Search results for: energy policy and planning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14530

Search results for: energy policy and planning

12580 Comparative Comparison (Cost-Benefit Analysis) of the Costs Caused by the Earthquake and Costs of Retrofitting Buildings in Iran

Authors: Iman Shabanzadeh

Abstract:

Earthquake is known as one of the most frequent natural hazards in Iran. Therefore, policy making to improve the strengthening of structures is one of the requirements of the approach to prevent and reduce the risk of the destructive effects of earthquakes. In order to choose the optimal policy in the face of earthquakes, this article tries to examine the cost of financial damages caused by earthquakes in the building sector and compare it with the costs of retrofitting. In this study, the results of adopting the scenario of "action after the earthquake" and the policy scenario of "strengthening structures before the earthquake" have been collected, calculated and finally analyzed by putting them together. Methodologically, data received from governorates and building retrofitting engineering companies have been used. The scope of the study is earthquakes occurred in the geographical area of Iran, and among them, eight earthquakes have been specifically studied: Miane, Ahar and Haris, Qator, Momor, Khorasan, Damghan and Shahroud, Gohran, Hormozgan and Ezgole. The main basis of the calculations is the data obtained from retrofitting companies regarding the cost per square meter of building retrofitting and the data of the governorate regarding the power of earthquake destruction, the realized costs for the reconstruction and construction of residential units. The estimated costs have been converted to the value of 2021 using the time value of money method to enable comparison and aggregation. The cost-benefit comparison of the two policies of action after the earthquake and retrofitting before the earthquake in the eight earthquakes investigated shows that the country has suffered five thousand billion Tomans of losses due to the lack of retrofitting of buildings against earthquakes. Based on the data of the Budget Law's of Iran, this figure was approximately twice the budget of the Ministry of Roads and Urban Development and five times the budget of the Islamic Revolution Housing Foundation in 2021. The results show that the policy of retrofitting structures before an earthquake is significantly more optimal than the competing scenario. The comparison of the two policy scenarios examined in this study shows that the policy of retrofitting buildings before an earthquake, on the one hand, prevents huge losses, and on the other hand, by increasing the number of earthquake-resistant houses, it reduces the amount of earthquake destruction. In addition to other positive effects of retrofitting, such as the reduction of mortality due to earthquake resistance of buildings and the reduction of other economic and social effects caused by earthquakes. These are things that can prove the cost-effectiveness of the policy scenario of "strengthening structures before earthquakes" in Iran.

Keywords: disaster economy, earthquake economy, cost-benefit analysis, resilience

Procedia PDF Downloads 56
12579 Energy and Exergy Analyses of Thin-Layer Drying of Pineapple Slices

Authors: Apolinar Picado, Steve Alfaro, Rafael Gamero

Abstract:

Energy and exergy analyses of thin-layer drying of pineapple slices (Ananas comosus L.) were conducted in a laboratory tunnel dryer. Drying experiments were carried out at three temperatures (100, 115 and 130 °C) and an air velocity of 1.45 m/s. The effects of drying variables on energy utilisation, energy utilisation ratio, exergy loss and exergy efficiency were studied. The enthalpy difference of the gas increased as the inlet gas temperature increase. It is observed that at the 75 minutes of the drying process the outlet gas enthalpy achieves a maximum value that is very close to the inlet value and remains constant until the end of the drying process. This behaviour is due to the reduction of the total enthalpy within the system, or in other words, the reduction of the effective heat transfer from the hot gas flow to the vegetable being dried. Further, the outlet entropy exhibits a significant increase that is not only due to the temperature variation, but also to the increase of water vapour phase contained in the hot gas flow. The maximum value of the exergy efficiency curve corresponds to the maximum value observed within the drying rate curves. This maximum value represents the stage when the available energy is efficiently used in the removal of the moisture within the solid. As the drying rate decreases, the available energy is started to be less employed. The exergetic efficiency was directly dependent on the evaporation flux and since the convective drying is less efficient that other types of dryer, it is likely that the exergetic efficiency has relatively low values.

Keywords: efficiency, energy, exergy, thin-layer drying

Procedia PDF Downloads 249
12578 Comparison of Irradiance Decomposition and Energy Production Methods in a Solar Photovoltaic System

Authors: Tisciane Perpetuo e Oliveira, Dante Inga Narvaez, Marcelo Gradella Villalva

Abstract:

Installations of solar photovoltaic systems have increased considerably in the last decade. Therefore, it has been noticed that monitoring of meteorological data (solar irradiance, air temperature, wind velocity, etc.) is important to predict the potential of a given geographical area in solar energy production. In this sense, the present work compares two computational tools that are capable of estimating the energy generation of a photovoltaic system through correlation analyzes of solar radiation data: PVsyst software and an algorithm based on the PVlib package implemented in MATLAB. In order to achieve the objective, it was necessary to obtain solar radiation data (measured and from a solarimetric database), analyze the decomposition of global solar irradiance in direct normal and horizontal diffuse components, as well as analyze the modeling of the devices of a photovoltaic system (solar modules and inverters) for energy production calculations. Simulated results were compared with experimental data in order to evaluate the performance of the studied methods. Errors in estimation of energy production were less than 30% for the MATLAB algorithm and less than 20% for the PVsyst software.

