Search results for: input current
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10967

Search results for: input current

9017 One-Step Synthesis of Titanium Dioxide Porous Microspheres by Picosecond Pulsed Laser Welding

Authors: Huiwu Yu, Xiangyou Li, Xiaoyan Zeng

Abstract:

Porous spheres have been widely used in many fields due to their attractive features. In this work, an approach for fabricating porous spheres of nanoparticles was presented, in which the nanoparticles were welded together to form micro spheres by simply irradiating the nanoparticles in liquid medium by a picosecond laser. As an example, anatase titanium dioxide was chosen as a typical material on account of its metastability. The structure and morphologies of the products were characterised by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman, and high-resolution transmission electron microscopy (HRTEM), respectively. The results showed that, anatase titanium dioxide micro spheres (2-10 μm) with macroporous (10-100 nm) were prepared from nano-anatase titanium dioxide nanoparticles (10-100 nm). The formation process of polycrystalline anatase titanium dioxide microspheres was investigated with different liquid mediums and the input laser fluences. Thus, this facile laser irradiation approach might provide a way for the fabrication of porous microspheres without phase-transition.

Keywords: titanium dioxide, porous microspheres, picosecond laser, nano-welding

Procedia PDF Downloads 309
9016 Numerical Investigation of the Bio-fouling Roughness Effect on Tidal Turbine

Authors: O. Afshar

Abstract:

Unlike other renewable energy sources, tidal current energy is an extremely reliable, predictable and continuous energy source as the current pattern and speed can be predicted throughout the year. A key concern associated with tidal turbines is their long-term reliability when operating in the hostile marine environment. Bio-fouling changes the physical shape and roughness of turbine components, hence altering the overall turbine performance. This paper seeks to employ Computational Fluid Dynamics (CFD) method to quantify the effects of this problem based on the obtained flow field information. The simulation is carried out on a NACA 63-618 aerofoil. The Reynolds Averaged Navier-Stokes (RANS) equations with Shear Stress Transport (SST) turbulent model are used to simulate the flow around the model. Different levels of fouling are studied on 2D aerofoil surface with quantified fouling height and density. In terms of lift and drag coefficient results, numerical results show good agreement with the experiment which was carried out in wind tunnel. Numerical results of research indicate that an increase in fouling thickness causes an increase in drag coefficient and a reduction in lift coefficient. Moreover, pressure gradient gradually becomes adverse as height of fouling increases. In addition, result by turbulent kinetic energy contour reveals it increases with fouling height and it extends into wake due to flow separation.

Keywords: tidal energy, lift coefficient, drag coefficient, roughness

Procedia PDF Downloads 387
9015 Evaluation of Redundancy Architectures Based on System on Chip Internal Interfaces for Future Unmanned Aerial Vehicles Flight Control Computer

Authors: Sebastian Hiergeist

Abstract:

It is a common view that Unmanned Aerial Vehicles (UAV) tend to migrate into the civil airspace. This trend is challenging UAV manufacturer in plenty ways, as there come up a lot of new requirements and functional aspects. On the higher application levels, this might be collision detection and avoidance and similar features, whereas all these functions only act as input for the flight control components of the aircraft. The flight control computer (FCC) is the central component when it comes up to ensure a continuous safe flight and landing. As these systems are flight critical, they have to be built up redundantly to be able to provide a Fail-Operational behavior. Recent architectural approaches of FCCs used in UAV systems are often based on very simple microprocessors in combination with proprietary Application-Specific Integrated Circuit (ASIC) or Field Programmable Gate Array (FPGA) extensions implementing the whole redundancy functionality. In the future, such simple microprocessors may not be available anymore as they are more and more replaced by higher sophisticated System on Chip (SoC). As the avionic industry cannot provide enough market power to significantly influence the development of new semiconductor products, the use of solutions from foreign markets is almost inevitable. Products stemming from the industrial market developed according to IEC 61508, or automotive SoCs, according to ISO 26262, can be seen as candidates as they have been developed for similar environments. Current available SoC from the industrial or automotive sector provides quite a broad selection of interfaces like, i.e., Ethernet, SPI or FlexRay, that might come into account for the implementation of a redundancy network. In this context, possible network architectures shall be investigated which could be established by using the interfaces stated above. Of importance here is the avoidance of any single point of failures, as well as a proper segregation in distinct fault containment regions. The performed analysis is supported by the use of guidelines, published by the aviation authorities (FAA and EASA), on the reliability of data networks. The main focus clearly lies on the reachable level of safety, but also other aspects like performance and determinism play an important role and are considered in the research. Due to the further increase in design complexity of recent and future SoCs, also the risk of design errors, which might lead to common mode faults, increases. Thus in the context of this work also the aspect of dissimilarity will be considered to limit the effect of design errors. To achieve this, the work is limited to broadly available interfaces available in products from the most common silicon manufacturer. The resulting work shall support the design of future UAV FCCs by giving a guideline on building up a redundancy network between SoCs, solely using on board interfaces. Therefore the author will provide a detailed usability analysis on available interfaces provided by recent SoC solutions, suggestions on possible redundancy architectures based on these interfaces and an assessment of the most relevant characteristics of the suggested network architectures, like e.g. safety or performance.

