Search results for: edge intelligence
418 Non-Invasive Data Extraction from Machine Display Units Using Video Analytics
Authors: Ravneet Kaur, Joydeep Acharya, Sudhanshu Gaur
Abstract:
Artificial Intelligence (AI) has the potential to transform manufacturing by improving shop floor processes such as production, maintenance and quality. However, industrial datasets are notoriously difficult to extract in a real-time, streaming fashion thus, negating potential AI benefits. The main example is some specialized industrial controllers that are operated by custom software which complicates the process of connecting them to an Information Technology (IT) based data acquisition network. Security concerns may also limit direct physical access to these controllers for data acquisition. To connect the Operational Technology (OT) data stored in these controllers to an AI application in a secure, reliable and available way, we propose a novel Industrial IoT (IIoT) solution in this paper. In this solution, we demonstrate how video cameras can be installed in a factory shop floor to continuously obtain images of the controller HMIs. We propose image pre-processing to segment the HMI into regions of streaming data and regions of fixed meta-data. We then evaluate the performance of multiple Optical Character Recognition (OCR) technologies such as Tesseract and Google vision to recognize the streaming data and test it for typical factory HMIs and realistic lighting conditions. Finally, we use the meta-data to match the OCR output with the temporal, domain-dependent context of the data to improve the accuracy of the output. Our IIoT solution enables reliable and efficient data extraction which will improve the performance of subsequent AI applications.Keywords: human machine interface, industrial internet of things, internet of things, optical character recognition, video analytics
Procedia PDF Downloads 108417 Cai Guo-Qiang: A Chinese Artist at the Cutting-Edge of Global Art
Authors: Marta Blavia
Abstract:
Magiciens de la terre, organized in 1989 by the Centre Pompidou, became 'the first worldwide exhibition of contemporary art' by presenting artists from Western and non-Western countries, including three Chinese artists. For the first time, West turned its eyes to other countries not as exotic sources of inspiration, but as places where contemporary art was also being created. One year later, Chine: demain pour hier was inaugurated as the first Chinese avant-garde group-exhibition in Occident. Among the artists included was Cai Guo-Qiang who, like many other Chinese artists, had left his home country in the eighties in pursuit of greater creative freedom. By exploring artistic non-Western perspectives, both landmark exhibitions questioned the predominance of the Eurocentric vision in the construction of history art. But more than anything else, these exhibitions laid the groundwork for the rise of the so-called phenomenon 'global contemporary art'. All the same time, 1989 also was a turning point in Chinese art history. Because of the Tiananmen student protests, The Chinese government undertook a series of measures to cut down any kind of avant-garde artistic activity after a decade of a relative openness. During the eighties, and especially after the Tiananmen crackdown, some important artists began to leave China to move overseas such as Xu Bing and Ai Weiwei (USA); Chen Zhen and Huang Yong Ping (France); or Cai Guo-Qiang (Japan). After emigrating abroad, Chinese overseas artists began to develop projects in accordance with their new environments and audiences as well as to appear in numerous international exhibitions. With their creations, that moved freely between a variety of Eastern and Western art sources, these artists were crucial agents in the emergence of global contemporary art. As other Chinese artists overseas, Cai Guo-Qiang’s career took off during the 1990s and early 2000s right at the same moment in which Western art world started to look beyond itself. Little by little, he developed a very personal artistic language that redefines Chinese ideas, symbols, and traditional materials in a new world order marked by globalization. Cai Guo-Qiang participated in many of the exhibitions that contributed to shape global contemporary art: Encountering the Others (1992); the 45th Venice Biennale (1993); Inside Out: New Chinese Art (1997), or the 48th Venice Biennale (1999), where he recreated the Chinese monumental social realist work Rent Collection Courtyard that earned him the Golden Lion Award. By examining the different stages of Cai Guo-Qiang’s artistic path as well as the transnational dimensions of his creations, this paper aims at offering a comprehensive survey on the construction of the discourse of global contemporary art.Keywords: Cai Guo-Qiang, Chinese artists overseas, emergence global art, transnational art
Procedia PDF Downloads 282416 Dosimetric Comparison among Different Head and Neck Radiotherapy Techniques Using PRESAGE™ Dosimeter
Authors: Jalil ur Rehman, Ramesh C. Tailor, Muhammad Isa Khan, Jahnzeeb Ashraf, Muhammad Afzal, Geofferry S. Ibbott
Abstract:
Purpose: The purpose of this analysis was to investigate dose distribution of different techniques (3D-CRT, IMRT and VMAT) of head and neck cancer using 3-dimensional dosimeter called PRESAGETM Dosimeter. Materials and Methods: Computer tomography (CT) scans of radiological physics center (RPC) head and neck anthropomorphic phantom with both RPC standard insert and PRESAGETM insert were acquired separated with Philipp’s CT scanner and both CT scans were exported via DICOM to the Pinnacle version 9.4 treatment planning system (TPS). Each plan was delivered twice to the RPC phantom first containing the RPC standard insert having TLD and film dosimeters and then again containing the Presage insert having 3-D dosimeter (PRESAGETM) by using a Varian True Beam linear accelerator. After irradiation, the standard insert including point dose measurements (TLD) and planar Gafchromic® EBT film measurement were read using RPC standard procedure. The 3D dose distribution from PRESAGETM was read out with the Duke Midsized optical scanner dedicated to RPC (DMOS-RPC). Dose volume histogram (DVH), mean and maximal doses for organs at risk were calculated and compared among each head and neck technique. The prescription dose was same for all head and neck radiotherapy techniques which was 6.60 Gy/friction. Beam profile comparison and gamma analysis were used to quantify agreements among film measurement, PRESAGETM measurement and calculated dose distribution. Quality assurances of all plans were performed by using ArcCHECK method. Results: VMAT delivered the lowest mean and maximum doses to organ at risk (spinal cord, parotid) than IMRT and 3DCRT. Such dose distribution was verified by absolute dose distribution using thermoluminescent dosimeter (TLD) system. The central axial, sagittal and coronal planes were evaluated using 2D gamma map criteria(± 5%/3 mm) and results were 99.82% (axial), 99.78% (sagital), 98.38% (coronal) for VMAT plan and found the agreement between PRESAGE and pinnacle was better than IMRT and 3D-CRT plan excludes a 7 mm rim at the edge of the dosimeter. Profile showed good agreement for all plans between film, PRESAGE and pinnacle and 3D gamma was performed for PTV and OARs, VMAT and 3DCRT endow with better agreement than IMRT. Conclusion: VMAT delivered lowered mean and maximal doses to organs at risk and better PTV coverage during head and neck radiotherapy. TLD, EBT film and PRESAGETM dosimeters suggest that VMAT was better for the treatment of head and neck cancer than IMRT and 3D-CRT.Keywords: RPC, 3DCRT, IMRT, VMAT, EBT2 film, TLD, PRESAGETM
Procedia PDF Downloads 393415 The Impact of Artificial Intelligence on Pharmacy and Pharmacology
Authors: Mamdouh Milad Adly Morkos
Abstract:
Despite having the greatest rates of mortality and morbidity in the world, low- and middle-income (LMIC) nations trail high-income nations in terms of the number of clinical trials, the number of qualified researchers, and the amount of research information specific to their people. Health inequities and the use of precision medicine may be hampered by a lack of local genomic data, clinical pharmacology and pharmacometrics competence, and training opportunities. These issues can be solved by carrying out health care infrastructure development, which includes data gathering and well-designed clinical pharmacology training in LMICs. It will be advantageous if there is international cooperation focused at enhancing education and infrastructure and promoting locally motivated clinical trials and research. This paper outlines various instances where clinical pharmacology knowledge could be put to use, including pharmacogenomic opportunities that could lead to better clinical guideline recommendations. Examples of how clinical pharmacology training can be successfully implemented in LMICs are also provided, including clinical pharmacology and pharmacometrics training programmes in Africa and a Tanzanian researcher's personal experience while on a training sabbatical in the United States. These training initiatives will profit from advocacy for clinical pharmacologists' employment prospects and career development pathways, which are gradually becoming acknowledged and established in LMICs. The advancement of training and research infrastructure to increase clinical pharmacologists' knowledge in LMICs would be extremely beneficial because they have a significant role to play in global healthKeywords: electromagnetic solar system, nano-material, nano pharmacology, pharmacovigilance, quantum theoryclinical simulation, education, pharmacology, simulation, virtual learning low- and middle-income, clinical pharmacology, pharmacometrics, career development pathways
Procedia PDF Downloads 81414 A Methodology to Integrate Data in the Company Based on the Semantic Standard in the Context of Industry 4.0
Authors: Chang Qin, Daham Mustafa, Abderrahmane Khiat, Pierre Bienert, Paulo Zanini
Abstract:
Nowadays, companies are facing lots of challenges in the process of digital transformation, which can be a complex and costly undertaking. Digital transformation involves the collection and analysis of large amounts of data, which can create challenges around data management and governance. Furthermore, it is also challenged to integrate data from multiple systems and technologies. Although with these pains, companies are still pursuing digitalization because by embracing advanced technologies, companies can improve efficiency, quality, decision-making, and customer experience while also creating different business models and revenue streams. In this paper, the issue that data is stored in data silos with different schema and structures is focused. The conventional approaches to addressing this issue involve utilizing data warehousing, data integration tools, data standardization, and business intelligence tools. However, these approaches primarily focus on the grammar and structure of the data and neglect the importance of semantic modeling and semantic standardization, which are essential for achieving data interoperability. In this session, the challenge of data silos in Industry 4.0 is addressed by developing a semantic modeling approach compliant with Asset Administration Shell (AAS) models as an efficient standard for communication in Industry 4.0. The paper highlights how our approach can facilitate the data mapping process and semantic lifting according to existing industry standards such as ECLASS and other industrial dictionaries. It also incorporates the Asset Administration Shell technology to model and map the company’s data and utilize a knowledge graph for data storage and exploration.Keywords: data interoperability in industry 4.0, digital integration, industrial dictionary, semantic modeling
Procedia PDF Downloads 92413 A Study on the Effects of a Mindfulness Training on Managers: The Case of the Malian Company for the Development of Textile
Authors: Aboubacar Garba Konte, Wei Jun, Li Xiaohui
Abstract:
Nowadays companies are facing increasing pressure. The market environment changes more frequently than ever. Therefore, managers have to develop their agility, their performance and their capacity for innovation. Most companies look for managerial innovations to develop in their employees qualities such as motivation, commitment, creativity, autonomy or even the ability to adapt to change and manage intensive pressure. On a more collective level, companies are looking for teams that are able to organize, communicate and develop a form of collective intelligence based on cooperation and solidarity. Among the many managerial innovations that are currently developing, mindfulness (or mindfulness) is drawing the attention of a growing number of companies (Google, Apple, Sony, ING ...), These companies have implemented programs based on mindfulness. Although the concept of mindfulness and its effects have been the subject of in-depth research in the psychological field, research on mindfulness in the field of management is still in its infancy and it is necessary to evaluate its contribution to organizations. The purpose of this research is to evaluate the effects of a mindfulness training among the managers of a Malian textile company (CMDT). We conducted a case study on their experience and their managerial practices. In addition, we discuss the innovative nature of mindfulness in terms of managerial practice The results show significant positive effects on two major skills identified by managers that raise significant difficulties in their daily lives: their ability to supervise a team of employees with all that this implies in terms of interpersonal skills and their ability to organize and prioritize their activities. In addition, the research methodology sheds light on the innovative nature of mindfulness in a favorable organizational environment.Keywords: mindfulness, manager, managerial innovation, relational skills, organization and prioritization
Procedia PDF Downloads 100412 Study of Ion Density Distribution and Sheath Thickness in Warm Electronegative Plasma
Authors: Rajat Dhawan, Hitendra K. Malik
Abstract:
Electronegative plasmas comprising electrons, positive ions, and negative ions are advantageous for their expanding applications in industries. In plasma cleaning, plasma etching, and plasma deposition process, electronegative plasmas are preferred because of relatively less potential developed on the surface of the material under investigation. Also, the presence of negative ions avoid the irregularity in etching shapes and also enhance the material working during the fabrication process. The interaction of metallic conducting surface with plasma becomes mandatory to understand these applications. A metallic conducting probe immersed in a plasma results in the formation of a thin layer of charged species around the probe called as a sheath. The density of the ions embedded on the surface of the material and the sheath thickness are the important parameters for the surface-plasma interaction. Sheath thickness will give rise to the information of affected plasma region due to conducting surface/probe. The knowledge of the density of ions in the sheath region is advantageous in plasma nitriding, and their temperature is equally important as it strongly influences the thickness of the modified layer during surface plasma interaction. In the present work, we considered a negatively biased metallic probe immersed in a warm electronegative plasma. For this system, we adopted the continuity equation and momentum transfer equation for both the positive and negative ions, whereas electrons are described by Boltzmann distribution. Finally, we use the Poisson’s equation. Here, we assumed the spherical geometry for small probe radius. Poisson’s equation reveals the behaviour of potential surrounding a conducting metallic probe along with the use of the continuity and momentum transfer equations, with the help of proper boundary conditions. In turn, it gives rise to the information about the density profile of charged species and most importantly the thickness of the sheath. By keeping in mind, the well-known Bohm-Sheath criterion, all calculations are done. We found that positive ion density decreases with an increase in positive ion temperature, whereas it increases with the higher temperature of the negative ions. Positive ion density decreases as we move away from the center of the probe and is found to show a discontinuity at a particular distance from the center of the probe. The distance where discontinuity occurs is designated as sheath edge, i.e., the point where sheath ends. These results are beneficial for industrial applications, as the density of ions embedded on material surface is strongly affected by the temperature of plasma species. It has a drastic influence on the surface properties, i.e., the hardness, corrosion resistance, etc. of the materials.Keywords: electronegative plasmas, plasma surface interaction positive ion density, sheath thickness