Keywords: energy production, meteorological data, irradiance decomposition, solar photovoltaic system

Procedia PDF Downloads 137
12577 Barriers and Enablers to Climate and Health Adaptation Planning in Small Urban Areas in the Great Lakes Region

Authors: Elena Cangelosi, Wayne Beyea

Abstract:

This research expands the resilience planning literature by exploring the barriers and enablers to climate and health adaptation planning for small urban, coastal Great Lakes communities. With funding from the United States Centers for Disease Control and Prevention (CDC) Climate Ready City and States Initiative, this research took place during a 3-year pilot intervention project which integrates urban planning and public health. The project used the CDC’s Building Resilience Against Climate Effects (BRACE) framework to prevent or reduce the human health impacts from climate change in Marquette County, Michigan. Using a deliberation with the analysis planning process, interviews, focus groups, and community meetings with over 25 stakeholder groups and over 100 participants identified the area’s climate-related health concerns and adaptation interventions to address those concerns. Marquette County, on the shores of Lake Superior, the largest of the Great Lakes, was selected for the project based on their existing adaptive capacity and proactive approach to climate adaptation planning. With Marquette County as the context, this study fills a gap in the adaptation literature, which currently heavily emphasizes large-urban or agriculturally-based rural areas, and largely neglects small urban areas. This research builds on the qualitative case-study, survey, and interview approach established by previous researchers on contextual barriers and enablers for adaptation planning. This research uses a case study approach, including surveys and interviews of public officials, to identify the barriers and enablers for climate and health adaptation planning for small-urban areas within a large, non-agricultural, Great Lakes county. The researchers hypothesize that the barriers and enablers will, in some cases, overlap those found in other contexts, but in many cases, will be unique to a rural setting. The study reveals that funding, staff capacity, and communication across a large, rural geography act as the main barriers, while strong networks and collaboration, interested leaders, and community interest through a strong human-land connection act as the primary enablers. Challenges unique to rural areas are revealed, including weak opportunities for grant funding, large geographical distances, communication challenges with an aging and remote population, and the out-migration of education residents. Enablers that may be unique to rural contexts include strong collaborative relationships across jurisdictions for regional work and strong connections between residents and the land. As the factors that enable and prevent climate change planning are highly contextual, understanding, and appropriately addressing the unique factors at play for small-urban communities is key for effective planning in those areas. By identifying and addressing the barriers and enablers to climate and health adaptation planning for small-urban, coastal areas, this study can help Great Lakes communities appropriately build resilience to the adverse impacts of climate change. In addition, this research expands the breadth of research and understanding of the challenges and opportunities planners confront in the face of climate change.

Keywords: climate adaptation and resilience, climate change adaptation, climate change and urban resilience, governance and urban resilience

Procedia PDF Downloads 118
12576 Modeling and Analysis of Solar Assisted Adsorption Cooling System Using TRNSYS

Authors: M. Wajahat, M. Shoaib, A. Waheed

Abstract:

As a result of increase in world energy demand as well as the demand for heating, refrigeration and air conditioning, energy engineers are now more inclined towards the renewable energy especially solar based thermal driven refrigeration and air conditioning systems. This research is emphasized on solar assisted adsorption refrigeration system to provide comfort conditions for a building in Islamabad. The adsorption chiller can be driven by low grade heat at low temperature range (50 -80 °C) which is lower than that required for generator in absorption refrigeration system which may be furnished with the help of common flat plate solar collectors (FPC). The aim is to offset the total energy required for building’s heating and cooling demand by using FPC’s thus reducing dependency on primary energy source hence saving energy. TRNSYS is a dynamic modeling and simulation tool which can be utilized to simulate the working of a complete solar based adsorption chiller to meet the desired cooling and heating demand during summer and winter seasons, respectively. Modeling and detailed parametric analysis of the whole system is to be carried out to determine the optimal system configuration keeping in view various design constraints. Main focus of the study is on solar thermal loop of the adsorption chiller to reduce the contribution from the auxiliary devices.

Keywords: flat plate collector, energy saving, solar assisted adsorption chiller, TRNSYS

Procedia PDF Downloads 649
12575 A Review of Critical Factors in Budgetary Financing of Public Infrastructure in Nigeria

Authors: Akintayo Opawole, Godwin O. Jagboro

Abstract:

Research efforts on infrastructure development in Nigeria had not provided adequate assessment of issues essential for policy response by the government to address infrastructure deficiency. One major gap existing in previous studies is the assessment of challenges facing the budgetary financing model. Based on a case study of Osun State in Southwestern Nigeria, factors affecting budgetary financing of public infrastructure were identified from literature and brainstorming. Respondents were: 6 architects, 4 quantity surveyors, 6 town planners, 5 estate surveyors, 4 builders, 21 engineers and 26 economists/accountants ranging from principal to director who have been involved in policy making process with respect to infrastructure development in the public service of Osun state. The identified variables were subjected to factor analysis. The Kaiser-Meyer-Olkin measure of sampling adequacy tests carried out (KMO, 0.785) showed that the data collected were adequate for the analysis and the Bartlett’s test of sphericity (0.000) showed the data upon which the analysis was carried out was reliable. Results showed that factors such as poor collaboration between the state and local government establishments, absence of credible database system and inadequate funding of maintenance were the most significant to infrastructure development in the State. Policy responses to address challenges of infrastructure development in the state were identified to focus on creation of legal framework for liberation policy, enforcement of ‘due process’ in the procurement and establishment of monitoring system for project delivery.

Keywords: development, infrastructure, financing, procurement

Procedia PDF Downloads 410
12574 Empowerment at the Grassroots: Impact of Participatory (in) Equalities in Policy Formulation and Recognition and Redistribution of Women at the Grassroots in India

Authors: Samanwita Paul

Abstract:

Borrowing from Kabeer’s framework of empowerment, participation of women at Panchayat level politics (grassroots level of politics in India) has been conceptualized as a resource in the study and the impact of the same in influencing the policies at the grassroots as an agency. The study attempts to examine such intricacies in the dynamics of participation and policy formulation at the Panchayat level and to assess its overall impact in altering the recognition and redistribution of women. A conscious attempt has been made to go beyond formal politics and consider participants of the informal political processes as subjects of the study. Primary surveys were conducted for data collection in 4 Panchayat villages (from Jalpaiguri district in West Bengal) of which 2 wards from each were selected based on the nature of reservation of the panchayat seats. In-depth interviews with the Panchayat members and an approximate of 80 voters from each of the villages were conducted. This has been further analyzed with the aid of appropriate statistical tools and narratives. Preliminary findings show that women from vulnerable sections tend to participate more in the political process since it offers them a means of negotiating with their vulnerabilities however in case of its impact on policy formulation, the effect of women’s participation does to appear to be as profound.