Keywords: redundancy, System-on-Chip, UAV, flight control computer (FCC)

Procedia PDF Downloads 225
9014 Challenges in the Material and Action-Resistance Factor Design for Embedded Retaining Wall Limit State Analysis

Authors: Kreso Ivandic, Filip Dodigovic, Damir Stuhec

Abstract:

The paper deals with the proposed 'Material' and 'Action-resistance factor' design methods in designing the embedded retaining walls. The parametric analysis of evaluating the differences of the output values mutually and compared with classic approach computation was performed. There is a challenge with the criteria for choosing the proposed calculation design methods in Eurocode 7 with respect to current technical regulations and regular engineering practice. The basic criterion for applying a particular design method is to ensure minimum an equal degree of reliability in relation to the current practice. The procedure of combining the relevant partial coefficients according to design methods was carried out. The use of mentioned partial coefficients should result in the same level of safety, regardless of load combinations, material characteristics and problem geometry. This proposed approach of the partial coefficients related to the material and/or action-resistance should aimed at building a bridge between calculations used so far and pure probability analysis. The measure to compare the results was to determine an equivalent safety factor for each analysis. The results show a visible wide span of equivalent values of the classic safety factors.

Keywords: action-resistance factor design, classic approach, embedded retaining wall, Eurocode 7, limit states, material factor design

Procedia PDF Downloads 236
9013 Entrepreneurship and Innovation: The Essence of Sustainable, Smart and Inclusive Economies

Authors: Isabel Martins, Orlando Pereira, Ana Martins

Abstract:

This study aims to highlight that, in changing environments, organisations need to adapt their behaviours to the demands of the new economic reality. The main purpose of this study focuses on the relationship between entrepreneurship, innovation with learning as the mediating factor. It is within this entrepreneurial spirit that literature reveals a concern with the current economic perspective towards knowledge and considers it as both the production factor par excellence and a source of entrepreneurial capacity and innovation. Entrepreneurship is a mind-set focused on identifying opportunities of economic value and translates these into the pursuit of business opportunities through innovation. It connects art and science and is a way of life, as opposed to a simple mode of business creation and profiteering. This perspective underlines the need to develop the global individual for the globalised world, the strategic key to economic and social development. The objective of this study is to explore the notion that relational capital which is established between the entrepreneur and all the other economic role players both inside and outside the organization, is indeed determinant in developing the entrepreneurial capacity. However, this depends on the organizational culture of innovation. In this context, entrepreneurship is an ‘entrepreneurial capital’ inherent in the organization that is not limited to skills needed for work. This study is a critique of extant literature review which will be also be supported by primary data collection gathered to study graduates’ perceptions towards their entrepreneurial capital. Limitations are centered on both the design and of the sample of this study. This study is of added value for both scholars and organisations in the current innovation economy.

Keywords: entrepreneurship, innovation, learning, relational capital

Procedia PDF Downloads 232
9012 Double Negative Differential Resistance Features in Series AIN/GaN Double-Barrier Resonant Tunneling Diodes Vertically Integrated by Plasma-Assisted Molecular Beam Epitaxy

Authors: Jiajia Yao, Guanlin Wu, Fang Liu, Junshuai Xue, Yue Hao

Abstract:

This study reports on the epitaxial growth of a GaN-based resonant tunneling diode (RTD) structure with stable and repeatable double negative differential resistance (NDR) characteristics at room temperature on a c-plane GaN-on-sapphire template using plasma-assisted molecular beam epitaxy (PA-MBE) technology. In this structure, two independent AlN/GaN RTDs are epitaxially connected in series in the vertical growth direction through a silicon-doped GaN layer. As the collector electrode bias voltage increases, the two RTDs respectively align the ground state energy level in the quantum well with the 2DEG energy level in the emitter accumulation well to achieve quantum resonant tunneling and then reach the negative differential resistance (NDR) region. The two NDR regions exhibit similar peak current densities and peak-to-valley current ratios, which are 230 kA/cm² and 249 kA/cm², 1.33 and 1.38, respectively, for a device with a collector electrode mesa diameter of 1 µm. The consistency of the NDR is much higher than the results of on-chip discrete RTD device interconnection, resulting from the smaller chip area, fewer interconnect parasitic parameters, and less process complexity. The methods and results presented in this paper show the brilliant prospects of GaN RTDs in the development of multi-value logic digital circuits.

