Search results for: loan amount
2199 Flame Retardancy of Organophosphorus Compound on Cellulose - an Eco Friendly Concern
Authors: M. A. Hannan, N. Matthias Neisius
Abstract:
Organophosphorus compound diethyloxymethyl-9-oxa-10-phosphaphenanthrene-10-oxide (DOPAC) was applied on cotton cellulose to impart eco-friendly flame retardant property to it. Here acetal linkage was introduced rather than conventionally used ester linkage to rescue from the undurability problem of flame retardant compound. Some acidic catalysts, sodium dihydrogen phosphate (NaH2PO4), ammonium dihydrogen phosphate (NH4H2PO4) and phosphoric acid (H3PO4) were successfully used to form acetal linkage between the base material and flame retardant compound. Inspiring limiting oxygen index (LOI) value of 22.4 was found after exclusive washing treatment. A good outcome of total heat of combustion (THC) 6.05 KJ/g was found possible during pyrolysis combustion flow calorimetry (PCFC) test of the treated sample. Low temperature dehydration with sufficient amount of char residue (14.89%) was experienced in case of treated sample. In addition, the temperature of peak heat release rate (TPHRR) 343.061°C supported the expected low temperature pyrolysis in condensed phase mechanism. With the consequence of pyrolysis effects, thermogravimetric analysis (TGA) also reported inspiring weight retention% of the treated samples.Keywords: acetal linkage, char residue, cotton cellulose, flame retardant, loi, low temperature pyrolysis, organophosphorus, THC, THRR
Procedia PDF Downloads 3032198 Numerical Study of Fluid Flow and Heat Transfer in the Spongy-Porous Media
Authors: Zeinab Sayed Abdel Rehim, M. A. Ziada, H. Salwa El-Deeb
Abstract:
Numerical study of fluid flow, heat transfer and thermal energy storing or released in/from spongy-porous media to predict the thermal performance and characteristics of the porous media as packed bed system is presented in this work. This system is cylindrical channel filled with porous media (carbon foam). The system consists of working fluid (air) and spongy-porous medium; they act as the heat exchanger (heating or cooling modes) where thermal interaction occurs between the working fluid and the porous medium. The spongy-porous media are defined by the different type of porous medium employed in the storing or cooling modes. Two different porous media are considered in this study: Carbon foam, and Silicon rubber. The flow of the working fluid (air) is one dimensional in the axial direction from the top to downward and steady state conditions. The numerical results of transient temperature distribution for both working fluid and the spongy-porous medium phases and the amount of stored/realized heat inside/from the porous medium for each case with respect to the operating parameters and the spongy-porous media characteristics are illustrated.Keywords: fluid flow, heat transfer, numerical analysis, spongy-porous media, thermal performance, transient conditions
Procedia PDF Downloads 5472197 An Experiential Learning of Ontology-Based Multi-document Summarization by Removal Summarization Techniques
Authors: Pranjali Avinash Yadav-Deshmukh
Abstract:
Remarkable development of the Internet along with the new technological innovation, such as high-speed systems and affordable large storage space have led to a tremendous increase in the amount and accessibility to digital records. For any person, studying of all these data is tremendously time intensive, so there is a great need to access effective multi-document summarization (MDS) systems, which can successfully reduce details found in several records into a short, understandable summary or conclusion. For semantic representation of textual details in ontology area, as a theoretical design, our system provides a significant structure. The stability of using the ontology in fixing multi-document summarization problems in the sector of catastrophe control is finding its recommended design. Saliency ranking is usually allocated to each phrase and phrases are rated according to the ranking, then the top rated phrases are chosen as the conclusion. With regards to the conclusion quality, wide tests on a selection of media announcements are appropriate for “Jammu Kashmir Overflow in 2014” records. Ontology centered multi-document summarization methods using “NLP centered extraction” outshine other baselines. Our participation in recommended component is to implement the details removal methods (NLP) to enhance the results.Keywords: disaster management, extraction technique, k-means, multi-document summarization, NLP, ontology, sentence extraction
Procedia PDF Downloads 3862196 Deep Learning Approach to Trademark Design Code Identification
Authors: Girish J. Showkatramani, Arthi M. Krishna, Sashi Nareddi, Naresh Nula, Aaron Pepe, Glen Brown, Greg Gabel, Chris Doninger
Abstract:
Trademark examination and approval is a complex process that involves analysis and review of the design components of the marks such as the visual representation as well as the textual data associated with marks such as marks' description. Currently, the process of identifying marks with similar visual representation is done manually in United States Patent and Trademark Office (USPTO) and takes a considerable amount of time. Moreover, the accuracy of these searches depends heavily on the experts determining the trademark design codes used to catalog the visual design codes in the mark. In this study, we explore several methods to automate trademark design code classification. Based on recent successes of convolutional neural networks in image classification, we have used several different convolutional neural networks such as Google’s Inception v3, Inception-ResNet-v2, and Xception net. The study also looks into other techniques to augment the results from CNNs such as using Open Source Computer Vision Library (OpenCV) to pre-process the images. This paper reports the results of the various models trained on year of annotated trademark images.Keywords: trademark design code, convolutional neural networks, trademark image classification, trademark image search, Inception-ResNet-v2