Procedia PDF Downloads 130411 An Analytical Metric and Process for Critical Infrastructure Architecture System Availability Determination in Distributed Computing Environments under Infrastructure Attack
Authors: Vincent Andrew Cappellano
Abstract:
In the early phases of critical infrastructure system design, translating distributed computing requirements to an architecture has risk given the multitude of approaches (e.g., cloud, edge, fog). In many systems, a single requirement for system uptime / availability is used to encompass the system’s intended operations. However, when architected systems may perform to those availability requirements only during normal operations and not during component failure, or during outages caused by adversary attacks on critical infrastructure (e.g., physical, cyber). System designers lack a structured method to evaluate availability requirements against candidate system architectures through deep degradation scenarios (i.e., normal ops all the way down to significant damage of communications or physical nodes). This increases risk of poor selection of a candidate architecture due to the absence of insight into true performance for systems that must operate as a piece of critical infrastructure. This research effort proposes a process to analyze critical infrastructure system availability requirements and a candidate set of systems architectures, producing a metric assessing these architectures over a spectrum of degradations to aid in selecting appropriate resilient architectures. To accomplish this effort, a set of simulation and evaluation efforts are undertaken that will process, in an automated way, a set of sample requirements into a set of potential architectures where system functions and capabilities are distributed across nodes. Nodes and links will have specific characteristics and based on sampled requirements, contribute to the overall system functionality, such that as they are impacted/degraded, the impacted functional availability of a system can be determined. A machine learning reinforcement-based agent will structurally impact the nodes, links, and characteristics (e.g., bandwidth, latency) of a given architecture to provide an assessment of system functional uptime/availability under these scenarios. By varying the intensity of the attack and related aspects, we can create a structured method of evaluating the performance of candidate architectures against each other to create a metric rating its resilience to these attack types/strategies. Through multiple simulation iterations, sufficient data will exist to compare this availability metric, and an architectural recommendation against the baseline requirements, in comparison to existing multi-factor computing architectural selection processes. It is intended that this additional data will create an improvement in the matching of resilient critical infrastructure system requirements to the correct architectures and implementations that will support improved operation during times of system degradation due to failures and infrastructure attacks.Keywords: architecture, resiliency, availability, cyber-attack
Procedia PDF Downloads 106410 Solving a Micromouse Maze Using an Ant-Inspired Algorithm
Authors: Rolando Barradas, Salviano Soares, António Valente, José Alberto Lencastre, Paulo Oliveira
Abstract:
This article reviews the Ant Colony Optimization, a nature-inspired algorithm, and its implementation in the Scratch/m-Block programming environment. The Ant Colony Optimization is a part of Swarm Intelligence-based algorithms and is a subset of biological-inspired algorithms. Starting with a problem in which one has a maze and needs to find its path to the center and return to the starting position. This is similar to an ant looking for a path to a food source and returning to its nest. Starting with the implementation of a simple wall follower simulator, the proposed solution uses a dynamic graphical interface that allows young students to observe the ants’ movement while the algorithm optimizes the routes to the maze’s center. Things like interface usability, Data structures, and the conversion of algorithmic language to Scratch syntax were some of the details addressed during this implementation. This gives young students an easier way to understand the computational concepts of sequences, loops, parallelism, data, events, and conditionals, as they are used through all the implemented algorithms. Future work includes the simulation results with real contest mazes and two different pheromone update methods and the comparison with the optimized results of the winners of each one of the editions of the contest. It will also include the creation of a Digital Twin relating the virtual simulator with a real micromouse in a full-size maze. The first test results show that the algorithm found the same optimized solutions that were found by the winners of each one of the editions of the Micromouse contest making this a good solution for maze pathfinding.Keywords: nature inspired algorithms, scratch, micromouse, problem-solving, computational thinking
Procedia PDF Downloads 125409 Performance Estimation of Small Scale Wind Turbine Rotor for Very Low Wind Regime Condition
Authors: Vilas Warudkar, Dinkar Janghel, Siraj Ahmed
Abstract:
Rapid development experienced by India requires huge amount of energy. Actual supply capacity additions have been consistently lower than the targets set by the government. According to World Bank 40% of residences are without electricity. In 12th five year plan 30 GW grid interactive renewable capacity is planned in which 17 GW is Wind, 10 GW is from solar and 2.1 GW from small hydro project, and rest is compensated by bio gas. Renewable energy (RE) and energy efficiency (EE) meet not only the environmental and energy security objectives, but also can play a crucial role in reducing chronic power shortages. In remote areas or areas with a weak grid, wind energy can be used for charging batteries or can be combined with a diesel engine to save fuel whenever wind is available. India according to IEC 61400-1 belongs to class IV Wind Condition; it is not possible to set up wind turbine in large scale at every place. So, the best choice is to go for small scale wind turbine at lower height which will have good annual energy production (AEP). Based on the wind characteristic available at MANIT Bhopal, rotor for small scale wind turbine is designed. Various Aero foil data is reviewed for selection of airfoil in the Blade Profile. Airfoil suited of Low wind conditions i.e. at low Reynold’s number is selected based on Coefficient of Lift, Drag and angle of attack. For designing of the rotor blade, standard Blade Element Momentum (BEM) Theory is implanted. Performance of the Blade is estimated using BEM theory in which axial induction factor and angular induction factor is optimized using iterative technique. Rotor performance is estimated for particular designed blade specifically for low wind Conditions. Power production of rotor is determined at different wind speeds for particular pitch angle of the blade. At pitch 15o and velocity 5 m/sec gives good cut in speed of 2 m/sec and power produced is around 350 Watts. Tip speed of the Blade is considered as 6.5 for which Coefficient of Performance of the rotor is calculated 0.35, which is good acceptable value for Small scale Wind turbine. Simple Load Model (SLM, IEC 61400-2) is also discussed to improve the structural strength of the rotor. In SLM, Edge wise Moment and Flap Wise moment is considered which cause bending stress at the root of the blade. Various Load case mentioned in the IEC 61400-2 is calculated and checked for the partial safety factor of the wind turbine blade.Keywords: annual energy production, Blade Element Momentum Theory, low wind Conditions, selection of airfoil
Procedia PDF Downloads 335408 Applications of Evolutionary Optimization Methods in Reinforcement Learning
Authors: Rahul Paul, Kedar Nath Das
Abstract:
The paradigm of Reinforcement Learning (RL) has become prominent in training intelligent agents to make decisions in environments that are both dynamic and uncertain. The primary objective of RL is to optimize the policy of an agent in order to maximize the cumulative reward it receives throughout a given period. Nevertheless, the process of optimization presents notable difficulties as a result of the inherent trade-off between exploration and exploitation, the presence of extensive state-action spaces, and the intricate nature of the dynamics involved. Evolutionary Optimization Methods (EOMs) have garnered considerable attention as a supplementary approach to tackle these challenges, providing distinct capabilities for optimizing RL policies and value functions. The ongoing advancement of research in both RL and EOMs presents an opportunity for significant advancements in autonomous decision-making systems. The convergence of these two fields has the potential to have a transformative impact on various domains of artificial intelligence (AI) applications. This article highlights the considerable influence of EOMs in enhancing the capabilities of RL. Taking advantage of evolutionary principles enables RL algorithms to effectively traverse extensive action spaces and discover optimal solutions within intricate environments. Moreover, this paper emphasizes the practical implementations of EOMs in the field of RL, specifically in areas such as robotic control, autonomous systems, inventory problems, and multi-agent scenarios. The article highlights the utilization of EOMs in facilitating RL agents to effectively adapt, evolve, and uncover proficient strategies for complex tasks that may pose challenges for conventional RL approaches.Keywords: machine learning, reinforcement learning, loss function, optimization techniques, evolutionary optimization methods
Procedia PDF Downloads 79407 Deep Learning-Based Approach to Automatic Abstractive Summarization of Patent Documents
Authors: Sakshi V. Tantak, Vishap K. Malik, Neelanjney Pilarisetty
Abstract:
A patent is an exclusive right granted for an invention. It can be a product or a process that provides an innovative method of doing something, or offers a new technical perspective or solution to a problem. A patent can be obtained by making the technical information and details about the invention publicly available. The patent owner has exclusive rights to prevent or stop anyone from using the patented invention for commercial uses. Any commercial usage, distribution, import or export of a patented invention or product requires the patent owner’s consent. It has been observed that the central and important parts of patents are scripted in idiosyncratic and complex linguistic structures that can be difficult to read, comprehend or interpret for the masses. The abstracts of these patents tend to obfuscate the precise nature of the patent instead of clarifying it via direct and simple linguistic constructs. This makes it necessary to have an efficient access to this knowledge via concise and transparent summaries. However, as mentioned above, due to complex and repetitive linguistic constructs and extremely long sentences, common extraction-oriented automatic text summarization methods should not be expected to show a remarkable performance when applied to patent documents. Other, more content-oriented or abstractive summarization techniques are able to perform much better and generate more concise summaries. This paper proposes an efficient summarization system for patents using artificial intelligence, natural language processing and deep learning techniques to condense the knowledge and essential information from a patent document into a single summary that is easier to understand without any redundant formatting and difficult jargon.Keywords: abstractive summarization, deep learning, natural language Processing, patent document
Procedia PDF Downloads 120406 An Approach to Building a Recommendation Engine for Travel Applications Using Genetic Algorithms and Neural Networks
Authors: Adrian Ionita, Ana-Maria Ghimes
Abstract:
The lack of features, design and the lack of promoting an integrated booking application are some of the reasons why most online travel platforms only offer automation of old booking processes, being limited to the integration of a smaller number of services without addressing the user experience. This paper represents a practical study on how to improve travel applications creating user-profiles through data-mining based on neural networks and genetic algorithms. Choices made by users and their ‘friends’ in the ‘social’ network context can be considered input data for a recommendation engine. The purpose of using these algorithms and this design is to improve user experience and to deliver more features to the users. The paper aims to highlight a broader range of improvements that could be applied to travel applications in terms of design and service integration, while the main scientific approach remains the technical implementation of the neural network solution. The motivation of the technologies used is also related to the initiative of some online booking providers that have made the fact that they use some ‘neural network’ related designs public. These companies use similar Big-Data technologies to provide recommendations for hotels, restaurants, and cinemas with a neural network based recommendation engine for building a user ‘DNA profile’. This implementation of the ‘profile’ a collection of neural networks trained from previous user choices, can improve the usability and design of any type of application.Keywords: artificial intelligence, big data, cloud computing, DNA profile, genetic algorithms, machine learning, neural networks, optimization, recommendation system, user profiling
Procedia PDF Downloads 162405 Endoscopic Stenting of the Main Pancreatic Duct in Patients With Pancreatic Fluid Collections After Pancreas Transplantation
Authors: Y. Teterin, S. Suleymanova, I. Dmitriev, P. Yartcev
Abstract:
Introduction: One of the most common complications after pancreas transplantation are pancreatic fluid collections (PFCs), which are often complicated not only by infection and subsequent disfunction of the pancreatoduodenal graft (PDG), but also with a rather high mortality rate of recipients. Drainage is not always effective and often requires repeated open surgical interventions, which worsens the outcome of the surgery. Percutaneous drainage of PFCs combined with endoscopic stenting of the main pancreatic duct of the pancreatoduodenal graft (MPDPDG) showed high efficiency in the treatment of PFCs. Aims & Methods: From 01.01.2012 to 31.12.2021 at the Sklifosovsky Research Institute for Emergency Medicine were performed 64 transplantations of PDG. In 11 cases (17.2%), the early postoperative period was complicated by the formation of PFCs. Of these, 7 patients underwent percutaneous drainage of pancreonecrosis with high efficiency and did not required additional methods of treatment. In the remaining 4 patients, drainage was ineffective and was an indication for endoscopic stenting of the MPDPDG. They were the ones who made up the study group. Among them were 3 men and 1 woman. The mean age of the patients was 36,4 years.PFCs in these patients formed on days 1, 12, 18, and 47 after PDG transplantation. We used a gastroscope to stent the MPDPDG, due to anatomical features of the location of the duodenoduodenal anastomosis after PDG transplantation. Through the endoscope channel was performed selective catheterization of the MPDPDG, using a catheter and a guidewire, followed by its contrasting with a water-soluble contrast agent. Due to the extravasation of the contrast, was determined the localization of the defect in the PDG duct system. After that, a plastic pancreatic stent with a diameter of 7 Fr. and a length of 7 cm. was installed along guidewire. The stent was installed in such a way that its proximal edge completely covered the defect zone, and the distal one was determined in the intestinal lumen. Results: In all patients PDG pancreaticography revealed extravasation of a contrast in the area of the isthmus and body of the pancreas, which required stenting of the MPDPDG. In 1 (25%) case, the patient had a dislocation of the stent into the intestinal lumen (III degree according to Clavien-Dindo (2009)). This patient underwent repeated endoscopic stenting of the MPDPDG. On average 23 days after endoscopic stenting of the MPDPDG, the drainage tubes were removed and after approximately 40 days all patients were discharged in a satisfactory condition with follow-up endocrinologist and surgeon consultation. Pancreatic stents were removed after 6 months ± 7 days. Conclusion: Endoscopic stenting of the main pancreatic duct of the donor pancreas is by far the most highly effective and minimally invasive method in the treatment of PFCs after transplantation of the pancreatoduodenal complex.Keywords: pancreas transplantation, endoscopy surgery, diabetes, stenting, main pancreatic duct