Keywords: MBE, AlN/GaN, RTDs, double NDR

Procedia PDF Downloads 67
9011 Design-Analysis and Optimization of 10 MW Permanent Magnet Surface Mounted Off-Shore Wind Generator

Authors: Mamidi Ramakrishna Rao, Jagdish Mamidi

Abstract:

With advancing technology, the market environment for wind power generation systems has become highly competitive. The industry has been moving towards higher wind generator power ratings, in particular, off-shore generator ratings. Current off-shore wind turbine generators are in the power range of 10 to 12 MW. Unlike traditional induction motors, slow-speed permanent magnet surface mounted (PMSM) high-power generators are relatively challenging and designed differently. In this paper, PMSM generator design features have been discussed and analysed. The focus attention is on armature windings, harmonics, and permanent magnet. For the power ratings under consideration, the generator air-gap diameters are in the range of 8 to 10 meters, and active material weigh ~60 tons and above. Therefore, material weight becomes one of the critical parameters. Particle Swarm Optimization (PSO) technique is used for weight reduction and performance improvement. Four independent variables have been considered, which are air gap diameter, stack length, magnet thickness, and winding current density. To account for core and teeth saturation, preventing demagnetization effects due to short circuit armature currents, and maintaining minimum efficiency, suitable penalty functions have been applied. To check for performance satisfaction, a detailed analysis and 2D flux plotting are done for the optimized design.

Keywords: offshore wind generator, PMSM, PSO optimization, design optimization

Procedia PDF Downloads 159
9010 Solid Waste Management through Mushroom Cultivation: An Eco Friendly Approach

Authors: Mary Josephine

Abstract:

Waste of certain process can be the input source of other sectors in order to reduce environmental pollution. Today there are more and more solid wastes are generated, but only very small amount of those are recycled. So, the threatening of environmental pressure to public health is very serious. The methods considered for the treatment of solid waste are biogas tanks or processing to make animal feed and fertilizer, however, they did not perform well. An alternative approach is growing mushrooms on waste residues. This is regarded as an environmental friendly solution with potential economic benefit. The substrate producers do their best to produce quality substrate at low cost. Apart from other methods, this can be achieved by employing biologically degradable wastes used as the resource material component of the substrate. Mushroom growing is a significant tool for the restoration, replenishment and remediation of Earth’s overburdened ecosphere. One of the rational methods of waste utilization involves locally available wastes. The present study aims to find out the yield of mushroom grown on locally available waste for free and to conserve our environment by recycling wastes.

Keywords: biodegradable, environment, mushroom, remediation

Procedia PDF Downloads 402
9009 Fault Detection and Isolation of a Three-Tank System using Analytical Temporal Redundancy, Parity Space/Relation Based Residual Generation

Authors: A. T. Kuda, J. J. Dayya, A. Jimoh

Abstract:

This paper investigates the fault detection and Isolation technique of measurement data sets from a three tank system using analytical model-based temporal redundancy which is based on residual generation using parity equations/space approach. It further briefly outlines other approaches of model-based residual generation. The basic idea of parity space residual generation in temporal redundancy is dynamic relationship between sensor outputs and actuator inputs (input-output model). These residuals where then used to detect whether or not the system is faulty and indicate the location of the fault when it is faulty. The method obtains good results by detecting and isolating faults from the considered data sets measurements generated from the system.

Keywords: fault detection, fault isolation, disturbing influences, system failure, parity equation/relation, structured parity equations

Procedia PDF Downloads 305
9008 Nanoparticles in Drug Delivery and Therapy of Alzeheimer's Disease

Authors: Nirupama Dixit, Anyaa Mittal, Neeru Sood

Abstract:

Alzheimer’s disease (AD) is a progressive form of dementia, contributing to up to 70% of cases, mostly observed in elderly but is not restricted to old age. The pathophysiology of the disease is characterized by specific pathological changes in brain. The changes (i.e. accumulation of metal ions in brain, formation of extracellular β-amyloid (Aβ) peptide aggregates and tangle of hyper phosphorylated Tau protein inside neurons) damage the neuronal connections irreversibly. The current issues in improvement of life quality of Alzheimer's patient lies in the fact that the diagnosis is made at a late stage of the disease and the medications do not treat the basic causes of Alzheimer's. The targeted delivery of drug through the blood brain barrier (BBB) poses several limitations via traditional approaches for treatment. To overcome these drug delivery limitation, nanoparticles provide a promising solution. This review focuses on current strategies for efficient targeted drug delivery using nanoparticles and improving the quality of therapy provided to the patient. Nanoparticles can be used to encapsulate drug (which is generally hydrophobic) to ensure its passage to brain; they can be conjugated to metal ion chelators to reduce the metal load in neural tissue thus lowering the harmful effects of oxidative damage; can be conjugated with drug and monoclonal antibodies against BBB endogenous receptors. Finally this review covers how the nanoparticles can play a role in diagnosing the disease.

Keywords: Alzheimer's disease, β-amyloid plaques, blood brain barrier, metal chelators, nanoparticles

Procedia PDF Downloads 496
9007 Disparity of Learning Styles and Cognitive Abilities in Vocational Education

Authors: Mimi Mohaffyza Mohamad, Yee Mei Heong, Nurfirdawati Muhammad Hanafi, Tee Tze Kiong

Abstract:

This study is conducted to investigate the disparity of between learning styles and cognitive abilities specifically in Vocational Education. Felder and Silverman Learning Styles Model (FSLSM) was applied to measure the students’ learning styles while the content in Building Construction Subject consists; knowledge, skills and problem solving were taken into account in constructing the elements of cognitive abilities. There are four dimension of learning styles proposed by Felder and Silverman intended to capture student learning preferences with regards to processing either active or reflective, perception based on sensing or intuitive, input of information used visual or verbal and understanding information represent with sequential or global learner. The study discovered that students are tending to be visual learners and each type of learner having significant difference whereas cognitive abilities. The finding may help teachers to facilitate students more effectively and to boost the student’s cognitive abilities.