Keywords: recognition, redistribution, political participation, women

Procedia PDF Downloads 132
12573 Energy Efficient Resource Allocation and Scheduling in Cloud Computing Platform

Authors: Shuen-Tai Wang, Ying-Chuan Chen, Yu-Ching Lin

Abstract:

There has been renewal of interest in the relation between Green IT and cloud computing in recent years. Cloud computing has to be a highly elastic environment which provides stable services to users. The growing use of cloud computing facilities has caused marked energy consumption, putting negative pressure on electricity cost of computing center or data center. Each year more and more network devices, storages and computers are purchased and put to use, but it is not just the number of computers that is driving energy consumption upward. We could foresee that the power consumption of cloud computing facilities will double, triple, or even more in the next decade. This paper aims at resource allocation and scheduling technologies that are short of or have not well developed yet to reduce energy utilization in cloud computing platform. In particular, our approach relies on recalling services dynamically onto appropriate amount of the machines according to user’s requirement and temporarily shutting down the machines after finish in order to conserve energy. We present initial work on integration of resource and power management system that focuses on reducing power consumption such that they suffice for meeting the minimizing quality of service required by the cloud computing platform.

Keywords: cloud computing, energy utilization, power consumption, resource allocation

Procedia PDF Downloads 333
12572 Potential Energy Expectation Value for Lithium Excited State (1s2s3s)

Authors: Khalil H. Al-Bayati, G. Nasma, Hussein Ban H. Adel

Abstract:

The purpose of the present work is to calculate the expectation value of potential energy for different spin states (ααα ≡ βββ, αβα ≡ βαβ) and compare it with spin states (αββ, ααβ ) for lithium excited state (1s2s3s) and Li-like ions (Be+, B+2) using Hartree-Fock wave function by partitioning technique. The result of inter particle expectation value shows linear behaviour with atomic number and for each atom and ion the shows the trend ααα < ααβ < αββ < αβα.

Keywords: lithium excited state, potential energy, 1s2s3s, mathematical physics

Procedia PDF Downloads 484
12571 A Comparative Study between Japan and the European Union on Software Vulnerability Public Policies

Authors: Stefano Fantin

Abstract:

The present analysis outcomes from the research undertaken in the course of the European-funded project EUNITY, which targets the gaps in research and development on cybersecurity and privacy between Europe and Japan. Under these auspices, the research presents a study on the policy approach of Japan, the EU and a number of Member States of the Union with regard to the handling and discovery of software vulnerabilities, with the aim of identifying methodological differences and similarities. This research builds upon a functional comparative analysis of both public policies and legal instruments from the identified jurisdictions. The result of this analysis is based on semi-structured interviews with EUNITY partners, as well as by the participation of the researcher to a recent report from the Center for EU Policy Study on software vulnerability. The European Union presents a rather fragmented legal framework on software vulnerabilities. The presence of a number of different legislations at the EU level (including Network and Information Security Directive, Critical Infrastructure Directive, Directive on the Attacks at Information Systems and the Proposal for a Cybersecurity Act) with no clear focus on such a subject makes it difficult for both national governments and end-users (software owners, researchers and private citizens) to gain a clear understanding of the Union’s approach. Additionally, the current data protection reform package (general data protection regulation), seems to create legal uncertainty around security research. To date, at the member states level, a few efforts towards transparent practices have been made, namely by the Netherlands, France, and Latvia. This research will explain what policy approach such countries have taken. Japan has started implementing a coordinated vulnerability disclosure policy in 2004. To date, two amendments can be registered on the framework (2014 and 2017). The framework is furthermore complemented by a series of instruments allowing researchers to disclose responsibly any new discovery. However, the policy has started to lose its efficiency due to a significant increase in reports made to the authority in charge. To conclude, the research conducted reveals two asymmetric policy approaches, time-wise and content-wise. The analysis therein will, therefore, conclude with a series of policy recommendations based on the lessons learned from both regions, towards a common approach to the security of European and Japanese markets, industries and citizens.

Keywords: cybersecurity, vulnerability, European Union, Japan

Procedia PDF Downloads 153
12570 Estimating the Technological Deviation Impact on the Value of the Output Parameter of the Induction Converter

Authors: Marinka K. Baghdasaryan, Siranush M. Muradyan, Avgen A. Gasparyan

Abstract:

Based on the experimental data, the impact of resistance and reactance of the winding, as well as the magnetic permeability of the magnetic circuit steel material on the value of the electromotive force of the induction converter is investigated. The obtained results allow to estimate the main technological spreads and determine the maximum level of the electromotive force change. By the method of experiment planning, the expression of a polynomial for the electromotive force which can be used to estimate the adequacy of mathematical models to be used at the investigation and design of induction converters is obtained.

Keywords: induction converter, electromotive force, expectation, technological spread, deviation, planning an experiment, polynomial, confidence level

Procedia PDF Downloads 463
12569 Combined Heat and Power Generation in Pressure Reduction City Gas Station (CGS)

Authors: Sadegh Torfi

Abstract:

Realization of anticipated energy efficiency from recuperative run-around energy recovery (RER) systems requires identification of the system components influential parameters. Because simulation modeling is considered as an integral part of the design and economic evaluation of RER systems, it is essential to calibrate the developed models and validate the performance predictions by means of comparison with data from experimental measurements. Several theoretical and numerical analyses on RER systems by researchers have been done, but generally the effect of distance between hot and cold flow is ignored. The objective of this study is to develop a thermohydroulic model for a typical RER system that accounts for energy loss from the interconnecting piping and effects of interconnecting pipes length performance of run-around energy recovery systems. Numerical simulation shows that energy loss from the interconnecting piping is change linear with pipes length and if pipes are properly isolated, maximum reduction of effectiveness of RER systems is 2% in typical piping systems.

