Search results for: fast Fourier algorithms
2672 Body Armours in Amazonian Fish
Authors: Fernando G. Torres, Donna M. Ebenstein, Monica Merino
Abstract:
Most fish are covered by a protective external armour. The characteristics of these armours depend on the individual elements that form them, such as scales, scutes or dermal plates. In this work, we assess the properties of two different types of protective elements: scales from A. gigas and dermal plates from P. pardalis. A. Gigas and P. Pardalis are two Amazonian fish with a rather prehistoric aspect. They have large scales and dermal plates that form two different types of protective body armours. Although both scales and dermal plates are formed by collagen and hydroxyapatite, their structures display remarkable differences. The structure and composition of the samples were assessed by means of X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). Morphology studies were carried out using a Scanning Electron Microscopy (SEM). Nanoindentation tests were performed to measure the reduced moduli in A. gigas scales and P. pardalis plates. The similarities and differences between scales and dermal plates are discussed based on the experimental results. Both protective armours are designed to be lightweight, flexible and tough. A. Gigas scales are are light laminated composites, while P. pardalis dermal plates show a sandwich like structure with dense outer layers and a porous inner matrix. It seems that the armour of P. pardalis is more suited for a bottom-dwelling fish and allows for protection against predators. The scales from A. Gigas are more adapted to give protection to a swimming fish. The information obtained from these studies is also important for the development of bioinspired nanocomposites, with potential applications in the biomedical field.Keywords: pterygoplichthys pardalis, dermal plates arapaima gigas, fish scales
Procedia PDF Downloads 3932671 Variation of Clinical Manifestations of COVID-19 Over Time of Pandemic
Authors: Mahdi Asghari Ozma, Fatemeh Aghamohammadzadeh, Mahin Ahangar Oskouee
Abstract:
In late 2019, the people of the world were involved with a new infection by the coronavirus, named SARS-COV-2 (COVID-19), which disseminated around the world quickly. This infection has the ability to affect various systems of the body, including respiratory, gastrointestinal, urinary, and hematology, which can be transmitted by various body samples in different ways. To control this fast-transmitted infection by preventing its transmission to other people, rapid diagnosis is vital, which can be done by examining the patient's clinical symptoms and also using various serological, molecular, and radiological methods. Symptoms caused by COVID-19 in patients include fever, cough, sore throat, headache, fatigue, shortness of breath, loss of taste or smell, skin rash, myalgia, and conjunctivitis. These clinical features were appearing gradually in different time periods from the onset of the infection, and patients showed varied and new symptoms at different times, which show the variety of symptoms over time during the spread of the infection.Keywords: COVID-19, diagnosis, symptom, variation, novel coronavirus
Procedia PDF Downloads 902670 A Non-Parametric Based Mapping Algorithm for Use in Audio Fingerprinting
Authors: Analise Borg, Paul Micallef
Abstract:
Over the past few years, the online multimedia collection has grown at a fast pace. Several companies showed interest to study the different ways to organize the amount of audio information without the need of human intervention to generate metadata. In the past few years, many applications have emerged on the market which are capable of identifying a piece of music in a short time. Different audio effects and degradation make it much harder to identify the unknown piece. In this paper, an audio fingerprinting system which makes use of a non-parametric based algorithm is presented. Parametric analysis is also performed using Gaussian Mixture Models (GMMs). The feature extraction methods employed are the Mel Spectrum Coefficients and the MPEG-7 basic descriptors. Bin numbers replaced the extracted feature coefficients during the non-parametric modelling. The results show that non-parametric analysis offer potential results as the ones mentioned in the literature.Keywords: audio fingerprinting, mapping algorithm, Gaussian Mixture Models, MFCC, MPEG-7
Procedia PDF Downloads 4252669 Adaptive Multipath Mitigation Acquisition Approach for Global Positioning System Software Receivers
Authors: Animut Meseret Simachew
Abstract:
Parallel Code Phase Search Acquisition (PCSA) Algorithm has been considered as a promising method in GPS software receivers for detection and estimation of the accurate correlation peak between the received Global Positioning System (GPS) signal and locally generated replicas. GPS signal acquisition in highly dense multipath environments is the main research challenge. In this work, we proposed a robust variable step-size (RVSS) PCSA algorithm based on fast frequency transform (FFT) filtering technique to mitigate short time delay multipath signals. Simulation results reveal the effectiveness of the proposed algorithm over the conventional PCSA algorithm. The proposed RVSS-PCSA algorithm equalizes the received carrier wiped-off signal with locally generated C/A code.Keywords: adaptive PCSA, detection and estimation, GPS signal acquisition, GPS software receiver
Procedia PDF Downloads 1192668 New Stress Instability Workability Criteria for Internal Ductile Failure in Steel Cold Heading
Authors: Amar Sabih, James Nemes
Abstract:
The occurrence of internal ductile failure within the Adiabatic Shear Band (ASB) in cold-headed products presents a significant barrier in the fast-expanding cold-heading (CH) industry. The presence of internal ductile failure in cold-headed products may lead to catastrophic fracture under tensile loads despite the ductile nature of the material causing expensive industrial recalls. Therefore, this paper presents a new workability criterion that uses stress instability as an indicator to accurately reveal the locus of initiation of internal ductile failures. The concept of the instability criterion is to use the stress ratio at failure as a weighting function to indicate the initiation of ductile failure inside the ASBs. This paper presents a comprehensive experimental, metallurgical, and finite element simulation study to calculate the material constants used in this criterion.Keywords: adiabatic sher band, ductile failure, stress instability, workability criterion
Procedia PDF Downloads 932667 Causal Modeling of the Glucose-Insulin System in Type-I Diabetic Patients
Authors: J. Fernandez, N. Aguilar, R. Fernandez de Canete, J. C. Ramos-Diaz
Abstract:
In this paper, a simulation model of the glucose-insulin system for a patient undergoing diabetes Type 1 is developed by using a causal modeling approach under system dynamics. The OpenModelica simulation environment has been employed to build the so called causal model, while the glucose-insulin model parameters were adjusted to fit recorded mean data of a diabetic patient database. Model results under different conditions of a three-meal glucose and exogenous insulin ingestion patterns have been obtained. This simulation model can be useful to evaluate glucose-insulin performance in several circumstances, including insulin infusion algorithms in open-loop and decision support systems in closed-loop.Keywords: causal modeling, diabetes, glucose-insulin system, diabetes, causal modeling, OpenModelica software
Procedia PDF Downloads 3322666 Functional Yoghurt Enriched with Microencapsulated Olive Leaves Extract Powder Using Polycaprolactone via Double Emulsion/Solvent Evaporation Technique
Authors: Tamer El-Messery, Teresa Sanchez-Moya, Ruben Lopez-Nicolas, Gaspar Ros, Esmat Aly
Abstract:
Olive leaves (OLs), the main by-product of the olive oil industry, have a considerable amount of phenolic compounds. The exploitation of these compounds represents the current trend in food processing. In this study, OLs polyphenols were microencapsulated with polycaprolactone (PCL) and utilized in formulating novel functional yoghurt. PCL-microcapsules were characterized by scanning electron microscopy, and Fourier transform infrared spectrometry analysis. Their total phenolic (TPC), total flavonoid (TFC) contents, and antioxidant activities (DPPH, FRAP, ABTS), and polyphenols bioaccessibility were measured after oral, gastric, and intestinal steps of in vitro digestion. The four yoghurt formulations (containing 0, 25, 50, and 75 mg of PCL-microsphere/100g yoghurt) were evaluated for their pH, acidity, syneresis viscosity, and color during storage. In vitro digestion significantly affected the phenolic composition in non-encapsulated extract while had a lower impact on encapsulated phenolics. Higher protection was provided for encapsulated OLs extract, and their higher release was observed at the intestinal phase. Yoghurt with PCL-microsphere had lower viscosity, syneresis, and color parameters, as compared to control yoghurt. Thus, OLs represent a valuable and cheap source of polyphenols which can be successfully applied, in microencapsulated form, to formulate functional yoghurt.Keywords: yoghurt quality attributes, olive leaves, phenolic and flavonoids compounds, antioxidant activity, polycaprolactone as microencapsulant
Procedia PDF Downloads 1452665 Investigating the Factors Affecting on One Time Passwords Technology Acceptance: A Case Study in Banking Environment
Authors: Sajad Shokohuyar, Mahsa Zomorrodi Anbaji, Saghar Pouyan Shad