Keywords: learning styles, cognitive abilities, dimension of learning styles, learning preferences

Procedia PDF Downloads 407
9006 The Analysis of Priority Flood Control Management Using Analysis Hierarchy Process

Authors: Pravira Rizki Suwarno, Fanny Aliza Savitri, Priseyola Ayunda Prima, Pipin Surahman, Mahelga Levina Amran, Khoirunisa Ulya Nur Utari, Nora Permatasari

Abstract:

The Bogowonto River or commonly called the Bhagawanta River, is one of the rivers on Java Island. It is located in Central Java, Indonesia. Its watershed area is 35 km² with 57 km long. This river covers three regencies, namely Wonosobo Regency and Magelang Regency in the upstream and Purworejo Regency in the south and downstream. The Bogowonto River experiences channel narrowing and silting. It is caused by garbage along the river that comes from livestock and household waste. The narrowing channel and siltation cause a capacity reduction of the river to drain flood discharge. Comprehensive and sustainable actions are needed in dealing with current and future floods. Based on these current conditions, a priority scale is required. Therefore, this study aims to determine the priority scale of flood management in Purworejo Regency using the Analytical Hierarchy Process (AHP) method. This method will determine the appropriate actions based on the rating. In addition, there will be field observations through distributing questionnaires to several parties, including the stakeholders and the community. The results of this study will be in 2 (two) forms of actions, both structurally covering water structures and non-structural, including social, environmental, and law enforcement.

Keywords: analytical hierarchy process, bogowonto, flood control, management

Procedia PDF Downloads 213
9005 Model-Based Process Development for the Comparison of a Radial Riveting and Roller Burnishing Process in Mechanical Joining Technology

Authors: Tobias Beyer, Christoph Friedrich

Abstract:

Modern simulation methodology using finite element models is nowadays a recognized tool for product design/optimization. Likewise, manufacturing process design is increasingly becoming the focus of simulation methodology in order to enable sustainable results based on reduced real-life tests here as well. In this article, two process simulations -radial riveting and roller burnishing- used for mechanical joining of components are explained. In the first step, the required boundary conditions are developed and implemented in the respective simulation models. This is followed by process space validation. With the help of the validated models, the interdependencies of the input parameters are investigated and evaluated by means of sensitivity analyses. Limit case investigations are carried out and evaluated with the aid of the process simulations. Likewise, a comparison of the two joining methods to each other becomes possible.

Keywords: FEM, model-based process development, process simulation, radial riveting, roller burnishing, sensitivity analysis

Procedia PDF Downloads 114
9004 A Study on the Current Challenges Hindering Urban Park Development in Ulaanbaatar City, Mongolia

Authors: Bayarmaa Enkhbold, Kenichi Matsui

Abstract:

Urban parks are important assets to every community in terms of providing space for health, cultural and leisure activities. However, Ulaanbaatar, the capital of Mongolia, faces a shortage of green spaces, particularly urban parks, due to overpopulation and haphazard growth. Therefore, in order to increase green space per person, the city government has planned to increase green space per person up to 20m² by 2020 and 30m² by 2030 by establishing more urban parks throughout the city. But this plan was estimated that it is highly unlikely to reach those goals according to the analysis of the present status of plan implementation because the current amount of green space per person is still 4m². In the past studies globally, city planners and scientists agree that it is highly improbable to develop urban parks and keep maintenance sustainably without reflecting community perceptions and their involvement in the park establishment. Therefore, this research aims to find the challenges which stymie urban park development in Ulaanbaatar city and recommend dealing with the problems. In order to reach the goal, communities’ perceptions about the current challenges and their necessity for urban parks were identified and determined whether they differentiated depending on two different types of residential areas (urban and suburban areas). It also attempted to investigate international good practices on how they deal with similar problems. The research methodology was based on a questionnaire survey among city residents, a document review regarding the involvement of stakeholders, and a literature review of relevant past studies. According to the residents’ perceptions, the biggest challenge was a lack of land availability and followed by a lack of proper policy, planning, management, and maintenance out of seven key challenges identified. The biggest community demand from the urban park was a playground for children and followed by recreation and relaxation out of six types of needs. Based on research findings, the study proposed several recommendations for enhancements as institutional and legal framework, park plan and management, supportive environment and monitoring, evaluation, and reporting.