Keywords: combined heat and power, heat recovery, effectiveness, CGS

Procedia PDF Downloads 194
12568 Starchy Wastewater as Raw Material for Biohydrogen Production by Dark Fermentation: A Review

Authors: Tami A. Ulhiza, Noor I. M. Puad, Azlin S. Azmi, Mohd. I. A. Malek

Abstract:

High amount of chemical oxygen demand (COD) in starchy waste can be harmful to the environment. In common practice, starch processing wastewater is discharged to the river without proper treatment. However, starchy waste still contains complex sugars and organic acids. By the right pretreatment method, the complex sugar can be hydrolyzed into more readily digestible sugars which can be utilized to be converted into more valuable products. At the same time, the global demand of energy is inevitable. The continuous usage of fossil fuel as the main source of energy can lead to energy scarcity. Hydrogen is a renewable form of energy which can be an alternative energy in the future. Moreover, hydrogen is clean and carries the highest energy compared to other fuels. Biohydrogen produced from waste has significant advantages over chemical methods. One of the major problems in biohydrogen production is the raw material cost. The carbohydrate-rich starchy wastes such as tapioca, maize, wheat, potato, and sago wastes is a promising candidate to be used as a substrate in producing biohydrogen. The utilization of those wastes for biohydrogen production can provide cheap energy generation with simultaneous waste treatment. Therefore this paper aims to review variety source of starchy wastes that has been widely used to synthesize biohydrogen. The scope includes the source of waste, the performance in yielding hydrogen, the pretreatment method and the type of culture that is suitable for starchy waste.

Keywords: biohydrogen, dark fermentation, renewable energy, starchy waste

Procedia PDF Downloads 221
12567 An Economic and Technological Analysis of Green Hydrogen Production for the Toulouse-Blagnac Airport

Authors: Badr Eddine Lebrouhi, Melissa Lopez Viveros, Silvia De Los Santos, Kolthoum Missaoui, Pamela Ramirez Vidal

Abstract:

Since the Paris Climate Agreement, numerous countries, including France, have committed to achieving carbon neutrality by 2050 by enhancing renewable energy capacity and decarbonizing various sectors, including aviation. In this way, the Occitanie region aspires to become a renewable energy pioneer and has focused on Toulouse's Blagnac airport—a prominent hub characterized by high-energy demands. As part of a holistic strategy to reduce the airport's energy dependency, green hydrogen has emerged as a promising alternative fuel, offering the potential to significantly enhance aviation's environmental sustainability. This study assesses the technical and economic aspects of green hydrogen production, particularly its potential to replace fossil kerosene in aviation at Toulouse-Blagnac airport. It analyzes future liquid hydrogen fuel demand, calculates energy requirements for electrolysis and liquefaction, considers diverse renewable energy scenarios, and assesses the Levelized Cost of Hydrogen (LCOH) for economic viability. The research also projects LCOH evolution from 2023 to 2050, offering a comprehensive view of green hydrogen's feasibility as a sustainable aviation fuel, aligning with the region's renewable energy and sustainable aviation objectives.

Keywords: Toulouse-Blagnac Airport, green hydrogen, aviation decarbonization, electrolysis, renewable energy, technical-economic feasibility

Procedia PDF Downloads 57
12566 Mesoporous RGO@(Co,Mn)3O4 Nanocomposite Prepared by Microwave Method and Its Electrochemical Performance

Authors: Charmaine Lamiel, Van Hoa Nguyen, Jae-Jin Shim

Abstract:

Supercapacitors are energy storage devices capable of storing more energy than conventional capacitors and have higher power density than batteries. The advantages of this method include the non-use of reducing agents and acidic medium, and no further use of a post-heat treatment unlike the conventional processes, in which calcination is generally employed after obtaining the initial product. Furthermore, it also offers a shorter reaction time at low temperatures and low power requirements, which allows low fabrication and energy cost. In this study, microwave irradiation was used for the facile and rapid synthesis of mesoporous RGO@(Co,Mn)3O4 nanosheets as an electrode material. The as-prepared electrode exhibited a high capacitance of 953 F•g^−1 at 1 A•g^−1 in a 6 M KOH electrolyte solution. Moreover, the electrode exhibited a high energy density of 76.2 Wh•kg^−1 at a power density of 720 W•kg^−1, and a high power density of 7200 W•kg^−1 at an energy density of 38 Wh•kg^−1. The successful methodology was considered to be efficient and cost-effective, thereby providing an active electrode material with very promising electrochemical performance.

Keywords: cobalt-manganese oxide, electrochemical, graphene, microwave synthesis, supercapacitor

Procedia PDF Downloads 206
12565 Assessment of Hydrogen Demand for Different Technological Pathways to Decarbonise the Aviation Sector in Germany

Authors: Manish Khanra, Shashank Prabhu

Abstract:

The decarbonization of hard-to-abate sectors is currently high on the agenda in the EU and its member states, as these sectors have substantial shares in overall GHG emissions while it is facing serious challenges to decarbonize. In particular, the aviation sector accounts for 2.8% of global anthropogenic CO₂ emissions. These emissions are anticipated to grow dramatically unless immediate mitigating efforts are implemented. Hydrogen and its derivatives based on renewable electricity can have a key role in the transition towards CO₂-neutral flights. The substantial shares of energy carriers in the form of drop-in fuel, direct combustion and Hydrogen-to-Electric are promising in most scenarios towards 2050. For creating appropriate policies to ramp up the production and utilisation of hydrogen commodities in the German aviation sector, a detailed analysis of the spatial distribution of supply-demand sites is essential. The objective of this research work is to assess the demand for hydrogen-based alternative fuels in the German aviation sector to achieve the perceived goal of the ‘Net Zero’ scenario by 2050. Here, the analysis of the technological pathways for the production and utilisation of these fuels in various aircraft options is conducted for reaching mitigation targets. Our method is based on data-driven bottom-up assessment, considering production and demand sites and their spatial distribution. The resulting energy demand and its spatial distribution with consideration of technology diffusion lead to a possible transition pathway of the aviation sector to meet short-term and long-term mitigation targets. Additionally, to achieve mitigation targets in this sector, costs and policy aspects are discussed, which would support decision-makers from airline industries, policymakers and the producers of energy commodities.