Procedia PDF Downloads 2322195 The Effect of Mood and Normative Conformity on Prosocial Behavior
Authors: Antoine Miguel Borromeo, Kristian Anthony Menez, Moira Louise Ordonez, David Carl Rabaya
Abstract:
This study aimed to test if induced mood and normative conformity have any effect specifically on prosocial behavior, which was operationalized as the willingness to donate to a non-government organization. The effect of current attitude towards the object of the prosocial behavior was also considered with a covariate test. Undergraduates taking an introductory course on psychology (N = 132) from the University of the Philippines Diliman were asked how much money they were willing to donate after being presented a video about coral reef destruction and a website that advocates towards saving the coral reefs. A 3 (Induced mood: Positive vs Fear and Sadness vs Anger, Contempt, and Disgust) x 2 (Normative conformity: Presence vs Absence) between-subjects analysis of covariance was used for experimentation. Prosocial behavior was measured by presenting a circumstance wherein participants were given money and asked if they were willing to donate an amount to the non-government organization. An analysis of covariance revealed that the mood induced has no significant effect on prosocial behavior, F(2,125) = 0.654, p > 0.05. The analysis also showed how normative conformity has no significant effect on prosocial behavior, F(1,125) = 0.238, p > 0.05, as well as their interaction F(2, 125) = 1.580, p > 0.05. However, the covariate, current attitude towards corals was revealed to be significant, F(1,125) = 8.778, p < 0.05. From this, we speculate that inherent attitudes of people have a greater effect on prosocial behavior than temporary factors such as mood and conformity.Keywords: attitude, induced mood, normative conformity, prosocial behavior
Procedia PDF Downloads 2282194 Effect of Tube Thickness on the Face Bending for Blind-Bolted Connection to Concrete Filled Tubular Structures
Authors: Mohammed Mahmood, Walid Tizani, Carlo Sansour
Abstract:
In this paper, experimental testing and numerical analysis were used to investigate the effect of tube thickness on the face bending for concrete filled hollow sections connected to other structural members using Extended Hollobolts. Six samples were tested experimentally by applying pull-out load on the bolts. These samples were designed to fail by column face bending. The main variable in all tests is the column face thickness. Finite element analyses were also performed using ABAQUS 6.11 to extend the experimental results and to quantify the effect of column face thickness. Results show that, the column face thickness has a clear impact on the connection strength and stiffness. However, the amount of improvement in the connection stiffness by changing the column face thickness from 5 mm to 6.3 mm seems to be higher than that when increasing it from 6.3 mm to 8 mm. The displacement at which the bolts start pulling-out from their holes increased with the use of thinner column face due to the high flexibility of the section. At the ultimate strength, the yielding of the column face propagated to the column corner and there was no yielding in its walls. After the ultimate resistance is reached, the propagation of the yielding was mainly in the column face with a miner yielding in the walls.Keywords: anchored bolted connection, Extended Hollobolt, column faces bending, concrete filled hollow sections
Procedia PDF Downloads 4222193 Decision Making Approach through Generalized Fuzzy Entropy Measure
Authors: H. D. Arora, Anjali Dhiman
Abstract:
Uncertainty is found everywhere and its understanding is central to decision making. Uncertainty emerges as one has less information than the total information required describing a system and its environment. Uncertainty and information are so closely associated that the information provided by an experiment for example, is equal to the amount of uncertainty removed. It may be pertinent to point out that uncertainty manifests itself in several forms and various kinds of uncertainties may arise from random fluctuations, incomplete information, imprecise perception, vagueness etc. For instance, one encounters uncertainty due to vagueness in communication through natural language. Uncertainty in this sense is represented by fuzziness resulting from imprecision of meaning of a concept expressed by linguistic terms. Fuzzy set concept provides an appropriate mathematical framework for dealing with the vagueness. Both information theory, proposed by Shannon (1948) and fuzzy set theory given by Zadeh (1965) plays an important role in human intelligence and various practical problems such as image segmentation, medical diagnosis etc. Numerous approaches and theories dealing with inaccuracy and uncertainty have been proposed by different researcher. In the present communication, we generalize fuzzy entropy proposed by De Luca and Termini (1972) corresponding to Shannon entropy(1948). Further, some of the basic properties of the proposed measure were examined. We also applied the proposed measure to the real life decision making problem.Keywords: entropy, fuzzy sets, fuzzy entropy, generalized fuzzy entropy, decision making
Procedia PDF Downloads 4502192 Morphology Operation and Discrete Wavelet Transform for Blood Vessels Segmentation in Retina Fundus
Authors: Rita Magdalena, N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Sofia Saidah, Bima Sakti
Abstract:
Vessel segmentation of retinal fundus is important for biomedical sciences in diagnosing ailments related to the eye. Segmentation can simplify medical experts in diagnosing retinal fundus image state. Therefore, in this study, we designed a software using MATLAB which enables the segmentation of the retinal blood vessels on retinal fundus images. There are two main steps in the process of segmentation. The first step is image preprocessing that aims to improve the quality of the image to be optimum segmented. The second step is the image segmentation in order to perform the extraction process to retrieve the retina’s blood vessel from the eye fundus image. The image segmentation methods that will be analyzed in this study are Morphology Operation, Discrete Wavelet Transform and combination of both. The amount of data that used in this project is 40 for the retinal image and 40 for manually segmentation image. After doing some testing scenarios, the average accuracy for Morphology Operation method is 88.46 % while for Discrete Wavelet Transform is 89.28 %. By combining the two methods mentioned in later, the average accuracy was increased to 89.53 %. The result of this study is an image processing system that can segment the blood vessels in retinal fundus with high accuracy and low computation time.Keywords: discrete wavelet transform, fundus retina, morphology operation, segmentation, vessel
Procedia PDF Downloads 1952191 Geo Spatial Database for Railway Assets Management
Authors: Muhammad Umar
Abstract:
Safety and Assets management is considering a backbone of every department. GIS in the Railway become very important to Manage Assets and Security through Digital Maps and Web based GIS Maps. It provides a complete frame of work to the organization for the management of assets. Pakistan Railway is the most common and safest mode of traveling in Pakistan. Due to ever-increasing demand of transporting huge amount of information generated from various sources and this information must be accurate. This creates problems for Passengers and Administration that causes finical and time loss. GIS Solve this problem by Digital Maps & Database. It provides you a real time Spatial and Statistical analysis that helps you to communicate and exchange the information in a sophisticated way to the users. GIS Based Web system provides a facility to different end user to make query at a time as per requirements. This GIS System provides an advancement in an organization for a complete Monitoring, Safety and Decision System for tracks, Stations and Junctions that further use for the Analysis of different areas i.e. analysis of tracks, junctions and Stations in case of reconstruction, Rescue for rail accidents and Natural disasters .This Research work helps to reduce the financial loss and reduce human mistakes helps you provide a complete security and Management system of assets.Keywords: Geographical Information System (GIS) for assets management, geo spatial database, railway assets management, Pakistan
Procedia PDF Downloads 4912190 A Tuning Method for Microwave Filter via Complex Neural Network and Improved Space Mapping
Authors: Shengbiao Wu, Weihua Cao, Min Wu, Can Liu
Abstract:
This paper presents an intelligent tuning method of microwave filter based on complex neural network and improved space mapping. The tuning process consists of two stages: the initial tuning and the fine tuning. At the beginning of the tuning, the return loss of the filter is transferred to the passband via the error of phase. During the fine tuning, the phase shift caused by the transmission line and the higher order mode is removed by the curve fitting. Then, an Cauchy method based on the admittance parameter (Y-parameter) is used to extract the coupling matrix. The influence of the resonant cavity loss is eliminated during the parameter extraction process. By using processed data pairs (the amount of screw variation and the variation of the coupling matrix), a tuning model is established by the complex neural network. In view of the improved space mapping algorithm, the mapping relationship between the actual model and the ideal model is established, and the amplitude and direction of the tuning is constantly updated. Finally, the tuning experiment of the eight order coaxial cavity filter shows that the proposed method has a good effect in tuning time and tuning precision.Keywords: microwave filter, scattering parameter, coupling matrix, intelligent tuning
Procedia PDF Downloads 3122189 The Assessment of Nephrotoxic Effects of Peganum Harmala In Rat
Authors: Amal Yamani, Jaber Elgtou, Aziz Mohammed, Lazaar Jamila, Elachouri Mostafa
Abstract:
Peganum harmala used traditionally as an emenagogue and abortifacient agent in Morocco phytotherapy. Even thought its benefits effects, Peganum harmala remained severely toxic for the organism especially in strong doses. The present study was initiated to evaluate the nephrotoxic effects of aqueous extract of Peganum harmala seeds (PHS). The solution containing aqueous extract of PHS was administered orally by gavage at the dose of 2g/kg body weight during twenty days. Rats were used in this study, two groups were considered, a treated group received an extract of PHS at dose 2g/kg bodyweight and control group received an amount of tap water equivalent to the volume of the vehicle used for the dose of PHS extract. The data we collected showed that aqueous extracts of PHS administered during twenty days induced a significant changes in renal function expressed in decreases of diuresis (from 10 ± 0,58 to 5,33 ± 0,33 ml/24 hours) and the same profile for mean arterial blood pressure (from 125 ± 2,89 to 96,67 ± 6,01 mmHg). The histopathological study showed an alteration of kidney cells in treated group with regard the control group which is not affected. In conclusion: our results indicate that the aqueous extract of PHS induces toxicity may affect severely kidney function and causes renal histopathology.Keywords: peganum harmala seeds, nephrotoxic, diuresi, histpathology, kidney
Procedia PDF Downloads 2992188 The Effect of Knowledge Management in Lean Organization
Authors: Mehrnoosh Askarizadeh
Abstract:
In an ever changeable and globalized world with new economic and global competitors competing for the same customers and resources, is increasing the pressure on organizations' competitiveness. In addition, organizations faces additional challenges due to an ever-growing amount of data and the ever-bigger challenge of analyzing that data and keeping the data secure. Successful companies are characterized by exploiting their intellectual capital in an efficient manner. Thus, the most valuable asset an organization has today has become its employees' knowledge. To enable this, there is a tool that supports easier handling and optimizes the use of knowledge, which is knowledge management. Based on the theoretical framework and careful review as well as analysis of interviews and observations resulted in six essential areas: structure, management, compensation, communication, trust and motivation. The analysis showed that the scientific articles and literature have different perspectives, different definitions and are based on different theories but the essence is that they all finally seems to arrive at the same result and conclusion, although with different viewpoints and perspectives. This is regardless of whether the focus is on management style, rewards or communication they all focus on the individual. The conclusion is that organizational culture affects knowledge management and dissemination of information, because of its direct impact on the individual. The largest and most important underlying factor why we choose to participate in improvement work or share knowledge is our motivation. Motivation is the reason for and the reason behind our actions.Keywords: lean, lean production, knowledge management, information management, motivation
Procedia PDF Downloads 5192187 Optimizing Fire Suppression Time in Buildings by Forming a Fire Feedback Loop
Authors: Zhdanova A. O., Volkov R. S., Kuznetsov G. V., Strizhak P. A.
Abstract:
Fires in different types of facilities are a serious problem worldwide.It is still an unaccomplished science and technology objective to establish the minimum number and type of sensors in automatic systems of compartment fire suppression which would turn the fire-extinguishing agent spraying on and off in real time depending on the state of the fire, minimize the amount of agent applied, delay time in fire suppression and system response, as well as the time of combustion suppression. Based on the results of experimental studies, the conclusion was made that it is reasonable to use a gas analysis system and heat sensors (in the event of their prior activation) to determine the effectiveness of fire suppression (fire-extinguishing composition interacts with the fire). Thus, the concentration of CO in the interaction of the firefighting liquid with the fire increases to 0.7–1.2%, which indicates a slowdown in the flame combustion, and heat sensors stop responding at a gas medium temperature below 80 ºC, which shows a gradual decrease in the heat release from the fire. The evidence from this study suggests that the information received from the video recording equipment (video camera) should be used in real time as an additional parameter confirming fire suppression. Research was supported by Russian Science Foundation (project No 21-19-00009, https://rscf.ru/en/project/21-19-00009/).Keywords: compartment fires, fire suppression, continuous control of fire behavior, feedback systems
Procedia PDF Downloads 1292186 A Data Driven Approach for the Degradation of a Lithium-Ion Battery Based on Accelerated Life Test
Authors: Alyaa M. Younes, Nermine Harraz, Mohammad H. Elwany
Abstract:
Lithium ion batteries are currently used for many applications including satellites, electric vehicles and mobile electronics. Their ability to store relatively large amount of energy in a limited space make them most appropriate for critical applications. Evaluation of the life of these batteries and their reliability becomes crucial to the systems they support. Reliability of Li-Ion batteries has been mainly considered based on its lifetime. However, another important factor that can be considered critical in many applications such as in electric vehicles is the cycle duration. The present work presents the results of an experimental investigation on the degradation behavior of a Laptop Li-ion battery (type TKV2V) and the effect of applied load on the battery cycle time. The reliability was evaluated using an accelerated life test. Least squares linear regression with median rank estimation was used to estimate the Weibull distribution parameters needed for the reliability functions estimation. The probability density function, failure rate and reliability function under each of the applied loads were evaluated and compared. An inverse power model is introduced that can predict cycle time at any stress level given.Keywords: accelerated life test, inverse power law, lithium-ion battery, reliability evaluation, Weibull distribution
Procedia PDF Downloads 1682185 Experimental Study on the Effect of Storage Conditions on Thermal Hazard of Nitrocellulose
Authors: Hua Chai, Qiangling Duan, Huiqi Cao, Mi Li, Jinhua Sun
Abstract:
Nitrocellulose (NC), a kind of energetic material, has been widely used in the industrial and military fields. However, this material can also cause serious social disasters due to storage conditions. Thermal hazard of nitrocellulose (NC) was experimentally investigated using the CALVET heat flux calorimeter C80, and three kinds of storage conditions were considered in the experiments: (1) drying time, (2) moisture content, (3) cycles. The results showed that the heat flow curves of NC moved to the low-temperature direction firstly and then slightly moved back by increasing the drying hours. Moisture that was responsible for the appearance of small exothermic peaks was proven to be the unfavorable safety factor yet it could increase the onset temperature of the main peak to some extent. And cycles could both lower the onset temperature and the maximum heat flow but enlarged the peak temperature. Besides, relevant kinetic parameters such as the heat of reaction (ΔH) and the activation energy (Ea) were obtained and compared. It was found that all the three conditions could reduce the values of Ea and most of them produced larger reaction heat. In addition, the critical explosion temperature (Tb) of the NC samples were derived. It was clear that not only the drying time but also the cycles would increase the thermal hazard of the NC. Yet, the right amount of water helped to reduce the thermal hazard.Keywords: C80, nitrocellulose, storage conditions, the critical explosion temperature, thermal hazard