Keywords: challenges of urban park planning and maintenance, community-based urban park establishment, community perceptions and participation, urban parks in Ulaanbaatar, Mongolia

Procedia PDF Downloads 123
9003 The Effect of Trans-Cranial Direct Current Stimulation (tDCS) on Cognitive Flexibility and Social Decision-Making in Football Players

Authors: Erfan Izadpanah

Abstract:

The present study was conducted to investigate the effect of the Trans-Cranial Direct Current Stimulation (tDCS) on cognitive flexibility and social decision-making in skilled, semi-skilled and novice football players. The present quasi-experimental pretest-posttest study was conducted on 60 randomly-selected subjects divided into trial and placebo groups (n=30 per group). The trial group received three 20-minute sessions of anodic stimulation at the intensity of 2 mA. The placebo group also received three sessions of sham anodic stimulation. Data were collected using the Wisconsin, Grant and Berg Card-Sorting Test (1948) and the ultimatum game and were then analyzed using the ANCOVA. The results showed significant differences between the skilled, semi-skilled and novice football players in the trial and placebo groups in terms of cognitive flexibility and social decision-making (P<0.01). TDCS appears to be able to improve cognitive flexibility and consequently social decision-making in football players and is recommended to sport psychologists and coaches as a useful intervention to increase cognitive flexibility and improve social decision-making in players.

Keywords: TDCS, cognitive flexibility, social decision-making, skilled, semi-skilled and novice football players

Procedia PDF Downloads 147
9002 Species Distribution Modelling for Assessing the Effect of Land Use Changes on the Habitat of Endangered Proboscis Monkey (Nasalis larvatus) in Kalimantan, Indonesia

Authors: Wardatutthoyyibah, Satyawan Pudyatmoko, Sena Adi Subrata, Muhammad Ali Imron

Abstract:

The proboscis monkey is an endemic species to the island of Borneo with conservation status IUCN (The International Union for Conservation of Nature) of endangered. The population of the monkey has a specific habitat and sensitive to habitat disturbances. As a consequence of increasing rates of land-use change in the last four decades, its population was reported significantly decreased. We quantified the effect of land use change on the proboscis monkey’s habitat through the species distribution modeling (SDM) approach with Maxent Software. We collected presence data and environmental variables, i.e., land cover, topography, bioclimate, distance to the river, distance to the road, and distance to the anthropogenic disturbance to generate predictive distribution maps of the monkeys. We compared two prediction maps for 2000 and 2015 data to represent the current habitat of the monkey. We overlaid the monkey’s predictive distribution map with the existing protected areas to investigate whether the habitat of the monkey is protected under the protected areas networks. The results showed that almost 50% of the monkey’s habitat reduced as the effect of land use change. And only 9% of the current proboscis monkey’s habitat within protected areas. These results are important for the master plan of conservation of the endangered proboscis monkey and provide scientific guidance for the future development incorporating biodiversity issue.

Keywords: endemic species, land use change, maximum entropy, spatial distribution

Procedia PDF Downloads 162
9001 Meaningful Habit for EFL Learners

Authors: Ana Maghfiroh

Abstract:

Learning a foreign language needs a big effort from the learner itself to make their language ability grows better day by day. Among those, they also need a support from all around them including teacher, friends, as well as activities which support them to speak the language. When those activities developed well as a habit which are done regularly, it will help improving the students’ language competence. It was a qualitative research which aimed to find out and describe some activities implemented in Pesantren Al Mawaddah, Ponorogo, in order to teach the students a foreign language. In collecting the data, the researcher used interview, questionnaire, and documentation. From the study, it was found that Pesantren Al Mawaddah had successfully built the language habit on the students to speak the target language. More than 15 hours a day students were compelled to speak foreign language, Arabic or English, in turn. It aimed to habituate the students to keep in touch with the target language. The habit was developed through daily language activities, such as dawn vocabs giving, dictionary handling, daily language use, speech training and language intensive course, daily language input, and night vocabs memorizing. That habit then developed the students awareness towards the language learned as well as promoted their language mastery.

Keywords: habit, communicative competence, daily language activities, Pesantren

Procedia PDF Downloads 544
9000 The Arts in Medicine and Health: A Necessity for Evidence-Based Health Systems

Authors: Alan S. Weber

Abstract:

This contribution reviews the current biomedical and qualitative arts research on arts-in-health interventions to improve both individual and population health outcomes. Arts therapies–for example, music therapy with roots in Aristoxenus’s Ἁρμονικὰ στοιχεῖα and the Pythagorean sect–have long been employed in therapeutic contexts. However, the 20th century witnessed the increasing use of the visual and plastic arts (drawing, painting, sculpting), performing arts (drama and dance), and other expressive arts modalities into occupational therapy, well-being medicine, and psychological and psychiatric counselling, diagnosis, and treatment. A significant body of peer-reviewed evidence in the medical and neurological sciences on the role of arts-in-health has developed, and specifically, research on music and art therapy has led to their inclusion within the current biomedical paradigm of evidence-based practice. The arts cannot only aid in public and population health promotion (promoting healthy behaviors and lifestyles, preventing disease onset) but also in addressing psychological issues (regulation of emotion; stress, anxiety, and depression reduction), behavioural issues (basic life skills, coping), and physiological response (immune system function, hormonal regulation, homeostatis). Working as a cross-disciplinary researcher in the arts in an American medical college, the author has developed several successful arts-in-health programs at the national and international level.