Abstract:
According to fast technology growth, modern banking tries to decrease going to banks’ branches and increase customers’ consent. One of the problems which banks face is securing customer’s password. The banks’ solution is one time password creation system. In this research by adapting from acceptance of technology model theory, assesses factors that are effective on banking in Iran especially in using one time password machine by one of the private banks of Iran customers. The statistical population is all of this bank’s customers who use electronic banking service and one time password technology and the questionnaires were distributed among members of statistical population in 5 selected groups of north, south, center, east and west of Tehran. Findings show that confidential preservation, education, ease of utilization and advertising and informing has positive relations and distinct hardware and age has negative relations.Keywords: security, electronic banking, one time password, information technology
Procedia PDF Downloads 4572664 Enzymatic Saccharification of Dilute Alkaline Pre-treated Microalgal (Tetraselmis suecica) Biomass for Biobutanol Production
Authors: M. A. Kassim, R. Potumarthi, A. Tanksale, S. C. Srivatsa, S. Bhattacharya
Abstract:
Enzymatic saccharification of biomass for reducing sugar production is one of the crucial processes in biofuel production through biochemical conversion. In this study, enzymatic saccharification of dilute potassium hydroxide (KOH) pre-treated Tetraselmis suecica biomass was carried out by using cellulase enzyme obtained from Trichoderma longibrachiatum. Initially, the pre-treatment conditions were optimised by changing alkali reagent concentration, retention time for reaction, and temperature. The T. suecica biomass after pre-treatment was also characterized using Fourier Transform Infrared Spectra and Scanning Electron Microscope. These analyses revealed that the functional group such as acetyl and hydroxyl groups, structure and surface of T. suecica biomass were changed through pre-treatment, which is favourable for enzymatic saccharification process. Comparison of enzymatic saccharification of untreated and pre-treated microalgal biomass indicated that higher level of reducing sugar can be obtained from pre-treated T. suecica. Enzymatic saccharification of pre-treated T. suecica biomass was optimised by changing temperature, pH, and enzyme concentration to solid ratio ([E]/[S]). Highest conversion of carbohydrate into reducing sugar of 95% amounted to reducing sugar yield of 20 (wt%) from pre-treated T. suecica was obtained from saccharification, at temperature: 40°C, pH: 4.5 and [E]/[S] of 0.1 after 72 h of incubation. Hydrolysate obtained from enzymatic saccharification of pretreated T. suecica biomass was further fermented into biobutanol using Clostridium saccharoperbutyliticum as biocatalyst. The results from this study demonstrate a positive prospect of application of dilute alkaline pre-treatment to enhance enzymatic saccharification and biobutanol production from microalgal biomass.Keywords: microalgal biomass, enzymatic saccharification, biobutanol, fermentation
Procedia PDF Downloads 3892663 Micro-Channel Flows Simulation Based on Nonlinear Coupled Constitutive Model
Authors: Qijiao He
Abstract:
MicroElectrical-Mechanical System (MEMS) is one of the most rapidly developing frontier research field both in theory study and applied technology. Micro-channel is a very important link component of MEMS. With the research and development of MEMS, the size of the micro-devices and the micro-channels becomes further smaller. Compared with the macroscale flow, the flow characteristics of gas in the micro-channel have changed, and the rarefaction effect appears obviously. However, for the rarefied gas and microscale flow, Navier-Stokes-Fourier (NSF) equations are no longer appropriate due to the breakup of the continuum hypothesis. A Nonlinear Coupled Constitutive Model (NCCM) has been derived from the Boltzmann equation to describe the characteristics of both continuum and rarefied gas flows. We apply the present scheme to simulate continuum and rarefied gas flows in a micro-channel structure. And for comparison, we apply other widely used methods which based on particle simulation or direct solution of distribution function, such as Direct simulation of Monte Carlo (DSMC), Unified Gas-Kinetic Scheme (UGKS) and Lattice Boltzmann Method (LBM), to simulate the flows. The results show that the present solution is in better agreement with the experimental data and the DSMC, UGKS and LBM results than the NSF results in rarefied cases but is in good agreement with the NSF results in continuum cases. And some characteristics of both continuum and rarefied gas flows are observed and analyzed.Keywords: continuum and rarefied gas flows, discontinuous Galerkin method, generalized hydrodynamic equations, numerical simulation