Procedia PDF Downloads 1642184 Considering Effect of Wind Turbines in the Distribution System
Authors: Majed Ahmadi
Abstract:
In recent years, the high penetration of different types of renewable energy sources (RESs) has affected most of the available strategies. The main motivations behind the high penetration of RESs are clean energy, modular system and easy installation. Among different types of RESs, wind turbine (WT) is an interesting choice referring to the availability of wind in almost any area. The new technologies of WT can provide energy from residential applications to wide grid connected applications. Regarding the WT, advantages such as reducing the dependence on fossil fuels and enhancing the independence and flexibility of large power grid are the most prominent. Nevertheless, the high volatile nature of wind speed injects much uncertainty in the grid that if not managed optimally can put the analyses far from the reality.the aim of this project is scrutiny and to offer proper ways for renewing distribution networks with envisage the effects of wind power plants and uncertainties related to distribution systems including wind power generating plants output rate and consumers consuming rate and also decrease the incidents of the whole network losses, amount of pollution, voltage refraction and cost extent.to solve this problem we use dual point estimate method.And algorithm used in this paper is reformed bat algorithm, which will be under exact research furthermore the results.Keywords: order renewal, wind turbines, bat algorithm, outspread production, uncertainty
Procedia PDF Downloads 2852183 Synthesize And Physicochemical Characterization Of Biomimetic Scaffold Of Gelatin/zn-incorporated 58s Bioactive Glass
Authors: SeyedMohammad Hosseini, Amirhossein Moghanian
Abstract:
The main purpose of this research was to design a biomimetic system by freeze-drying method for evaluating the effect of adding 5 and 10 mol. % of zinc (Zn)in 58S bioactive glass and gelatin (5ZnBG/G and 10ZnBG/G) in terms of structural and biological changes. The structural analyses of samples were performed by X-Ray Diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR). Also, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide(MTT) and alkaline phosphate (ALP) activity test were carried out for investigation of MC3T3-E1cell behaviors. The SEM results demonstrated the spherical shape of the formed hydroxyapatite (HA) phases, and also HA characteristic peaks were detected by X-ray diffraction spectroscopy (XRD)after 3 days of immersion in the simulated body fluid (SBF) solution. Meanwhile, FTIR spectra proved that the intensity of P–O peaks for 5ZnBG/G was more than 10ZnBG/G and control samples. Moreover, the results of alkaline phosphatase activity (ALP) test illustrated that the optimal amount of Zn (5ZnBG/G) caused a considerable enhancement in bone cell growth. Taken together, the scaffold with 5 mol.% Zn was introduced as an optimal sample because of its higher biocompatibility, in vitro bioactivity, and growth of MC3T3-E1cellsin in comparison with other samples in bone tissue engineering.Keywords: scaffold, gelatin, modified bioactive glass, alp, bone tissue engineering
Procedia PDF Downloads 942182 Towards Computational Fluid Dynamics Based Methodology to Accelerate Bioprocess Scale Up and Scale Down
Authors: Vishal Kumar Singh
Abstract:
Bioprocess development is a time-constrained activity aimed at harnessing the full potential of culture performance in an ambience that is not natural to cells. Even with the use of chemically defined media and feeds, a significant amount of time is devoted in identifying the apt operating parameters. In addition, the scale-up of these processes is often accompanied by loss of antibody titer and product quality, which further delays the commercialization of the drug product. In such a scenario, the investigation of this disparity of culture performance is done by further experimentation at a smaller scale that is representative of at-scale production bioreactors. These scale-down model developments are also time-intensive. In this study, a computation fluid dynamics-based multi-objective scaling approach has been illustrated to speed up the process transfer. For the implementation of this approach, a transient multiphase water-air system has been studied in Ansys CFX to visualize the air bubble distribution and volumetric mass transfer coefficient (kLa) profiles, followed by the design of experiment based parametric optimization approach to define the operational space. The proposed approach is completely in silico and requires minimum experimentation, thereby rendering a high throughput to the overall process development.Keywords: bioprocess development, scale up, scale down, computation fluid dynamics, multi-objective, Ansys CFX, design of experiment
Procedia PDF Downloads 822181 The Modulation of Self-interest Instruction on the Fair-Proposing Behavior in Ultimatum Game
Authors: N. S. Yen, T. H. Yang, W. H. Huang, Y. F. Fang, H. W. Cho
Abstract:
Ultimatum game is an experimental paradigm to study human decision making. There are two players, a proposer and a responder, to split a fixed amount of money. According to the traditional economic theory on ultimatum game, proposer should propose the selfish offers to responder as much as possible to maximize proposer’s own outcomes. However, most evidences had showed that people chose more fair offers, hence two hypotheses – fairness favoring and strategic concern were proposed. In current study, we induced the motivation in participants to be either selfish or altruistic, and manipulated the task variables, the stake sizes (NT$100, 1000, 10000) and the share sizes (the 40%, 30%, 20%, 10% of the sum as selfish offers, and the 60%, 70%, 80%, 90% of the sum as altruistic offers), to examine the two hypotheses. The results showed that most proposers chose more fair offers with longer reaction times (RTs) no matter in choosing between the fair and selfish offers, or between the fair and altruistic offers. However, the proposers received explicit self-interest instruction chose more selfish offers accompanied with longer RTs in choosing between the fair and selfish offers. Therefore, the results supported the strategic concern hypothesis that previous proposers choosing the fair offers might be resulted from the fear of rejection by responders. Proposers would become more self-interest if the fear of being rejected is eliminated.Keywords: ultimatum game, proposer, self-interest, fear of rejection
Procedia PDF Downloads 3752180 UV-Cured Coatings Based on Acrylated Epoxidized Soybean Oil and Epoxy Carboxylate
Authors: Alaaddin Cerit, Suheyla Kocaman, Ulku Soydal
Abstract:
During the past two decades, photoinitiated polymerization has been attracting a great interest in terms of scientific and industrial activity. The wide recognition of UV treatment in the polymer industry results not only from its many practical applications but also from its advantage for low-cost processes. Unlike most thermal curing systems, radiation-curable systems can polymerize at room temperature without additional heat, and the curing is completed in a very short time. The advantage of cationic UV technology is that post-cure can continue in the ‘dark’ after radiation. In this study, bio-based acrylated epoxidized soybean oil (AESO) was cured with UV radiation using radicalic photoinitiator Irgacure 184. Triarylsulphonium hexafluoroantimonate was used as cationic photoinitiator for curing of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate. The effect of curing time and the amount of initiators on the curing degree and thermal properties were investigated. The thermal properties of the coating were analyzed after crosslinking UV irradiation. The level of crosslinking in the coating was evaluated by FTIR analysis. Cationic UV-cured coatings demonstrated excellent adhesion and corrosion resistance properties. Therefore, our study holds a great potential with its simple and low-cost applications.Keywords: acrylated epoxidized soybean oil, epoxy carboxylate, thermal properties, uv-curing
Procedia PDF Downloads 2592179 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning
Abstract:
Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.Keywords: machine learning, ETF prediction, dynamic trading, asset allocation
Procedia PDF Downloads 982178 Treatment of Poultry Slaughterhouse Wastewater by Mesophilic Static Granular Bed Reactor (SGBR) Coupled with UF Membrane
Authors: Moses Basitere, Marshal Sherene Sheldon, Seteno Karabo Obed Ntwampe, Debbie Dejager
Abstract:
In South Africa, Poultry slaughterhouses consume largest amount of freshwater and discharges high strength wastewater, which can be treated successfully at low cost using anaerobic digesters. In this study, the performance of bench-scale mesophilic Static Granular Bed Reactor (SGBR) containing fully anaerobic granules coupled with ultra-filtration (UF) membrane as a post-treatment for poultry slaughterhouse wastewater was investigated. The poultry slaughterhouse was characterized by chemical oxygen demand (COD) range between 2000 and 6000 mg/l, average biological oxygen demand (BOD) of 2375 mg/l and average fats, oil and grease (FOG) of 554 mg/l. A continuous SGBR anaerobic reactor was operated for 6 weeks at different hydraulic retention time (HRT) and an Organic loading rate. The results showed an average COD removal was greater than 90% for both the SGBR anaerobic digester and ultrafiltration membrane. The total suspended solids and fats oil and grease (FOG) removal was greater than 95%. The SGBR reactor coupled with UF membrane showed a greater potential to treat poultry slaughterhouse wastewater.Keywords: chemical oxygen demand, poultry slaughterhouse wastewater, static granular bed reactor, ultrafiltration, wastewater
Procedia PDF Downloads 3872177 Hydrogen Embrittlement Properties of the Hot Stamped Carbon Steels
Authors: Mitsuhiro Okayasu, Lele Yang, Koji Shimotsu
Abstract:
The effects of microstructural characteristics on the mechanical and hydrogen embrittlement properties of 1,800MPa grade hot stamping carbon steel were investigated experimentally. The tensile strength increased with increasing the hot stamping temperature until around 921°C, but that decreased with increasing the temperature in more than 921°C due to the increment of the size of lath martensite and prior austenite. With the hot stamping process, internal strain was slightly created in the sample, which led to the slight increment of the hardness value although no clear change of the microstructural formation was detected. Severity of hydrogen embrittlement was investigated using the hot stamped carbon steels after the immersion in a hydrogen gas, and that was directly attributed to the infiltration of the hydrogen into their grain boundaries. The high strength carbon steel with tiny lath martensite microstructure could make severe hydrogen brittleness as the hydrogen was strongly penetrated in the grain boundaries in the hydrogen gas for a month. Because of weak embrittlement for the as-received carbon (ferrite and pearlite), hydrogen embrittlement is caused by the high internal strain and high dislocation density. The hydrogen embrittlement for carbon steel is attributed to amount of the hydrogen immersed in-between grain boundaries, which is caused by the dislocation density and internal strain.Keywords: hydrogen embrittlement, hot stamping process, carbon steel, mechanical property