Keywords: arts-in-health, evidence based medicine, arts for health, expressive arts therapies

Procedia PDF Downloads 73
8999 Developed CNN Model with Various Input Scale Data Evaluation for Bearing Faults Prognostics

Authors: Anas H. Aljemely, Jianping Xuan

Abstract:

Rolling bearing fault diagnosis plays a pivotal issue in the rotating machinery of modern manufacturing. In this research, a raw vibration signal and improved deep learning method for bearing fault diagnosis are proposed. The multi-dimensional scales of raw vibration signals are selected for evaluation condition monitoring system, and the deep learning process has shown its effectiveness in fault diagnosis. In the proposed method, employing an Exponential linear unit (ELU) layer in a convolutional neural network (CNN) that conducts the identical function on positive data, an exponential nonlinearity on negative inputs, and a particular convolutional operation to extract valuable features. The identification results show the improved method has achieved the highest accuracy with a 100-dimensional scale and increase the training and testing speed.

Keywords: bearing fault prognostics, developed CNN model, multiple-scale evaluation, deep learning features

Procedia PDF Downloads 217
8998 Neural Networks and Genetic Algorithms Approach for Word Correction and Prediction

Authors: Rodrigo S. Fonseca, Antônio C. P. Veiga

Abstract:

Aiming at helping people with some movement limitation that makes typing and communication difficult, there is a need to customize an assistive tool with a learning environment that helps the user in order to optimize text input, identifying the error and providing the correction and possibilities of choice in the Portuguese language. The work presents an Orthographic and Grammatical System that can be incorporated into writing environments, improving and facilitating the use of an alphanumeric keyboard, using a prototype built using a genetic algorithm in addition to carrying out the prediction, which can occur based on the quantity and position of the inserted letters and even placement in the sentence, ensuring the sequence of ideas using a Long Short Term Memory (LSTM) neural network. The prototype optimizes data entry, being a component of assistive technology for the textual formulation, detecting errors, seeking solutions and informing the user of accurate predictions quickly and effectively through machine learning.

Keywords: genetic algorithm, neural networks, word prediction, machine learning

Procedia PDF Downloads 200
8997 Approximation of PE-MOCVD to ALD for TiN Concerning Resistivity and Chemical Composition

Authors: D. Geringswald, B. Hintze

Abstract:

The miniaturization of circuits is advancing. During chip manufacturing, structures are filled for example by metal organic chemical vapor deposition (MOCVD). Since this process reaches its limits in case of very high aspect ratios, the use of alternatives such as the atomic layer deposition (ALD) is possible, requiring the extension of existing coating systems. However, it is an unsolved question to what extent MOCVD can achieve results similar as an ALD process. In this context, this work addresses the characterization of a metal organic vapor deposition of titanium nitride. Based on the current state of the art, the film properties coating thickness, sheet resistance, resistivity, stress and chemical composition are considered. The used setting parameters are temperature, plasma gas ratio, plasma power, plasma treatment time, deposition time, deposition pressure, number of cycles and TDMAT flow. The derived process instructions for unstructured wafers and inside a structure with high aspect ratio include lowering the process temperature and increasing the number of cycles, the deposition and the plasma treatment time as well as the plasma gas ratio of hydrogen to nitrogen (H2:N2). In contrast to the current process configuration, the deposited titanium nitride (TiN) layer is more uniform inside the entire test structure. Consequently, this paper provides approaches to employ the MOCVD for structures with increasing aspect ratios.

Keywords: ALD, high aspect ratio, PE-MOCVD, TiN

Procedia PDF Downloads 309
8996 Impact of Instrument Transformer Secondary Connections on Performance of Protection System: Experiences from Indian POWERGRID

Authors: Pankaj Kumar Jha, Mahendra Singh Hada, Brijendra Singh, Sandeep Yadav

Abstract:

Protective relays are commonly connected to the secondary windings of instrument transformers, i.e., current transformers (CTs) and/or capacitive voltage transformers (CVTs). The purpose of CT and CVT is to provide galvanic isolation from high voltages and reduce primary currents and voltages to a nominal quantity recognized by the protective relays. Selecting the correct instrument transformers for an application is imperative: failing to do so may compromise the relay’s performance, as the output of the instrument transformer may no longer be an accurately scaled representation of the primary quantity. Having an accurately rated instrument transformer is of no use if these devices are not properly connected. The performance of the protective relay is reliant on its programmed settings and on the current and voltage inputs from the instrument transformers secondary. This paper will help in understanding the fundamental concepts of the connections of Instrument Transformers to the protection relays and the effect of incorrect connection on the performance of protective relays. Multiple case studies of protection system mal-operations due to incorrect connections of instrument transformers will be discussed in detail in this paper. Apart from the connection issue of instrument transformers to protective relays, this paper will also discuss the effect of multiple earthing of CTs and CVTs secondary on the performance of the protection system. Case studies presented in this paper will help the readers to analyse the problem through real-world challenges in complex power system networks. This paper will also help the protection engineer in better analysis of disturbance records. CT and CVT connection errors can lead to undesired operations of protection systems. However, many of these operations can be avoided by adhering to industry standards and implementing tried-and-true field testing and commissioning practices. Understanding the effect of missing neutral of CVT, multiple earthing of CVT secondary, and multiple grounding of CT star points on the performance of the protection system through real-world case studies will help the protection engineer in better commissioning the protection system and maintenance of the protection system.