Procedia PDF Downloads 1742662 Voice Liveness Detection Using Kolmogorov Arnold Networks
Authors: Arth J. Shah, Madhu R. Kamble
Abstract:
Voice biometric liveness detection is customized to certify an authentication process of the voice data presented is genuine and not a recording or synthetic voice. With the rise of deepfakes and other equivalently sophisticated spoofing generation techniques, it’s becoming challenging to ensure that the person on the other end is a live speaker or not. Voice Liveness Detection (VLD) system is a group of security measures which detect and prevent voice spoofing attacks. Motivated by the recent development of the Kolmogorov-Arnold Network (KAN) based on the Kolmogorov-Arnold theorem, we proposed KAN for the VLD task. To date, multilayer perceptron (MLP) based classifiers have been used for the classification tasks. We aim to capture not only the compositional structure of the model but also to optimize the values of univariate functions. This study explains the mathematical as well as experimental analysis of KAN for VLD tasks, thereby opening a new perspective for scientists to work on speech and signal processing-based tasks. This study emerges as a combination of traditional signal processing tasks and new deep learning models, which further proved to be a better combination for VLD tasks. The experiments are performed on the POCO and ASVSpoof 2017 V2 database. We used Constant Q-transform, Mel, and short-time Fourier transform (STFT) based front-end features and used CNN, BiLSTM, and KAN as back-end classifiers. The best accuracy is 91.26 % on the POCO database using STFT features with the KAN classifier. In the ASVSpoof 2017 V2 database, the lowest EER we obtained was 26.42 %, using CQT features and KAN as a classifier.Keywords: Kolmogorov Arnold networks, multilayer perceptron, pop noise, voice liveness detection
Procedia PDF Downloads 442661 Comprehensive Analysis of Power Allocation Algorithms for OFDM Based Communication Systems
Authors: Rakesh Dubey, Vaishali Bahl, Dalveer Kaur
Abstract:
The spiralling urge for high rate data transmission over wireless mediums needs intelligent use of electromagnetic resources considering restrictions like power ingestion, spectrum competence, robustness against multipath propagation and implementation intricacy. Orthogonal frequency division multiplexing (OFDM) is a capable technique for next generation wireless communication systems. For such high rate data transfers there is requirement of proper allocation of resources like power and capacity amongst the sub channels. This paper illustrates various available methods of allocating power and the capacity requirement with the constraint of Shannon limit.Keywords: Additive White Gaussian Noise, Multi-Carrier Modulation, Orthogonal Frequency Division Multiplexing (OFDM), Signal to Noise Ratio (SNR), Water Filling
Procedia PDF Downloads 5572660 Learning to Recommend with Negative Ratings Based on Factorization Machine
Authors: Caihong Sun, Xizi Zhang
Abstract:
Rating prediction is an important problem for recommender systems. The task is to predict the rating for an item that a user would give. Most of the existing algorithms for the task ignore the effect of negative ratings rated by users on items, but the negative ratings have a significant impact on users’ purchasing decisions in practice. In this paper, we present a rating prediction algorithm based on factorization machines that consider the effect of negative ratings inspired by Loss Aversion theory. The aim of this paper is to develop a concave and a convex negative disgust function to evaluate the negative ratings respectively. Experiments are conducted on MovieLens dataset. The experimental results demonstrate the effectiveness of the proposed methods by comparing with other four the state-of-the-art approaches. The negative ratings showed much importance in the accuracy of ratings predictions.Keywords: factorization machines, feature engineering, negative ratings, recommendation systems
Procedia PDF Downloads 2442659 Synthesis and Characterisation of Starch-PVP as Encapsulation Material for Drug Delivery System
Authors: Nungki Rositaningsih, Emil Budianto
Abstract:
Starch has been widely used as an encapsulation material for drug delivery system. However, starch hydrogel is very easily degraded during metabolism in human stomach. Modification of this material is needed to improve the encapsulation process in drug delivery system, especially for gastrointestinal drug. In this research, three modified starch-based hydrogels are synthesized i.e. Crosslinked starch hydrogel, Semi- and Full- Interpenetrating Polymer Network (IPN) starch hydrogel using Poly(N-Vinyl-Pyrrolidone). Non-modified starch hydrogel was also synthesized as a control. All of those samples were compared as biomaterials, floating drug delivery, and their ability in loading drug test. Biomaterial characterizations were swelling test, stereomicroscopy observation, Differential Scanning Calorimetry (DSC), and Fourier Transform Infrared Spectroscopy (FTIR). Buoyancy test and stereomicroscopy scanning were done for floating drug delivery characterizations. Lastly, amoxicillin was used as test drug, and characterized with UV-Vis spectroscopy for loading drug observation. Preliminary observation showed that Full-IPN has the most dense and elastic texture, followed by Semi-IPN, Crosslinked, and Non-modified in the last position. Semi-IPN and Crosslinked starch hydrogel have the most ideal properties and will not be degraded easily during metabolism. Therefore, both hydrogels could be considered as promising candidates for encapsulation material. Further analysis and issues will be discussed in the paper.Keywords: biomaterial, drug delivery system, interpenetrating polymer network, poly(N-vinyl-pyrrolidone), starch hydrogel
Procedia PDF Downloads 2542658 Numerical Analyze of Corona Discharge on HVDC Transmission Lines
Authors: H. Nouri, A. Tabbel, N. Douib, H. Aitsaid, Y. Zebboudj
Abstract:
This study and the field test comparisons were carried out on the Algerian Derguna-Setif transmission systems. The transmission line of normal voltage 225 kV is 65 km long, transported and uses twin bundle conductors protected with two shield wires of transposed galvanized steel. An iterative finite-element method is used to solve Poisons equation. Two algorithms are proposed for satisfying the current continuity condition and updating the space-charge density. A new approach to the problem of corona discharge in transmission system has been described in this paper. The effect of varying the configurations and wires number is also investigated. The analysis of this steady is important in the design of HVDC transmission lines. The potential and electric field have been calculating in locations singular points of the system.Keywords: corona discharge, finite element method, electric field, HVDC
Procedia PDF Downloads 4142657 Optimal Closed-loop Input Shaping Control Scheme for a 3D Gantry Crane
Authors: Mohammad Javad Maghsoudi, Z. Mohamed, A. R. Husain
Abstract:
Input shaping has been utilized for vibration reduction of many oscillatory systems. This paper presents an optimal closed-loop input shaping scheme for control of a three dimensional (3D) gantry crane system including. This includes a PID controller and Zero Vibration shaper which consider two control objectives concurrently. The control objectives are minimum sway of a payload and fast and accurate positioning of a trolley. A complete mathematical model of a lab-scaled 3D gantry crane is simulated in Simulink. Moreover, by utilizing PSO algorithm and a proposed scheme the controller is designed to cater both control objectives concurrently. Simulation studies on a 3D gantry crane show that the proposed optimal controller has an acceptable performance. The controller provides good position response with satisfactory payload sway in both rail and trolley responses.Keywords: 3D gantry crane, input shaping, closed-loop control, optimal scheme, PID
Procedia PDF Downloads 4172656 Quality Fabric Optimization Using Genetic Algorithms
Authors: Halimi Mohamed Taher, Kordoghli Bassem, Ben Hassen Mohamed, Sakli Faouzi
Abstract:
Textile industry has been an important part of many developing countries economies such as Tunisia. This industry is confronted with a challenging and increasing competitive environment. Good quality management in production process is the key factor for retaining existence especially in raw material exploitation. The present work aims to develop an intelligent system for fabric inspection. In the first step, we have studied the method used for fabric control which takes into account the default length and localization in woven. In the second step, we have used a method based on the fuzzy logic to minimize the Demerit point indicator with appropriate total rollers length, so that the quality problem becomes multi-objective. In order to optimize the total fabric quality, we have applied the genetic algorithm (GA).Keywords: fabric control, Fuzzy logic, genetic algorithm, quality management
Procedia PDF Downloads 5942655 A Kinetic Study of Radical Polymerisation of Acrylic Monomers in the Presence of the Liquid Crystal and the Electro-Optical Properties of These Mixtures
Authors: A. Bouriche, D. Merah, T. Bouchaour, L. Alachaher-Bedjaoui, U. Maschke
Abstract:
Intensive research continues in the field of liquid crystals (LCs) for their potential use in modern display applications. Nematic LCs has been most commonly used due to the large birefringence and their sensitivity to even weak perturbation forces induced by electric, magnetic and optical fields. Polymer dispersed liquid crystals (PDLCs), composed of micron-sized nematic LC droplets dispersed in a polymer matrix is an important class of materials for applications in different domains of technology involving large area display devices, optical switches, phase modulators, variable attenuators, polarisers, flexible displays and smart windows. In this study the composites are prepared from mixtures of mono functional acrylic monomers, (Butylacrylate (ABu), 2-Ethylhexylacrylate (2-EHA), 2-Hydroxyethyl methacrylate (HEMA) and hydroxybutylmethacrylate (HBMA)) and two liquid crystals: (4-cyano-4'-n-pentyl-biphenyl) (5CB) and E7 which is an eutectic mixtures of four cyanoparaphenylenes. These mixtures are prepared adding the Darocur 1173 as photoinitiator, the 1.6-hexanediol diacrylate (HDDA) as cross-linker agent, and finally they are exposed to UV irradiation. The kinetic polymerization of monomer/LC mixture were investigated with the Fourier Transform Infra Red spectroscopy (FTIR). The electro-optical properties of the PDLC films were determined by measuring the voltage dependence on the transmitted light.Keywords: acrylic monomers, films PDLC, liquid crystal, polymerisation
Procedia PDF Downloads 2932654 Context-Aware Recommender System Using Collaborative Filtering, Content-Based Algorithm and Fuzzy Rules
Authors: Xochilt Ramirez-Garcia, Mario Garcia-Valdez
Abstract:
Contextual recommendations are implemented in Recommender Systems to improve user satisfaction, recommender system makes accurate and suitable recommendations for a particular situation reaching personalized recommendations. The context provides information relevant to the Recommender System and is used as a filter for selection of relevant items for the user. This paper presents a Context-aware Recommender System, which uses techniques based on Collaborative Filtering and Content-Based, as well as fuzzy rules, to recommend items inside the context. The dataset used to test the system is Trip Advisor. The accuracy in the recommendations was evaluated with the Mean Absolute Error.Keywords: algorithms, collaborative filtering, intelligent systems, fuzzy logic, recommender systems
Procedia PDF Downloads 4262653 Using Historical Data for Stock Prediction
Authors: Sofia Stoica
Abstract:
In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices in the past five years of ten major tech companies – Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We experimented with a variety of models– a linear regressor model, K nearest Neighbors (KNN), a sequential neural network – and algorithms - Multiplicative Weight Update, and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.Keywords: finance, machine learning, opening price, stock market
Procedia PDF Downloads 1972652 LiDAR Based Real Time Multiple Vehicle Detection and Tracking
Authors: Zhongzhen Luo, Saeid Habibi, Martin v. Mohrenschildt
Abstract:
Self-driving vehicle require a high level of situational awareness in order to maneuver safely when driving in real world condition. This paper presents a LiDAR based real time perception system that is able to process sensor raw data for multiple target detection and tracking in dynamic environment. The proposed algorithm is nonparametric and deterministic that is no assumptions and priori knowledge are needed from the input data and no initializations are required. Additionally, the proposed method is working on the three-dimensional data directly generated by LiDAR while not scarifying the rich information contained in the domain of 3D. Moreover, a fast and efficient for real time clustering algorithm is applied based on a radially bounded nearest neighbor (RBNN). Hungarian algorithm procedure and adaptive Kalman filtering are used for data association and tracking algorithm. The proposed algorithm is able to run in real time with average run time of 70ms per frame.Keywords: lidar, segmentation, clustering, tracking
Procedia PDF Downloads 4262651 Adsorption of Lead and Zinc Ions Onto Chemical Activated Millet Husk: Equilibrium and Kinetics Studies
Authors: Hilary Rutto, Linda Sibali
Abstract:
In this study, the adsorption of lead and zinc ions from aqueous solutions by modified millet husk has been investigated. The effects of different parameters, such as pH, adsorbent dosage, concentration, temperature, and contact time, have been investigated. The results of the experiments showed that the adsorption of both metal ions increased by increasing pH values up to 11. Adsorption process was initially fast. The adsorption rate decreased then until it reached to equilibrium time of 120 min for both lead and zinc ions. The Langmuir, Freundlich, Dubinin-Radushkevich (D-R), and thermodynamic models (Gibbs free energy) were used to determine the isotherm parameters associated with the adsorption process. The positive values of Gibbs free energy change indicated that reaction is not spontaneous. Experimental data were also evaluated in terms of kinetic characteristics of adsorption, and it was found that adsorption process for both metal ions followed pseudo-first order for zinc and pseudo-second-order for lead.Keywords: zinc, lead, adsorption, millet husks
Procedia PDF Downloads 1712650 Essentiality of Core Strategic Vision in Continuous Cost Reduction Management
Authors: Lai Ving Kam
Abstract:
Many markets are maturing, consumer buying powers are weakening and customer preferences change rapidly. To survive, many adopt fast paced continuous cost reduction and competitive pricing to remain relevance. Marketers desire to push for more sales to increase revenues have intensified competitions at time cannibalize the product and market. The amazing technologies changes have created both hope and despair to the industries. The pressure to constantly reduce cost, on the one hand, create and market new products in cheaper prices and shorter life cycles, on the other has become a continuous endeavour. The twin trends appear irreconcilable. Can core strategic vision provides and adapts new directions in continuous cost reduction? This study investigates core strategic vision able to meet this need, for firms to survive and stay profitable. Under current uncertainty market, are firms falling back on their core strategic visions to take them out of the unfavourable positions?Keywords: core strategy vision, continuous cost reduction, fashionable products industry, competitive pricing
Procedia PDF Downloads 3232649 Using Cooperation Approaches at Different Levels of Artificial Bee Colony Method
Authors: Vahid Zeighami, Mohsen Ghsemi, Reza Akbari
Abstract:
In this work, a Multi-Level Artificial Bee Colony (called MLABC) is presented. In MLABC two species are used. The first species employs n colonies in which each of the them optimizes the complete solution vector. The cooperation between these colonies is carried out by exchanging information through a leader colony, which contains a set of elite bees. The second species uses a cooperative approach in which the complete solution vector is divided to k sub-vectors, and each of these sub-vectors is optimized by a a colony. The cooperation between these colonies is carried out by compiling sub-vectors into the complete solution vector. Finally, the cooperation between two species is obtained by exchanging information between them. The proposed algorithm is tested on a set of well known test functions. The results show that MLABC algorithms provide efficiency and robustness to solve numerical functions.Keywords: artificial bee colony, cooperative, multilevel cooperation, vector
Procedia PDF Downloads 4482648 Determination of the Botanical Origin of Honey by the Artificial Neural Network Processing of PARAFAC Scores of Fluorescence Data
Authors: Lea Lenhardt, Ivana Zeković, Tatjana Dramićanin, Miroslav D. Dramićanin
Abstract:
Fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) and artificial neural networks (ANN) were used for characterization and classification of honey. Excitation emission spectra were obtained for 95 honey samples of different botanical origin (acacia, sunflower, linden, meadow, and fake honey) by recording emission from 270 to 640 nm with excitation in the range of 240-500 nm. Fluorescence spectra were described with a six-component PARAFAC model, and PARAFAC scores were further processed with two types of ANN’s (feed-forward network and self-organizing maps) to obtain algorithms for classification of honey on the basis of their botanical origin. Both ANN’s detected fake honey samples with 100% sensitivity and specificity.Keywords: honey, fluorescence, PARAFAC, artificial neural networks
Procedia PDF Downloads 9572647 Study on the Efficient Routing Algorithms in Delay-Tolerant Networks
Authors: Si-Gwan Kim
Abstract:
In Delay Tolerant Networks (DTN), there may not exist an end-to-end path between source and destination at the time of message transmission. Employing ‘Store Carry and Forward’ delivery mechanism for message transmission in such networks usually incurs long message delays. In this paper, we present the modified Binary Spray and Wait (BSW) routing protocol that enhances the performance of the original one. Our proposed algorithm adjusts the number of forward messages depending on the number of neighbor nodes. By using beacon messages periodically, the number of neighbor nodes can be managed. The simulation using ONE simulator results shows that our modified version gives higher delivery ratio and less latency as compared to BSW.Keywords: delay tolerant networks, store carry and forward, one simulator, binary spray and wait