Procedia PDF Downloads 2012176 Development of Algorithms for Solving and Analyzing Special Problems Transports Type
Authors: Dmitri Terzi
Abstract:
The article presents the results of an algorithmic study of a special optimization problem of the transport type (traveling salesman problem): 1) To solve the problem, a new natural algorithm has been developed based on the decomposition of the initial data into convex hulls, which has a number of advantages; it is applicable for a fairly large dimension, does not require a large amount of memory, and has fairly good performance. The relevance of the algorithm lies in the fact that, in practice, programs for problems with the number of traversal points of no more than twenty are widely used. For large-scale problems, the availability of algorithms and programs of this kind is difficult. The proposed algorithm is natural because the optimal solution found by the exact algorithm is not always feasible due to the presence of many other factors that may require some additional restrictions. 2) Another inverse problem solved here is to describe a class of traveling salesman problems that have a predetermined optimal solution. The constructed algorithm 2 allows us to characterize the structure of traveling salesman problems, as well as construct test problems to evaluate the effectiveness of algorithms and other purposes. 3) The appendix presents a software implementation of Algorithm 1 (in MATLAB), which can be used to solve practical problems, as well as in the educational process on operations research and optimization methods.Keywords: traveling salesman problem, solution construction algorithm, convex hulls, optimality verification
Procedia PDF Downloads 742175 The Effectiveness of Sulfate Reducing Bacteria in Minimizing Methane and Sludge Production from Palm Oil Mill Effluent (POME)
Authors: K. Abdul Halim, E. L. Yong
Abstract:
Palm oil industry is a major revenue earner in Malaysia, despite the growth of the industry is synonymous with a massive production of agro-industrial wastewater. Through the oil extraction processes, palm oil mill effluent (POME) contributes to the largest liquid wastes generated. Due to the high amount of organic compound, POME can cause inland water pollution if discharged untreated into the water course as well as affect the aquatic ecosystem. For more than 20 years, Malaysia adopted the conventional biological treatment known as lagoon system that apply biological treatment. Besides having difficulties in complying with the standard, a large build up area is needed and retention time is higher. Although anaerobic digester is more favorable, this process comes along with enormous volumes of sludge and methane gas, demanding attention from the mill operators. In order to reduce the sludge production, denitrifiers are to be removed first. Sulfate reducing bacteria has shown the capability to inhibit the growth of methanogens. This is expected to substantially reduce both the sludge and methane production in anaerobic digesters. In this paper, the effectiveness of sulfate reducing bacteria in minimizing sludge and methane will be examined.Keywords: methane reduction, palm oil mill effluent, sludge minimization, sulfate reducing bacteria, sulfate reduction
Procedia PDF Downloads 4312174 Efficiency of Visible Light Induced Photocatalytic Oxidation of Toluene and Benzene by a Photocatalytic Textile
Authors: Z. Younsi, L. Koufi, H. Gidik, D. Lahem, W. Wim Thielemans
Abstract:
This study investigated the efficiency of photocatalytic textile to remove the Volatile Organic Compounds (VOCs) present in indoor air. Functionalization of the fabric was achieved by adding a photocatalyst material active in the visible spectrum of light. This is a modified titanium dioxide photocatalyst doped with non-metal ions synthesized via sol-gel process, which should allow the degradation of the pollutants – ideally into H₂O and CO₂ – using photocatalysis based on visible light and no additionnal external energy source. The visible light photocatalytic activity of textile sample was evaluated for toluene and benzene gaseous removal, under the visible irradiation, in a test chamber with the total volume of 1m³. The suggested approach involves experimental investigations of the global behavior of the photocatalytic textile. The experimental apparatus permits simultaneous measurements of the degradation of pollutants and presence of eventually formed by-products. It also allows imposing and measuring concentration variations with respect to selected time scales in the test chamber. The observed results showed that the amount of TiO₂ incorporation improved the photocatalytic efficiency of functionalized textile significantly under visible light. The results obtained with such textile are very promising.Keywords: benzene, C₆H₆, efficiency, photocatalytic degradation, textile fabrics, titanium dioxide, TiO₂, toluene, C₇H₈, visible light
Procedia PDF Downloads 1742173 Technology, Organizational and Environmental Determinants of Business Intelligence Systems Adoption in Croatian SME: A Case Study of Medium-Sized Enterprise
Authors: Ana-Marija Stjepić, Luka Sušac, Dalia Suša Vugec
Abstract:
In the last few years, examples from scientific literature and business practices show that the adoption of technological innovations increases enterprises' performance. Recently, when it comes to the field of information technology innovation, business intelligence systems (BISs) have drawn a significant amount of attention of the scientific circles. BISs can be understood as a form of technological innovation which can bring certain benefits to the organizations that are adopting it. Therefore, the aim of this paper is twofold: (1) to define determinants of successful BISs adoption in small and medium enterprises and thus contribute to this neglected research area and (2) to present the current state of BISs adoption in small and medium-sized companies. In order to do so, determinants are defined and classified into three dimensions, according to the Technology – Organization – Environment (TOE) theoretical framework that describes the impact of each dimension on technological innovations adoption. Moreover, paper brings a case study presenting the adoption of BISs in practice within an organization from tertiary (service) industry sector. Based on the results of the study, guidelines for more efficient, faster and easier BISs adoption are presented.Keywords: adoption, business intelligence, business intelligence systems, case study, TOE framework
Procedia PDF Downloads 1492172 Metagenomics Composition During and After Wet Deposition and the Presence of Airborne Microplastics
Authors: Yee Hui Lim, Elena Gusareva, Irvan Luhung, Yulia Frank, Stephan Christoph Schuster
Abstract:
Environmental pollution from microplastics (MPs) is an emerging concern worldwide. While the presence of microplastics has been well established in the marine and terrestrial environments, the prevalence of microplastics in the atmosphere is still poorly understood. Wet depositions such as rain or snow scavenge impurities from the atmosphere as it falls to the ground. These wet depositions serve as a useful tool in the removal of airborne particles that are suspended in the air. Therefore, the aim of this study is to investigate the presence of atmospheric microplastics and fibres through the analysis of air, rainwater and snow samples. Air samples were collected with filter-based air samplers from outdoor locations in Singapore. The sampling campaigns were conducted during and after each rain event. Rainwater samples from Singapore and Siberia were collected as well. Snow samples were also collected from Siberia as part of the ongoing study. Genomic DNA was then extracted from the samples and sequenced with shotgun metagenomics approach. qPCR analysis was conducted to quantify the total bacteria and fungi in the air, rainwater and snow samples. The results compared the bioaerosol profiles of all the samples. To observe the presence of microplastics, scanning electron microscope (SEM) was used. From the preliminary results, microplastics were detected. It can be concluded that there is a significant amount of atmospheric microplastics present, and its occurrence should be investigated in greater detail.Keywords: atmospheric microplastics, metagenomics, scanning electron microscope, wet deposition
Procedia PDF Downloads 862171 Climate Variability on Hydro-Energy Potential: An MCDM and Neural Network Approach
Authors: Apu Kumar Saha, Mrinmoy Majumder
Abstract:
The increase in the concentration of Green House gases all over the World has induced global warming phenomena whereby the average temperature of the world has aggravated to impact the pattern of climate in different regions. The frequency of extreme event has increased, early onset of season and change in an average amount of rainfall all are engrossing the conclusion that normal pattern of climate is changing. Sophisticated and complex models are prepared to estimate the future situation of the climate in different zones of the Earth. As hydro-energy is directly related to climatic parameters like rainfall and evaporation such energy resources will have to sustain the onset of the climatic abnormalities. The present investigation has tried to assess the impact of climatic abnormalities upon hydropower potential of different regions of the World. In this regard multi-criteria, decision making, and the neural network is used to predict the impact of the change cognitively by an index. The results from the study show that hydro-energy potential of Asian region is mostly vulnerable with respect to other regions of the world. The model results also encourage further application of the index to analyze the impact of climate change on the potential of hydro-energy.Keywords: hydro-energy potential, neural networks, multi criteria decision analysis, environmental and ecological engineering
Procedia PDF Downloads 5492170 Use of Machine Learning in Data Quality Assessment
Authors: Bruno Pinto Vieira, Marco Antonio Calijorne Soares, Armando Sérgio de Aguiar Filho
Abstract:
Nowadays, a massive amount of information has been produced by different data sources, including mobile devices and transactional systems. In this scenario, concerns arise on how to maintain or establish data quality, which is now treated as a product to be defined, measured, analyzed, and improved to meet consumers' needs, which is the one who uses these data in decision making and companies strategies. Information that reaches low levels of quality can lead to issues that can consume time and money, such as missed business opportunities, inadequate decisions, and bad risk management actions. The step of selecting, identifying, evaluating, and selecting data sources with significant quality according to the need has become a costly task for users since the sources do not provide information about their quality. Traditional data quality control methods are based on user experience or business rules limiting performance and slowing down the process with less than desirable accuracy. Using advanced machine learning algorithms, it is possible to take advantage of computational resources to overcome challenges and add value to companies and users. In this study, machine learning is applied to data quality analysis on different datasets, seeking to compare the performance of the techniques according to the dimensions of quality assessment. As a result, we could create a ranking of approaches used, besides a system that is able to carry out automatically, data quality assessment.Keywords: machine learning, data quality, quality dimension, quality assessment
Procedia PDF Downloads 148