Keywords: bus reactor, current transformer, capacitive voltage transformer, distance protection, differential protection, directional earth fault, disturbance report, instrument transformer, ICT, REF protection, shunt reactor, voltage selection relay, VT fuse failure

Procedia PDF Downloads 87
8995 Create a Dynamic Model in Project Control and Management

Authors: Hamed Saremi, Shahla Saremi

Abstract:

In this study, control and management of construction projects is evaluated through developing a dynamic model in which some means are used in order to evaluating planning assumptions and reviewing the effectiveness of some project control policies based on previous researches about time, cost, project schedule pressure management, source management, project control, adding elements and sub-systems from cost management such as estimating consumption budget from budget due to costs, budget shortage effects and etc. using sensitivity analysis, researcher has evaluated introduced model that during model simulation by VENSIM software and assuming optimistic times and adding information about doing job and changes rate and project is forecasted with 373 days (2 days sooner than forecasted) and final profit $ 1,960,670 (23% amount of contract) assuming 15% inflation rate in year and costs rate accordance with planned amounts and other input information and final profit.

Keywords: dynamic planning, cost, time, performance, project management

Procedia PDF Downloads 481
8994 Using Machine Learning to Predict Answers to Big-Five Personality Questions

Authors: Aadityaa Singla

Abstract:

The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.

Keywords: machine learning, personally, big five personality traits, cognitive science

Procedia PDF Downloads 149
8993 Efficiency-Based Model for Solar Urban Planning

Authors: M. F. Amado, A. Amado, F. Poggi, J. Correia de Freitas

Abstract:

Today it is widely understood that global energy consumption patterns are directly related to the ongoing urban expansion and development process. This expansion is based on the natural growth of human activities and has left most urban areas totally dependent on fossil fuel derived external energy inputs. This status-quo of production, transportation, storage and consumption of energy has become inefficient and is set to become even more so when the continuous increases in energy demand are factored in. The territorial management of land use and related activities is a central component in the search for more efficient models of energy use, models that can meet current and future regional, national and European goals. In this paper, a methodology is developed and discussed with the aim of improving energy efficiency at the municipal level. The development of this methodology is based on the monitoring of energy consumption and its use patterns resulting from the natural dynamism of human activities in the territory and can be utilized to assess sustainability at the local scale. A set of parameters and indicators are defined with the objective of constructing a systemic model based on the optimization, adaptation and innovation of the current energy framework and the associated energy consumption patterns. The use of the model will enable local governments to strike the necessary balance between human activities, economic development, and the local and global environment while safeguarding fairness in the energy sector.

Keywords: solar urban planning, solar smart city, urban development, energy efficiency

Procedia PDF Downloads 333
8992 Geophysical Methods and Machine Learning Algorithms for Stuck Pipe Prediction and Avoidance

Authors: Ammar Alali, Mahmoud Abughaban

Abstract:

Cost reduction and drilling optimization is the goal of many drilling operators. Historically, stuck pipe incidents were a major segment of non-productive time (NPT) associated costs. Traditionally, stuck pipe problems are part of the operations and solved post-sticking. However, the real key to savings and success is in predicting the stuck pipe incidents and avoiding the conditions leading to its occurrences. Previous attempts in stuck-pipe predictions have neglected the local geology of the problem. The proposed predictive tool utilizes geophysical data processing techniques and Machine Learning (ML) algorithms to predict drilling activities events in real-time using surface drilling data with minimum computational power. The method combines two types of analysis: (1) real-time prediction, and (2) cause analysis. Real-time prediction aggregates the input data, including historical drilling surface data, geological formation tops, and petrophysical data, from wells within the same field. The input data are then flattened per the geological formation and stacked per stuck-pipe incidents. The algorithm uses two physical methods (stacking and flattening) to filter any noise in the signature and create a robust pre-determined pilot that adheres to the local geology. Once the drilling operation starts, the Wellsite Information Transfer Standard Markup Language (WITSML) live surface data are fed into a matrix and aggregated in a similar frequency as the pre-determined signature. Then, the matrix is correlated with the pre-determined stuck-pipe signature for this field, in real-time. The correlation used is a machine learning Correlation-based Feature Selection (CFS) algorithm, which selects relevant features from the class and identifying redundant features. The correlation output is interpreted as a probability curve of stuck pipe incidents prediction in real-time. Once this probability passes a fixed-threshold defined by the user, the other component, cause analysis, alerts the user of the expected incident based on set pre-determined signatures. A set of recommendations will be provided to reduce the associated risk. The validation process involved feeding of historical drilling data as live-stream, mimicking actual drilling conditions, of an onshore oil field. Pre-determined signatures were created for three problematic geological formations in this field prior. Three wells were processed as case studies, and the stuck-pipe incidents were predicted successfully, with an accuracy of 76%. This accuracy of detection could have resulted in around 50% reduction in NPT, equivalent to 9% cost saving in comparison with offset wells. The prediction of stuck pipe problem requires a method to capture geological, geophysical and drilling data, and recognize the indicators of this issue at a field and geological formation level. This paper illustrates the efficiency and the robustness of the proposed cross-disciplinary approach in its ability to produce such signatures and predicting this NPT event.