Procedia PDF Downloads 85404 The Features of the Synergistic Approach in Marketing Management to Regional Level
Authors: Evgeni Baratashvili, Anzor Abralava, Rusudan Kutateladze, Nino Pailodze, Irma Makharashvili, Larisa Takalandze
Abstract:
Sinergy as a neological term is reflected in modern sciences. It can be found in the various fields of science including the humanities and technical sciences. Among them are biology and medicine, philology, economy and etc. Synergy is the received surplus of marginal high total effect of the groups, consolidated by one common idea, received through endeavored applies of their combined tools, via obtained effect of the separate independent actions of the groups. In the conditions of market economy, according the terms of new communication terminology, synergy effects on management and marketing successfully as well as on purity defense of native language. The well-known scientist’s and public figure’s Academician I. Prangishvili’s works are especially valuable in this aspect. In our opinion the entropy research is linked to his name in our country. In modern economy, the current qualitative changes shows us that the most number of factors and issues have been regrouped. They have a great influence and even define the economic development. The declining abilities of traditional recourses of economic growth have been related on the use of their physical abilities and their moving closer to the edge. Also it is related on the reduced effectiveness, which at the same time increases the expenditures. This means that the leading must be the innovative process system of products and services in the economic growth model. In our opinion the above mentioned system is distinguished with the synergistic approach. It should be noted that the main components of the innovative system are technological, scientific and scientific-technical, social-organizational, managerial and cognitive changes. All of them are reflected on scientific works and inventions in the proper dosages, in know-how and material source. At any stage they create the reproduction cycle. The innovations are different from each other by technologies, origination, design, innovation and quality, subject-content structure, by the the spread of economic processes and the impact of the level of it’s distribution. We have presented a generalized statement of an innovative approach, which is not a single act of innovation but it is also targeted system of the development, implementation, reconciling-exploitation, production, diffusion and commercialization of news. The innovative approaches should be considered as the creation of news, in-depth process of creativity as an innovative alternative to the realization of innovative and entrepreneurial efforts and measures, in order to meet the requirements of the permanent process.Keywords: economic development, leading process, neological term, synergy
Procedia PDF Downloads 199403 Optimizing CNC Production Line Efficiency Using NSGA-II: Adaptive Layout and Operational Sequence for Enhanced Manufacturing Flexibility
Authors: Yi-Ling Chen, Dung-Ying Lin
Abstract:
In the manufacturing process, computer numerical control (CNC) machining plays a crucial role. CNC enables precise machinery control through computer programs, achieving automation in the production process and significantly enhancing production efficiency. However, traditional CNC production lines often require manual intervention for loading and unloading operations, which limits the production line's operational efficiency and production capacity. Additionally, existing CNC automation systems frequently lack sufficient intelligence and fail to achieve optimal configuration efficiency, resulting in the need for substantial time to reconfigure production lines when producing different products, thereby impacting overall production efficiency. Using the NSGA-II algorithm, we generate production line layout configurations that consider field constraints and select robotic arm specifications from an arm list. This allows us to calculate loading and unloading times for each job order, perform demand allocation, and assign processing sequences. The NSGA-II algorithm is further employed to determine the optimal processing sequence, with the aim of minimizing demand completion time and maximizing average machine utilization. These objectives are used to evaluate the performance of each layout, ultimately determining the optimal layout configuration. By employing this method, it enhance the configuration efficiency of CNC production lines and establish an adaptive capability that allows the production line to respond promptly to changes in demand. This will minimize production losses caused by the need to reconfigure the layout, ensuring that the CNC production line can maintain optimal efficiency even when adjustments are required due to fluctuating demands.Keywords: evolutionary algorithms, multi-objective optimization, pareto optimality, layout optimization, operations sequence
Procedia PDF Downloads 18402 A Framework for Auditing Multilevel Models Using Explainability Methods
Authors: Debarati Bhaumik, Diptish Dey
Abstract:
Multilevel models, increasingly deployed in industries such as insurance, food production, and entertainment within functions such as marketing and supply chain management, need to be transparent and ethical. Applications usually result in binary classification within groups or hierarchies based on a set of input features. Using open-source datasets, we demonstrate that popular explainability methods, such as SHAP and LIME, consistently underperform inaccuracy when interpreting these models. They fail to predict the order of feature importance, the magnitudes, and occasionally even the nature of the feature contribution (negative versus positive contribution to the outcome). Besides accuracy, the computational intractability of SHAP for binomial classification is a cause of concern. For transparent and ethical applications of these hierarchical statistical models, sound audit frameworks need to be developed. In this paper, we propose an audit framework for technical assessment of multilevel regression models focusing on three aspects: (i) model assumptions & statistical properties, (ii) model transparency using different explainability methods, and (iii) discrimination assessment. To this end, we undertake a quantitative approach and compare intrinsic model methods with SHAP and LIME. The framework comprises a shortlist of KPIs, such as PoCE (Percentage of Correct Explanations) and MDG (Mean Discriminatory Gap) per feature, for each of these three aspects. A traffic light risk assessment method is furthermore coupled to these KPIs. The audit framework will assist regulatory bodies in performing conformity assessments of AI systems using multilevel binomial classification models at businesses. It will also benefit businesses deploying multilevel models to be future-proof and aligned with the European Commission’s proposed Regulation on Artificial Intelligence.Keywords: audit, multilevel model, model transparency, model explainability, discrimination, ethics
Procedia PDF Downloads 90401 Cognitive Science Based Scheduling in Grid Environment
Authors: N. D. Iswarya, M. A. Maluk Mohamed, N. Vijaya
Abstract:
Grid is infrastructure that allows the deployment of distributed data in large size from multiple locations to reach a common goal. Scheduling data intensive applications becomes challenging as the size of data sets are very huge in size. Only two solutions exist in order to tackle this challenging issue. First, computation which requires huge data sets to be processed can be transferred to the data site. Second, the required data sets can be transferred to the computation site. In the former scenario, the computation cannot be transferred since the servers are storage/data servers with little or no computational capability. Hence, the second scenario can be considered for further exploration. During scheduling, transferring huge data sets from one site to another site requires more network bandwidth. In order to mitigate this issue, this work focuses on incorporating cognitive science in scheduling. Cognitive Science is the study of human brain and its related activities. Current researches are mainly focused on to incorporate cognitive science in various computational modeling techniques. In this work, the problem solving approach of human brain is studied and incorporated during the data intensive scheduling in grid environments. Here, a cognitive engine is designed and deployed in various grid sites. The intelligent agents present in CE will help in analyzing the request and creating the knowledge base. Depending upon the link capacity, decision will be taken whether to transfer data sets or to partition the data sets. Prediction of next request is made by the agents to serve the requesting site with data sets in advance. This will reduce the data availability time and data transfer time. Replica catalog and Meta data catalog created by the agents assist in decision making process.Keywords: data grid, grid workflow scheduling, cognitive artificial intelligence