Procedia PDF Downloads 1272646 A Stepwise Approach to Automate the Search for Optimal Parameters in Seasonal ARIMA Models
Authors: Manisha Mukherjee, Diptarka Saha
Abstract:
Reliable forecasts of univariate time series data are often necessary for several contexts. ARIMA models are quite popular among practitioners in this regard. Hence, choosing correct parameter values for ARIMA is a challenging yet imperative task. Thus, a stepwise algorithm is introduced to provide automatic and robust estimates for parameters (p; d; q)(P; D; Q) used in seasonal ARIMA models. This process is focused on improvising the overall quality of the estimates, and it alleviates the problems induced due to the unidimensional nature of the methods that are currently used such as auto.arima. The fast and automated search of parameter space also ensures reliable estimates of the parameters that possess several desirable qualities, consequently, resulting in higher test accuracy especially in the cases of noisy data. After vigorous testing on real as well as simulated data, the algorithm doesn’t only perform better than current state-of-the-art methods, it also completely obviates the need for human intervention due to its automated nature.Keywords: time series, ARIMA, auto.arima, ARIMA parameters, forecast, R function
Procedia PDF Downloads 1672645 An Improvement of Multi-Label Image Classification Method Based on Histogram of Oriented Gradient
Authors: Ziad Abdallah, Mohamad Oueidat, Ali El-Zaart
Abstract:
Image Multi-label Classification (IMC) assigns a label or a set of labels to an image. The big demand for image annotation and archiving in the web attracts the researchers to develop many algorithms for this application domain. The existing techniques for IMC have two drawbacks: The description of the elementary characteristics from the image and the correlation between labels are not taken into account. In this paper, we present an algorithm (MIML-HOGLPP), which simultaneously handles these limitations. The algorithm uses the histogram of gradients as feature descriptor. It applies the Label Priority Power-set as multi-label transformation to solve the problem of label correlation. The experiment shows that the results of MIML-HOGLPP are better in terms of some of the evaluation metrics comparing with the two existing techniques.Keywords: data mining, information retrieval system, multi-label, problem transformation, histogram of gradients
Procedia PDF Downloads 3772644 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market
Authors: Ioannis P. Panapakidis, Marios N. Moschakis
Abstract:
The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.Keywords: deregulated energy market, forecasting, machine learning, system marginal price
Procedia PDF Downloads 2162643 Cocrystal of Mesalamine for Enhancement of Its Biopharmaceutical Properties, Utilizing Supramolecular Chemistry Approach
Authors: Akshita Jindal, Renu Chadha, Maninder Karan
Abstract:
Supramolecular chemistry has gained recent eminence in a flurry of research documents demonstrating the formation of new crystalline forms with potentially advantageous characteristics. Mesalamine (5-amino salicylic acid) belongs to anti-inflammatory class of drugs, is used to treat ulcerative colitis and Crohn’s disease. Unfortunately, mesalamine suffer from poor solubility and therefore very low bioavailability. This work is focused on preparation and characterization of cocrystal of mesalamine with nicotinamide (MNIC) a coformer of GRAS status. Cocrystallisation was achieved by solvent drop grinding in stoichiometric ratio of 1:1 using acetonitrile as solvent and was characterized by various techniques including DSC (Differential Scanning Calorimetry), PXRD (X-ray Powder Diffraction), and FTIR (Fourier Transform Infrared Spectrometer). The co-crystal depicted single endothermic transitions (254°C) which were different from the melting peaks of both drug (288°C) and coformer (128°C) indicating the formation of a new solid phase. Different XRPD patterns and FTIR spectrums for the co-crystals from those of individual components confirms the formation of new phase. Enhancement in apparent solubility study and intrinsic dissolution study showed effectiveness of this cocrystal. Further improvement in pharmacokinetic profile has also been observed with 2 folds increase in bioavailability. To conclude, our results show that application of nicotinamide as a coformer is a viable approach towards the preparation of cocrystals of potential drug molecule having limited solubility.Keywords: cocrystal, mesalamine, nicotinamide, solvent drop grinding
Procedia PDF Downloads 179