Keywords: drilling optimization, hazard prediction, machine learning, stuck pipe

Procedia PDF Downloads 237
8991 Characterization of Aluminium Alloy 6063 Hybrid Metal Matrix Composite by Using Stir Casting Method

Authors: Balwinder Singh

Abstract:

The present research is a paper on the characterization of aluminum alloy-6063 hybrid metal matrix composites using three different reinforcement materials (SiC, red mud, and fly ash) through stir casting method. The red mud was used in solid form, and particle size range varies between 103-150 µm. During this investigation, fly ash is received from Guru Nanak Dev Thermal Plant (GNDTP), Bathinda. The study has been done by using Taguchi’s L9 orthogonal array by taking fraction wt.% (SiC 5%, 7.5%, and 10% and Red Mud and Fly Ash 2%, 4%, and 6%) as input parameters with their respective levels. The study of the mechanical properties (tensile strength, impact strength, and microhardness) has been done by using Analysis of Variance (ANOVA) with the help of MINITAB 17 software. It is revealed that silicon carbide is the most significant parameter followed by red mud and fly ash affecting the mechanical properties, respectively. The fractured surface morphology of the composites using Field Emission Scanning Electron Microscope (FESEM) shows that there is a good mixing of reinforcement particles in the matrix. Energy-dispersive X-ray spectroscopy (EDS) was performed to know the presence of the phases of the reinforced material.

Keywords: reinforcement, silicon carbide, fly ash, red mud

Procedia PDF Downloads 162
8990 Research on Development and Accuracy Improvement of an Explosion Proof Combustible Gas Leak Detector Using an IR Sensor

Authors: Gyoutae Park, Seungho Han, Byungduk Kim, Youngdo Jo, Yongsop Shim, Yeonjae Lee, Sangguk Ahn, Hiesik Kim, Jungil Park

Abstract:

In this paper, we presented not only development technology of an explosion proof type and portable combustible gas leak detector but also algorithm to improve accuracy for measuring gas concentrations. The presented techniques are to apply the flame-proof enclosure and intrinsic safe explosion proof to an infrared gas leak detector at first in Korea and to improve accuracy using linearization recursion equation and Lagrange interpolation polynomial. Together, we tested sensor characteristics and calibrated suitable input gases and output voltages. Then, we advanced the performances of combustible gaseous detectors through reflecting demands of gas safety management fields. To check performances of two company's detectors, we achieved the measurement tests with eight standard gases made by Korea Gas Safety Corporation. We demonstrated our instruments better in detecting accuracy other than detectors through experimental results.

Keywords: accuracy improvement, IR gas sensor, gas leak, detector

Procedia PDF Downloads 394
8989 Effects of Unfamiliar Orthography on the Lexical Encoding of Novel Phonological Features

Authors: Asmaa Shehata

Abstract:

Prior research indicates that second language (L2) learners encounter difficulty in the distinguishing novel L2 contrasting sounds that are not contrastive in their native languages. L2 orthographic information, however, is found to play a positive role in the acquisition of non-native phoneme contrasts. While most studies have mainly involved a familiar written script (i.e., the Roman script), the influence of a foreign, unfamiliar script is still unknown. Therefore, the present study asks: Does unfamiliar L2 script play a role in creating distinct phonological representations of novel contrasting phonemes? It is predicted that subjects’ performance in the unfamiliar orthography group will outperform their counterparts’ performance in the control group. Thus, training that entails orthographic inputs can yield a significant improvement in L2 adult learners’ identification and lexical encoding of novel L2 consonant contrasts. Results are discussed in terms of their implications for the type of input introduced to L2 learners to improve their language learning.

Keywords: Arabic, consonant contrasts, foreign script, lexical encoding, orthography, word learning

Procedia PDF Downloads 262
8988 Transport Related Air Pollution Modeling Using Artificial Neural Network

Authors: K. D. Sharma, M. Parida, S. S. Jain, Anju Saini, V. K. Katiyar

Abstract:

Air quality models form one of the most important components of an urban air quality management plan. Various statistical modeling techniques (regression, multiple regression and time series analysis) have been used to predict air pollution concentrations in the urban environment. These models calculate pollution concentrations due to observed traffic, meteorological and pollution data after an appropriate relationship has been obtained empirically between these parameters. Artificial neural network (ANN) is increasingly used as an alternative tool for modeling the pollutants from vehicular traffic particularly in urban areas. In the present paper, an attempt has been made to model traffic air pollution, specifically CO concentration using neural networks. In case of CO concentration, two scenarios were considered. First, with only classified traffic volume input and the second with both classified traffic volume and meteorological variables. The results showed that CO concentration can be predicted with good accuracy using artificial neural network (ANN).

Keywords: air quality management, artificial neural network, meteorological variables, statistical modeling

Procedia PDF Downloads 530