Keywords: the aviation sector, hard-to-abate sectors, hydrogen demand, alternative fuels, technological pathways, data-driven approach

Procedia PDF Downloads 125
12564 Second Order MIMO Sliding Mode Controller for Nonlinear Modeled Wind Turbine

Authors: Alireza Toloei, Ahmad R. Saffary, Reza Ghasemi

Abstract:

Due to the growing need for energy and limited fossil resources, the use of renewable energy, particularly wind is strongly favored. We all wind energy can’t be saved. Betz law, 59% of the total kinetic energy of the wind turbine is extracting. Therefore turbine control to achieve maximum performance and maintain stable conditions seem necessary. In this article, we plan for a horizontal axis wind turbine variable-speed variable-pitch nonlinear controller to obtain maximum output power. The model presented in this article, including a wide range of wind turbines are horizontal axis. However, the parameters used in this model is from Vestas V29 225 kW wind turbine. We designed second order sliding mode controller, which was robust in the face of changes in wind speed and it eliminated chattering by using of super twisting algorithm. Finally, using MATLAB software to simulate the results we considered the accuracy of the simulation results.

Keywords: non linear controller, robust, sliding mode, kinetic energy

Procedia PDF Downloads 494
12563 Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm

Authors: Amir Hossein Hejazi, Nima Amjady

Abstract:

In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production.

Keywords: wind power forecasting, echo state network, big bang-big crunch, evolutionary optimization algorithm

Procedia PDF Downloads 570
12562 Quantifying and Prioritizing Agricultural Residue Biomass Energy Potential in Ethiopia

Authors: Angesom Gebrezgabiher Tesfay, Afafaw Hailesilasie Tesfay, Muyiwa Samuel Adaramola

Abstract:

The energy demand boost in Ethiopia urges sustainable fuel options while it is mainly supplemented by traditional biomass and imported conventional fuels. To satisfy the deficiency it has to be sourced from all renewables. Thus identifying resources and estimating potential is vital to the sector. This study aims at an in-depth assessment to quantify, prioritize, and analyze agricultural residue biomass energy and related characteristic forms. Biomass use management and modernization seeks successive information and a clue about the resource quantity and characteristic. Five years of crop yield data for thirteen crops were collected. Conversion factors for their 20 residues are surveyed from the literature. Then residues amount potentially available for energy and their energy is estimated regional, crop-wise, residue-wise, and shares compared. Their potential value for energy is analyzed from two perspectives and prioritized. The gross potential is estimated to be 495PJ, equivalent to 12/17 million tons of oil/coal. At 30% collection efficiency, it is the same as conventional fuel import in 2018. Maize and sorghum potential and spatial availability are preeminent. Cotton and maize presented the highest potential values for energy from application and resource perspectives. Oromia and Amhara regions' contributions are the highest. The resource collection and application trends are required for future management that implicates a prospective study.

Keywords: crop residue, biomass potential, biomass resource, Ethiopian energy

Procedia PDF Downloads 117
12561 Feasibility Study of a Solar Farm Project with an Executive Approach

Authors: Amir Reza Talaghat

Abstract:

Since 2015, a new approach and policy regarding energy resources protection and using renewable energies has been started in Iran which was developing new projects. Investigating about the feasibility study of these new projects helped to figure out five steps to prepare an executive feasibility study of the concerned projects, which are proper site selections, authorizations, design and simulation, economic study and programming, respectively. The results were interesting and essential for decision makers and investors to start implementing of these projects in reliable condition. The research is obtained through collection and study of the project's documents as well as recalculation to review conformity of the results with GIS data and the technical information of the bidders. In this paper, it is attempted to describe the result of the performed research by describing the five steps as an executive methodology, for preparing a feasible study of installing a 10 MW – solar farm project. The corresponding results of the research also help decision makers to start similar projects is explained in this paper as follows: selecting the best location for the concerned PV plant, reliable and safe conditions for investment and the required authorizations to start implementing the solar farm project in the concerned region, selecting suitable component to achieve the best possible performance for the plant, economic profit of the investment, proper programming to implement the project on time.

Keywords: solar farm, solar energy, execution of PV power plant PV power plant

Procedia PDF Downloads 174
12560 Solving Process Planning, Weighted Apparent Tardiness Cost Dispatching, and Weighted Processing plus Weight Due-Date Assignment Simultaneously Using a Hybrid Search

Authors: Halil Ibrahim Demir, Caner Erden, Abdullah Hulusi Kokcam, Mumtaz Ipek

Abstract:

Process planning, scheduling, and due date assignment are three important manufacturing functions which are studied independently in literature. There are hundreds of works on IPPS and SWDDA problems but a few works on IPPSDDA problem. Integrating these three functions is very crucial due to the high relationship between them. Since the scheduling problem is in the NP-Hard problem class without any integration, an integrated problem is even harder to solve. This study focuses on the integration of these functions. Sum of weighted tardiness, earliness, and due date related costs are used as a penalty function. Random search and hybrid metaheuristics are used to solve the integrated problem. Marginal improvement in random search is very high in the early iterations and reduces enormously in later iterations. At that point directed search contribute to marginal improvement more than random search. In this study, random and genetic search methods are combined to find better solutions. Results show that overall performance becomes better as the integration level increases.