Procedia PDF Downloads 392400 Teacher’s Personality Potential Contributes to Personality Development and Well-being of Schoolchildren: A Longitudinal Study in Russia
Authors: Elena G. Diryugina, Maria A. Dovger, Maria V. Lunkina, Alexandra A. Ianchenko
Abstract:
The personality development and well-being of children have become important focuses of school education and indicators of its quality. The studies show that academic success depends more on personality and motivation than on intelligence and giftedness. Those personality resources that help a person to maintain well-being both here and now and in the future constitute their personality potential. The development of schoolchildrens' personality potential can help them meet the challenges of the modern world and achieve new educational goals. At the same time, it is noted that the pedagogical factor is one of the most significant in relation to schoolchildrens' success and well-being. What is important for teachers to develop in order to make their students feel more competent and maintain well-being? As part of the Developmental Environment Programme of the Charitable Foundation ‘Investment in the Future’, a longitudinal study of the personality potential and well-being of educators and schoolchildren was conducted from 2018 to 2023. More than 2,500 teachers and over 4,000 students from Russia took part. It was found that behind a teacher's communication style, an important construct that influences the motivation of schoolchildren and the satisfaction of their basic psychological needs, is the personal potential of that teacher. Their personality potential correlates with the social-emotional development of schoolchildren in junior grades. A teacher's communication style with adolescents contributes to their academic motivation, self-esteem and satisfaction with life and learning. In addition, child well-being cannot be promoted in isolation from attention to the psychological well-being of teachers. Their social well-being and engagement are higher when they are included in professional learning communities. The results will be helpful for both positive education researchers and practitioners to identify an approach to child personality development and well-being that is achieved primarily through the personality development and well-being of school staff members and mostly teachers.Keywords: Personality development, personality potential, schoolchildren, teaching style, well-being
Procedia PDF Downloads 43399 Investigation of FOXM1 Gene Expression in Breast Cancer and Its Relationship with Mir-216B-5P Expression Level
Authors: Ramin Mehdiabadi, Neda Menbari, Mohammad Nazir Menbari
Abstract:
As a pressing public health concern, breast cancer stands as the predominant oncological diagnosis and principal cause of cancer-related mortality among women globally, accounting for 11.7% of new cancer incidences and 6.9% of cancer-related deaths. The annual figures indicate that approximately 230,480 women are diagnosed with breast cancer in the United States alone, with 39,520 succumbing to the disease. While developed economies have reported a deceleration in both incidence and mortality rates across various forms of cancer, including breast cancer, emerging and low-income economies manifest a contrary escalation, largely attributable to lifestyle-mediated risk factors such as tobacco usage, physical inactivity, and high caloric intake. Breast cancer is distinctly characterized by molecular heterogeneity, manifesting in specific subtypes delineated by biomarkers—Estrogen Receptors (ER), Progesterone Receptors (PR), and Human Epidermal Growth Factor Receptor 2 (HER2). These subtypes, comprising Luminal A, Luminal B, HER2-enriched, triple-negative/basal-like, and normal-like, necessitate nuanced, subtype-specific therapeutic regimens, thereby challenging the applicability of generalized treatment protocols. Within this molecular complexity, the transcription factor Forkhead Box M1 (FoxM1) has garnered attention as a significant driver of cellular proliferation, tumorigenesis, metastatic progression, and treatment resistance in a spectrum of human malignancies, including breast cancer. Concurrently, microRNAs (miRs), specifically miR-216b-5p, have been identified as post-transcriptional gene expression regulators and potential tumor suppressors. The overarching objective of this academic investigation is to explicate the multifaceted interrelationship between FoxM1 and miR-216b-5p across the disparate molecular subtypes of breast cancer. Employing a methodologically rigorous, interdisciplinary research design that incorporates cutting-edge molecular biology techniques, sophisticated bioinformatics analytics, and exhaustive meta-analyses of extant clinical data, this scholarly endeavor aims to unveil novel biomarker-specific therapeutic pathways. By doing so, this research is positioned to make a seminal contribution to the advancement of personalized, efficacious, and minimally toxic treatment paradigms, thus profoundly impacting the global efforts to ameliorate the burden of breast cancer.Keywords: breast cancer, fox m1, microRNAs, mir-216b-5p, gene expression
Procedia PDF Downloads 73398 Synthesized Doped TiO2 Photocatalysts for Mineralization of Quinalphos from Aqueous Streams
Authors: Nidhi Sharotri, Dhiraj Sud
Abstract:
Water pollution by pesticides constitutes a serious ecological problem due to their potential toxicity and bioaccumulation. The widespread use of pesticides in industry and agriculture along with their resistance to natural decomposition, biodegradation, chemical and photochemical degradation under typical environmental conditions has resulted in the emergence of these chemicals and their transformed products in natural water. Among AOP’s, heterogeneous photocatalysis using TiO2 as photocatalyst appears as the most emerging destructive technology for mineralization of the pollutant in aquatic streams. Among the various semiconductors (TiO2, ZnO, CdS, FeTiO3, MnTiO3, SrTiO2 and SnO2), TiO2 has proven to be the most efficient photocatalyst for environmental applications due to its biological and chemical inertness, high photo reactivity, non-toxicity, and photo stability. Semiconductor photocatalysts are characterized by an electronic band structure in which valence band and conduction band are separated by a band gap, i.e. a region of forbidden energy. Semiconductor based photocatalysts produces e-/h+ pairs which have been employed for degradation of organic pollutants. The present paper focuses on modification of TiO2 photocatalyst in order to shift its absorption edge towards longer wavelength to make it active under natural light. Semiconductor TiO2 photocatalysts was prepared by doping with anion (N), cation (Mn) and double doped (Mn, N) using greener approach. Titanium isopropoxide is used as titania precursor and ethanedithiol, hydroxyl amine hydrochloride, manganous chloride as sulphur, nitrogen and manganese precursors respectively. Synthesized doped TiO2 nanomaterials are characterized for surface morphology (SEM, TEM), crystallinity (XRD) and optical properties (absorption spectra and band gap). EPR data confirms the substitutional incorporation of Mn2+ in TiO2 lattice. The doping influences the phase transformation of rutile and anatase phase crystal and thereby the absorption spectrum changes were observed. The effect of variation of reaction parameters such as solvent, reaction time and calcination temperature on the yield, surface morphology and optical properties was also investigated. The TEM studies show the particle size of nanomaterials varies from 10-50 nm. The calculated band gap of nanomaterials varies from 2.30-2.60 eV. The photocatalytic degradation of organic pollutant organophosphate pesticide (Quinalphos) has been investigated by studying the changes in UV absorption spectrum and the promising results were obtained under visible light. The complete mineralization of quinalphos has occurred as no intermediates were recorded after 8 hrs of degradation confirmed from the HPLC studies.Keywords: quinalphos, doped-TiO2, mineralization, EPR
