to language learning, such as time and energy, that can hinder learners’ understanding and ability to build the required background knowledge of the content. This is generated due to learners’ unfamiliarity with the skill’s content. Therefore, materials that improve content familiarity will help learners improve their language comprehension, learning, and usage. This presentation will conclude with practical solutions to help teachers and learners more authentically integrate language and culture to elevate language learning.Keywords: language learning, listening content, reading content, content familiarity, ESL books, language learning books, cultural familiarity
Procedia PDF Downloads 11814925 Unveiling Drought Dynamics in the Cuneo District, Italy: A Machine Learning-Enhanced Hydrological Modelling Approach
Authors: Mohammadamin Hashemi, Mohammadreza Kashizadeh
Abstract:
Droughts pose a significant threat to sustainable water resource management, agriculture, and socioeconomic sectors, particularly in the field of climate change. This study investigates drought simulation using rainfall-runoff modelling in the Cuneo district, Italy, over the past 60-year period. The study leverages the TUW model, a lumped conceptual rainfall-runoff model with a semi-distributed operation capability. Similar in structure to the widely used Hydrologiska Byråns Vattenbalansavdelning (HBV) model, the TUW model operates on daily timesteps for input and output data specific to each catchment. It incorporates essential routines for snow accumulation and melting, soil moisture storage, and streamflow generation. Multiple catchments' discharge data within the Cuneo district form the basis for thorough model calibration employing the Kling-Gupta Efficiency (KGE) metric. A crucial metric for reliable drought analysis is one that can accurately represent low-flow events during drought periods. This ensures that the model provides a realistic picture of water availability during these critical times. Subsequent validation of monthly discharge simulations thoroughly evaluates overall model performance. Beyond model development, the investigation delves into drought analysis using the robust Standardized Runoff Index (SRI). This index allows for precise characterization of drought occurrences within the study area. A meticulous comparison of observed and simulated discharge data is conducted, with particular focus on low-flow events that characterize droughts. Additionally, the study explores the complex interplay between land characteristics (e.g., soil type, vegetation cover) and climate variables (e.g., precipitation, temperature) that influence the severity and duration of hydrological droughts. The study's findings demonstrate successful calibration of the TUW model across most catchments, achieving commendable model efficiency. Comparative analysis between simulated and observed discharge data reveals significant agreement, especially during critical low-flow periods. This agreement is further supported by the Pareto coefficient, a statistical measure of goodness-of-fit. The drought analysis provides critical insights into the duration, intensity, and severity of drought events within the Cuneo district. This newfound understanding of spatial and temporal drought dynamics offers valuable information for water resource management strategies and drought mitigation efforts. This research deepens our understanding of drought dynamics in the Cuneo region. Future research directions include refining hydrological modelling techniques and exploring future drought projections under various climate change scenarios.Keywords: hydrologic extremes, hydrological drought, hydrological modelling, machine learning, rainfall-runoff modelling
Procedia PDF Downloads 4114924 An Experience Report on Course Teaching in Information Systems
Authors: Carlos Oliveira
Abstract:
This paper is a criticism of the traditional model of teaching and presents alternative teaching methods, different from the traditional lecture. These methods are accompanied by reports of experience of their application in a class. It was concluded that in the lecture, the student has a low learning rate and that other methods should be used to make the most engaging learning environment for the student, contributing (or facilitating) his learning process. However, the teacher should not use a single method, but rather a range of different methods to ensure the learning experience does not become repetitive and fatiguing for the student.Keywords: educational practices, experience report, IT in education, teaching methods
Procedia PDF Downloads 397