Keywords: process planning, genetic algorithm, hybrid search, random search, weighted due-date assignment, weighted scheduling

Procedia PDF Downloads 360
12559 Integrating Insulated Concrete Form (ICF) with Solar-Driven Reverse Osmosis Desalination for Building Integrated Energy Storage in Cold Climates

Authors: Amirhossein Eisapour, Mohammad Emamjome Kashan, Alan S. Fung

Abstract:

This research addresses the pressing global challenges of clean energy and water supplies, emphasizing the need for sustainable solutions for the building sector. The research centers on integrating Reverse Osmosis (RO) systems with building energy systems, incorporating Solar Thermal Collectors (STC)/Photovoltaic Thermal (PVT), water-to-water heat pumps, and an Insulated Concrete Form (ICF) based building foundation wall thermal energy storage. The study explores an innovative configuration’s effectiveness in addressing water and heating demands through clean energy sources while addressing ICF-based thermal storage challenges, which could overheat in the cooling season. Analyzing four configurations—STC-ICF, STC-ICF-RO, PVT-ICF, and PVT-ICF-RO, the study conducts a sensitivity analysis on collector area (25% and 50% increase) and weather data (evaluating five Canadian cities, Winnipeg, Toronto, Edmonton, Halifax and Vancouver). Key outcomes highlight the benefits of integrated RO scenarios, showcasing reduced ICF wall temperature, diminished unwanted heat in the cooling season, reduced RO pump consumption and enhanced solar energy production. The STC-ICF-RO and PVT-ICF-RO systems achieved energy savings of 653 kWh and 131 kWh, respectively, in comparison to their non-integrated RO counterparts. Additionally, both systems successfully contributed to lowering the CO2 production level of the energy system. The calculated payback period of STC-ICF-RO (2 years) affirms the proposed systems’ economic viability. Compared to the base system, which does not benefit from the ICF and RO integration with the building energy system, the STC-ICF-RO and PVT-ICF-RO demonstrate a dramatic energy consumption reduction of 20% and 32%, respectively. The sensitivity analysis suggests potential system improvements under specific conditions, especially when implementing the introduced energy system in communities of buildings.

Keywords: insulated concrete form, thermal energy storage, reverse osmosis, building energy systems, solar thermal collector, photovoltaic thermal, heat pump

Procedia PDF Downloads 46
12558 Design of an Energy Efficient Electric Auto Rickshaw

Authors: Muhammad Asghar, Aamer Iqbal Bhatti, Qadeer Ahmed, Tahir Izhar

Abstract:

Three wheeler auto Rickshaw, often termed as ‘auto rickshaw’ is very common in Pakistan and is considered as the most affordable means of transportation to the local people. Problems caused by the gasoline engine on the environment and people, the researchers and the automotive industry have turned to the hybrid electric vehicles and electrical powered vehicle. The research in this paper explains the design of energy efficient Electric auto Rickshaw. An electric auto rickshaw is being developed at Center for Energy Research and Development, (Lahore), which is running on the roads of Lahore city. Energy storage capacity of batteries is at least 25 times heavier than fossil fuel and having volume 10 times in comparison to fuel, resulting an increase of the Rickshaw weight. A set of specifications is derived according to the mobility requirements of the electric auto rickshaw. The design choices considering the power-train and component selection are explained in detail. It was concluded that electric auto rickshaw has many advantages and benefits over the conventional auto rickshaw. It is cleaner and much more energy efficient but limited to the distance it can travel before recharging of battery. In addition, a brief future view of the battery technology is given.

Keywords: conventional auto rickshaw, energy efficiency, electric auto rickshaw, internal combustion engine, environment

Procedia PDF Downloads 284
12557 Comparison Between Two Techniques (Extended Source to Surface Distance & Field Alignment) Of Craniospinal Irradiation (CSI) In the Eclipse Treatment Planning System

Authors: Naima Jannat, Ariful Islam, Sharafat Hossain

Abstract:

Due to the involvement of the large target volume, Craniospinal Irradiation makes it challenging to achieve a uniform dose, and it requires different isocenters. This isocentric junction needs to shift after every five fractions to overcome the possibility of hot and cold spots. This study aims to evaluate the Planning Target Volume coverage & sparing Organ at Risk between two techniques and shows that the Field Alignment Technique does not need replanning and resetting. Planning method for Craniospinal Irradiation by Eclipse treatment planning system Field Alignment and Extended Source to Surface Distance technique was developed where 36 Gy in 20 Fraction at the rate of 1.8 Gy was prescribed. The patient was immobilized in the prone position. In the Field Alignment technique, the plan consists of half beam blocked parallel opposed cranium and a single posterior cervicospine field was developed by sharing the same isocenter, which obviates divergence matching. Further, a single field was created to treat the remaining lumbosacral spine. Matching between the inferior diverging edge of the cervicospine field and the superior diverging edge of a lumbosacral field, the field alignment option was used, which automatically matches the field edge divergence as per the field alignment rule in Eclipse Treatment Planning System where the couch was set to 2700. In the Extended Source to Surface Distance technique, two parallel opposed fields were created for the cranium, and a single posterior cervicospine field was created where the Source to Surface Distance was from 120-140 cm. Dose Volume Histograms were obtained for each organ contoured and for each technique used. In all, the patient’s maximum dose to Planning Target Volume is higher for the Extended Source to Surface Distance technique to Field Alignment technique. The dose to all surrounding structures was increased with the use of a single Extended Source to Surface Distance when compared to the Field Alignment technique. The average mean dose to Eye, Brain Steam, Kidney, Oesophagus, Heart, Liver, Lung, and Ovaries were respectively (58% & 60 %), (103% & 98%), (13% & 15%), (10% & 63%), (12% & 16%), (33% & 30%), (14% & 18%), (69% & 61%) for Field Alignment and Extended Source to Surface Distance technique. However, the clinical target volume at the spine junction site received a less homogeneous dose with the Field Alignment technique as compared to Extended Source to Surface Distance. We conclude that, although the use of a single field Extended Source to Surface Distance delivered a more homogenous, but its maximum dose is higher than the Field Alignment technique. Also, a huge advantage of the Field Alignment technique for Craniospinal Irradiation is that it doesn’t need replanning and resetting up of patients after every five fractions and 95% prescribed dose was received by more than 95% of the Planning Target Volume in all the plane with the acceptable hot spot.

Keywords: craniospinalirradiation, cranium, cervicospine, immobilize, lumbosacral spine

Procedia PDF Downloads 108
12556 Optimal Beam for Accelerator Driven Systems

Authors: M. Paraipan, V. M. Javadova, S. I. Tyutyunnikov

Abstract:

The concept of energy amplifier or accelerator driven system (ADS) involves the use of a particle accelerator coupled with a nuclear reactor. The accelerated particle beam generates a supplementary source of neutrons, which allows the subcritical functioning of the reactor, and consequently a safe exploitation. The harder neutron spectrum realized ensures a better incineration of the actinides. The almost generalized opinion is that the optimal beam for ADS is represented by protons with energy around 1 GeV (gigaelectronvolt). In the present work, a systematic analysis of the energy gain for proton beams with energy from 0.5 to 3 GeV and ion beams from deuteron to neon with energies between 0.25 and 2 AGeV is performed. The target is an assembly of metallic U-Pu-Zr fuel rods in a bath of lead-bismuth eutectic coolant. The rods length is 150 cm. A beryllium converter with length 110 cm is used in order to maximize the energy released in the target. The case of a linear accelerator is considered, with a beam intensity of 1.25‧10¹⁶ p/s, and a total accelerator efficiency of 0.18 for proton beam. These values are planned to be achieved in the European Spallation Source project. The energy gain G is calculated as the ratio between the energy released in the target to the energy spent to accelerate the beam. The energy released is obtained through simulation with the code Geant4. The energy spent is calculating by scaling from the data about the accelerator efficiency for the reference particle (proton). The analysis concerns the G values, the net power produce, the accelerator length, and the period between refueling. The optimal energy for proton is 1.5 GeV. At this energy, G reaches a plateau around a value of 8 and a net power production of 120 MW (megawatt). Starting with alpha, ion beams have a higher G than 1.5 GeV protons. A beam of 0.25 AGeV(gigaelectronvolt per nucleon) ⁷Li realizes the same net power production as 1.5 GeV protons, has a G of 15, and needs an accelerator length 2.6 times lower than for protons, representing the best solution for ADS. Beams of ¹⁶O or ²⁰Ne with energy 0.75 AGeV, accelerated in an accelerator with the same length as 1.5 GeV protons produce approximately 900 MW net power, with a gain of 23-25. The study of the evolution of the isotopes composition during irradiation shows that the increase in power production diminishes the period between refueling. For a net power produced of 120 MW, the target can be irradiated approximately 5000 days without refueling, but only 600 days when the net power reaches 1 GW (gigawatt).

Keywords: accelerator driven system, ion beam, electrical power, energy gain

Procedia PDF Downloads 137
12555 Improving Collective Health and Social Care through a Better Consideration of Sex and Gender: Analytical Report by the French National Authority for Health

Authors: Thomas Suarez, Anne-Sophie Grenouilleau, Erwan Autin, Alexandre Biosse-Duplan, Emmanuelle Blondet, Laurence Chazalette, Marie Coniel, Agnes Dessaigne, Sylvie Lascols, Andrea Lasserre, Candice Legris, Pierre Liot, Aline Metais, Karine Petitprez, Christophe Varlet, Christian Saout

Abstract:

Background: The role of biological sex and gender identity -whether assigned or chosen- as health determinants are far from a recent discovery: several reports have stressed out how being a woman or a man could affect health on various scales. However, taking it into consideration beyond stereotypes and rigid binary assumptions still seems to be a work in progress. Method: The report is a synthesis on a variety of specific topics, each of which was studied by a specialist from the French National Authority for Health (HAS), through an analysis of existing literature on both healthcare policy construction process and instruments (norms, data analysis, clinical trials, guidelines, and professional practices). This work also implied a policy analysis of French recent public health laws and a retrospective study of guidelines with a gender mainstreaming approach. Results: The analysis showed that though sex and gender were well-known determinants of health, their consideration by both public policy and health operators was often incomplete, as it does not incorporate how sex and gender interact, as well as how they interact with other factors. As a result, the health and social care systems and their professionals tend to reproduce some stereotypical and inadequate habits. Though the data available often allows to take sex and gender into consideration, such data is often underused in practice guidelines and policy formulation. Another consequence is a lack of inclusiveness towards transgender or intersex persons. Conclusions: This report first urges for raising awareness of all the actors of health, in its broadest definition, that sex and gender matter beyond first-look conclusions. It makes a series of recommendations in order to reshape policy construction in the health sector on the one hand and to design public health instruments to make them more inclusive regarding sex and gender on the other hand. The HAS finally committed to integrate sex and gender preoccupations in its workings methods, to be a driving force in the spread of these concerns.

Keywords: biological sex, determinants of health, gender, healthcare policy instruments, social accompaniment

Procedia PDF Downloads 126
12554 Integrating Renewable Energy Forecasting Systems with HEMS and Developing It with a Bottom-Up Approach

Authors: Punit Gandhi, J. C. Brezet, Tim Gorter, Uchechi Obinna

Abstract:

This paper introduces how weather forecasting could help in more efficient energy management for smart homes with the use of Home Energy Management Systems (HEMS). The paper also focuses on educating consumers and helping them make more informed decisions while using the HEMS. A combined approach of technical and user perspective has been selected to develop a novel HEMS-product-service combination in a more comprehensive manner. The current HEMS switches on/off the energy intensive appliances based on the fluctuating electricity tariffs, but with weather forecasting, it is possible to shift the time of use of energy intensive appliances to maximum electricity production from the renewable energy system installed in the house. Also, it is possible to estimate the heating/cooling load of the house for the day ahead demand. Hence, relevant insight is gained in the expected energy production and consumption load for the next day, facilitating better (more efficient, peak shaved, cheaper, etc.) energy management practices for smart homes. In literature, on the user perspective, it has been observed that consumers lose interest in using HEMS after three to four months. Therefore, to further help in better energy management practices, the new system had to be designed in a way that consumers would sustain their interaction with the system on a structural basis. It is hypothesized that, if consumers feel more comfortable with using such system, it would lead to a prolonged usage, including more energy savings and hence financial savings. To test the hypothesis, a survey for the HEMS is conducted, to which 59 valid responses were recorded. Analysis of the survey helped in designing a system which imparts better information about the energy production and consumption to the consumers. It is also found from the survey that, consumers like a variety of options and they do not like a constant reminder of what they should do. Hence, the final system is designed to encourage consumers to make an informed decision about their energy usage with a wide variety of behavioral options available. It is envisaged that the new system will be tested in several pioneering smart energy grid projects in both the Netherlands and India, with a continued ‘design thinking’ approach, combining the technical and user perspective, as the basis for further improvements.

Keywords: weather forecasting, smart grid, renewable energy forecasting, user defined HEMS

Procedia PDF Downloads 226
12553 Convective Hot Air Drying of Different Varieties of Blanched Sweet Potato Slices

Authors: M. O. Oke, T. S. Workneh

Abstract:

Drying behaviour of blanched sweet potato in a cabinet dryer using different five air temperatures (40-80oC) and ten sweet potato varieties sliced to 5 mm thickness were investigated. The drying data were fitted to eight models. The Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data obtained during the drying of all the varieties while Newton (Lewis) and Wang and Singh models gave the least fit. The values of Deff obtained for Bophelo variety (1.27 x 10-9 to 1.77 x 10-9 m2/s) was the least while that of S191 (1.93 x 10-9 to 2.47 x 10-9 m2/s) was the highest which indicates that moisture diffusivity in sweet potato is affected by the genetic factor. Activation energy values ranged from 0.27-6.54 kJ/mol. The lower activation energy indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method. The drying behavior of blanched sweet potato was investigated in a cabinet dryer. Drying time decreased considerably with increase in hot air temperature. Out of the eight models fitted, the Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data on all the varieties while Newton, Wang and Singh models gave the least. The lower activation energy (0.27-6.54 kJ/mol) obtained indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method.

Keywords: sweet potato slice, drying models, moisture ratio, moisture diffusivity, activation energy

Procedia PDF Downloads 512
12552 Using the Geographical Information Systems Story Maps in the Planning and Implementation of the Integrated Development Plan at the City of Umhlathuze, South Africa

Authors: Sibonakaliso Shadrack Nhlabathi

Abstract:

In South Africa local governments which are charged with the provision of services and amenities, frequently, face challenges of public protests against what the public perceives to be poor services. Public protests are common, even though the Integrated Development Plan, a central public participation document, which informs local government planning and resources management, ought to be a reflection of the voices of the beneficiary communities. The Integrated Development Plan concept –which evolved from the international discourse on governance, planning, and urban management of the 1990s, and, which bears similarities to the UK’s approaches to urban management and planning– is a significant concept in the planning practice in South Africa. Against this backdrop of the spread of public protests and the supposedly public participation in IDP formulation, this study investigated the extent to which residents of the city of uMhlathuze municipality, South Africa, could use Geographical Information Systems (GIS) Story Maps to enhance public participation in the provision of services and amenities. To this effect, this study collected and analysed data obtained through interactive web maps or hard copy maps; this map data was accompanied by research participants’ attributes data. Research participants identified positive or negative service delivery areas. Positive places were the places which the residents represented as good infrastructural, and amenities areas and weak places were marked as poor amenities. Participants then located each of their identified strong or weak places as points on the GIS Story Maps or on hard copy maps of the city. The information which participants provided was subsequently analysed to produce maps of patterns of service provision. In this way, the study succeeded to identify places that needed attention regarding delivery of services and amenities. Thus, this study advanced service provision through GIS Story Maps.

Keywords: GIS, IPD, South Africa, story maps

Procedia PDF Downloads 124
12551 Study on the Relationship between the Urban Geography and Urban Agglomeration to the Effects of Carbon Emissions

Authors: Peng-Shao Chen, Yen-Jong Chen

Abstract:

In recent years, global warming, the dramatic change in energy prices and the exhaustion of natural resources illustrated that energy-related topic cannot be ignored. Despite the relationship between the cities and CO₂ emissions has been extensively studied in recent years, little attention has been paid to differences in the geographical location of the city. However, the geographical climate has a great impact on lifestyle from city to city, such as the type of buildings, the major industry of the city, etc. Therefore, the paper instigates empirically the effects of kinds of urban factors and CO₂ emissions with consideration of the different geographic, climatic zones which cities are located. Using the regression model and a dataset of urban agglomeration in East Asia cities with over one million population, including 2005, 2010, and 2015 three years, the findings suggest that the impact of urban factors on CO₂ emissions vary with the latitude of the cities. Surprisingly, all kinds of urban factors, including the urban population, the share of GDP in service industry, per capita income, and others, have different level of impact on the cities locate in the tropical climate zone and temperate climate zone. The results of the study analyze the impact of different urban factors on CO₂ emissions in urban area with different geographical climate zones. These findings will be helpful for the formulation of relevant policies for urban planners and policy makers in different regions.

Keywords: carbon emissions, urban agglomeration, urban factor, urban geography

Procedia PDF Downloads 263