Procedia PDF Downloads 326397 A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane
Authors: Maryam Zarabian, Hector Guzman, Pedro Pereira-Almao, Abraham Fapojuwo
Abstract:
Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively.Keywords: artificial intelligence, dry reforming of methane, artificial neural network, deep learning, machine learning, transfer learning, greedy layer-wise pretraining
Procedia PDF Downloads 84396 Intelligent Scaffolding Diagnostic Tutoring Systems to Enhance Students’ Academic Reading Skills
Authors: A.Chayaporn Kaoropthai, B. Onjaree Natakuatoong, C. Nagul Cooharojananone
Abstract:
The first year is usually the most critical year for university students. Generally, a considerable number of first-year students worldwide drop out of university every year. One of the major reasons for dropping out is failing. Although they are supposed to have mastered sufficient English proficiency upon completing their high school education, most first-year students are still novices in academic reading. Due to their lack of experience in academic reading, first-year students need significant support from teachers to help develop their academic reading skills. Reading strategies training is thus a necessity and plays a crucial role in classroom instruction. However, individual differences in both students, as well as teachers, are the main factors contributing to the failure in not responding to each individual student’s needs. For this reason, reading strategies training inevitably needs a diagnosis of students’ academic reading skills levels before, during, and after learning, in order to respond to their different needs. To further support reading strategies training, scaffolding is proposed to facilitate students in understanding and practicing using reading strategies under the teachers’ guidance. The use of the Intelligent Tutoring Systems (ITSs) as a tool for diagnosing students’ reading problems will be very beneficial to both students and their teachers. The ITSs consist of four major modules: the Expert module, the Student module, the Diagnostic module, and the User Interface module. The application of Artificial Intelligence (AI) enables the systems to perform diagnosis consistently and appropriately for each individual student. Thus, it is essential to develop the Intelligent Scaffolding Diagnostic Reading Strategies Tutoring Systems to enhance first-year students’ academic reading skills. The systems proposed will contribute to resolving classroom reading strategies training problems, developing students’ academic reading skills, and facilitating teachers.Keywords: academic reading, intelligent tutoring systems, scaffolding, university students
Procedia PDF Downloads 388395 The Impact of Leadership Styles and Coordination on Employees Performance in the Nigerian Banking Sector
Authors: Temilola Akinbolade, Bukola Okunade, Karounwi Okunade
Abstract:
Leadership is a subject of direction. Direction entails ensuring that employees carryout the jobs assigned to them. In order to direct subordinates, a manager must lead, motivate, communicate and ensure effective co-ordination of activities so that enterprise objectives are achieved. The purpose of the study was to find out the impact of Leadership Styles on Employees Performance, Study of Wema Bank Plc. Leadership has been described as a tool used in influencing people in order to willingly get a particular or task done. The importance of leadership is followership. That is the willingness of people to follow what makes a person a leader. A sample size of 150 was systematically selected from the study population using the statistical packages for Social Science (SPSS) formula. Based on this, questionnaire was designed and administered. Out of the 105 copies of the questionnaire administered. 150 were recovered, 45 were discarded for improper filling and mutilation while the remaining 105 were used for statistical analysis. Chi-square was employed in testing the hypothesis. The following findings were discovered in the course of the study: how leadership enhances employee’s performance, 85.7% of the respondents were in agreement. Also how implementation of workers social welfare packages enhance the employees performance. 88.6 percent of the respondents in agreement. Over the years, some leadership styles adopted by managers and administrators have an impact on the level of employee’s performance in workplace and this has led to the inefficient and ineffective attainment of organizational goals and objectives. Due to the inability of employees to perform to set standard, this research work will also indicate some ways through which high employee performance will be attained most especially with regards to the leadership style adopted by the management that is managers and administrators. It was also discovered that collective intelligence of employees leads to high employee’s performance 82.9 percent of the respondent in agreement.Keywords: leadership, employees, performance, banking sector
Procedia PDF Downloads 240394 Finite Element Modeling of Mass Transfer Phenomenon and Optimization of Process Parameters for Drying of Paddy in a Hybrid Solar Dryer
Authors: Aprajeeta Jha, Punyadarshini P. Tripathy
Abstract:
Drying technologies for various food processing operations shares an inevitable linkage with energy, cost and environmental sustainability. Hence, solar drying of food grains has become imperative choice to combat duo challenges of meeting high energy demand for drying and to address climate change scenario. But performance and reliability of solar dryers depend hugely on sunshine period, climatic conditions, therefore, offer a limited control over drying conditions and have lower efficiencies. Solar drying technology, supported by Photovoltaic (PV) power plant and hybrid type solar air collector can potentially overpower the disadvantages of solar dryers. For development of such robust hybrid dryers; to ensure quality and shelf-life of paddy grains the optimization of process parameter becomes extremely critical. Investigation of the moisture distribution profile within the grains becomes necessary in order to avoid over drying or under drying of food grains in hybrid solar dryer. Computational simulations based on finite element modeling can serve as potential tool in providing a better insight of moisture migration during drying process. Hence, present work aims at optimizing the process parameters and to develop a 3-dimensional (3D) finite element model (FEM) for predicting moisture profile in paddy during solar drying. COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Furthermore, optimization of process parameters (power level, air velocity and moisture content) was done using response surface methodology in design expert software. 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed and validated with experimental data. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Furthermore, optimized process parameters for drying paddy were found to be 700 W, 2.75 m/s at 13% (wb) with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product. PV-integrated hybrid solar dryers can be employed as potential and cutting edge drying technology alternative for sustainable energy and food security.Keywords: finite element modeling, moisture migration, paddy grain, process optimization, PV integrated hybrid solar dryer
Procedia PDF Downloads 149393 Optimizing University Administration in a Globalized World: Leveraging AI and ICT for Enhanced Governance and Sustainability in Higher Education
Authors: Ikechukwu Ogeze Ukeje, Chinyere Ori Elom, Chukwudum Collins Umoke
Abstract:
This study explores the challenges in the integration of Artificial Intelligence (AI) and Information and Communication Technology (ICT) practices in enhancing governance and sustainable solution modeling in higher education, focusing on Alex Ekwueme Federal University Ndufu-Alike (AE-FUNAI), Nigeria. In the context of a developing country like Nigeria, leveraging AI and ICT tools presents a unique opportunity to improve teaching, learning, administrative processes, and governance. The research aims to evaluate how AI and ICT technologies can contribute to sustainable educational practices, enhance decision-making processes, and improve engagement among key stakeholders: students, lecturers, and administrative staff. Students are involved to provide insights into their interactions with AI and ICT tools, particularly in learning and participation in governance. Lecturers’ perspectives will offer a view into how these technologies influence teaching, research, and curriculum development. Administrative staff will provide a crucial understanding of how AI and ICT tools can streamline operations, support data-driven governance, and enhance institutional efficiency. This study will use a mixed-method approach to collect both qualitative and quantitative data. The finding of this study is geared towards shaping the future of education in Nigeria and beyond by developing an Inclusive AI-governance Integration Framework (I-AIGiF) for enhanced performance in the system. Examining the roles of these stakeholder groups, this research could guide the development of policies for more effective AI and ICT integration, leading to sustainable educational innovation and governance.Keywords: university administration, AI, higher education governance, education sustainability, ICT challenges
Procedia PDF Downloads 16392 Time to Retire Rubber Crumb: How Soft Fall Playgrounds are Threatening Australia’s Great Barrier Reef
Authors: Michelle Blewitt, Scott P. Wilson, Heidi Tait, Juniper Riordan
Abstract:
Rubber crumb is a physical and chemical pollutant of concern for the environment and human health, warranting immediate investigations into its pathways to the environment and potential impacts. This emerging microplastic is created by shredding end-of-life tyres into ‘rubber crumb’ particles between 1-5mm used on synthetic turf fields and soft-fall playgrounds as a solution to intensifying tyre waste worldwide. Despite having known toxic and carcinogenic properties, studies into the transportation pathways and movement patterns of rubber crumbs from these surfaces remain in their infancy. To address this deficit, AUSMAP, the Australian Microplastic Assessment Project, in partnership with the Tangaroa Blue Foundation, conducted a study to quantify crumb loss from soft-fall surfaces. To our best knowledge, this is the first of its kind, with funding for the audits being provided by the Australian Government’s Reef Trust. Sampling occurred at 12 soft-fall playgrounds within the Great Barrier Reef Catchment Area on Australia’s North-East coast, in close proximity to the United Nations World Heritage Listed Reef. Samples were collected over a 12-month period using randomized sediment cores at 0, 2 and 4 meters away from the playground edge along a 20-meter transect. This approach facilitated two objectives pertaining to particle movement: to establish that crumb loss is occurring and that it decreases with distance from the soft-fall surface. Rubber crumb abundance was expressed as a total value and used to determine an expected average of rubber crumb loss per m2. An Analysis of Variance (ANOVA) was used to compare the differences in crumb abundance at each interval from the playground. Site characteristics, including surrounding sediment type, playground age, degree of ultra-violet exposure and amount of foot traffic, were additionally recorded for the comparison. Preliminary findings indicate that crumb is being lost at considerable rates from soft-fall playgrounds in the region, emphasizing an urgent need to further examine it as a potential source of aquatic pollution, soil contamination and threat to individuals who regularly utilize these surfaces. Additional implications for the future of rubber crumbs as a fit-for-purpose recycling initiative will be discussed with regard to industry, governments and the economic burden of surface maintenance and/ or replacement.Keywords: microplastics, toxic rubber crumb, litter pathways, marine environment
Procedia PDF Downloads 90391 The Complex Relationship Between IQ and Attention Deficit Hyperactivity Disorder Symptoms: Insights From Behaviors, Cognition, and Brain in 5,138 Children With Attention Deficit Hyperactivity Disorder
Authors: Ningning Liu, Gaoding Jia, Yinshan Wang, Haimei Li, Xinian Zuo, Yufeng Wang, Lu Liu, Qiujin Qian
Abstract:
Background: There has been speculation that a high IQ may not necessarily provide protection against attention deficit hyperactivity disorder (ADHD), and there may be a U-shaped correlation between IQ and ADHD symptoms. However, this speculation has not been validated in the ADHD population in any study so far. Method: We conducted a study with 5,138 children who have been professionally diagnosed with ADHD and have a wide range of IQ levels. General Linear Models were used to determine the optimal model between IQ and ADHD core symptoms with sex and age as covariates. The ADHD symptoms we looked at included the total scores (TO), inattention (IA) and hyperactivity/impulsivity (HI). Wechsler Intelligence scale were used to assess IQ [Full-Scale IQ (FSIQ), Verbal IQ (VIQ), and Performance IQ (PIQ)]. Furthermore, we examined the correlation between IQ and the execution function [Behavior Rating Inventory of Executive Function (BRIEF)], as well as between IQ and brain surface area, to determine if the associations between IQ and ADHD symptoms are reflected in executive functions and brain structure. Results: Consistent with previous research, the results indicated that FSIQ and VIQ both showed a linear negative correlation with the TO and IA scores of ADHD. However, PIQ showed an inverted U-shaped relationship with the TO and HI scores of ADHD, with 103 as the peak point. These findings were also partially reflected in the relationship between IQ and executive functions, as well as IQ and brain surface area. Conclusion: To sum up, the relationship between IQ and ADHD symptoms is not straightforward. Our study confirms long-standing academic hypotheses and finds that PIQ exhibits an inverted U-shaped relationship with ADHD symptoms. This study enhances our understanding of symptoms and behaviors of ADHD with varying IQ characteristics and provides some evidence for targeted clinical intervention.Keywords: ADHD, IQ, execution function, brain imaging
Procedia PDF Downloads 63390 Bridging Livelihood and Conservation: The Role of Ecotourism in the Campo Ma’an National Park, Cameroon
Authors: Gadinga Walter Forje, Martin Ngankam Tchamba, Nyong Princely Awazi, Barnabas Neba Nfornka
Abstract:
Ecotourism is viewed as a double edge sword for the enhancement of conservation and local livelihood within a protected landscape. The Campo Ma’an National Park (CMNP) adopted ecotourism in its management plan as a strategic axis for better management of the park. The growing importance of ecotourism as a strategy for the sustainable management of CMNP and its environs requires adequate information to bolster the sector. This study was carried out between November 2018 and September 2021, with the main objective to contribute to the sustainable management of the CMNP through suggestions for enhancing the capacity of ecotourism in and around the park. More specifically, the study aimed at; 1) Analyse the governance of ecotourism in the CMNP and its surrounding; 2) Assessing the impact of ecotourism on local livelihood around the CMNP; 3) Evaluating the contribution of ecotourism to biodiversity conservation in and around the CMNP; 4) Evaluate the determinants of ecotourism possibilities in achieving sustainable livelihood and biodiversity conservation in and around the CMNP. Data were collected from both primary and secondary sources. Primary data were obtained from household surveys (N=124), focus group discussions (N=8), and key informant interviews (N=16). Data collected were coded and imputed into SPSS (version 19.0) software and Microsoft Excel spreadsheet for both quantitative and qualitative analysis. Findings from the Chi-square test revealed overall poor ecotourism governance in and around the CMNP, with benefit sharing (X2 = 122.774, p <0.01) and conflict management (X2 = 90.839, p<0.01) viewed to be very poor. For the majority of the local population sampled, 65% think ecotourism does not contribute to local livelihood around CMNP. The main factors influencing the impact of ecotourism around the CMNP on the local population’s livelihood were gender (logistic regression (β) = 1.218; p = 0.000); and level of education (logistic regression (β) = 0.442; p = 0.000). Furthermore, 55.6% of the local population investigated believed ecotourism activities do not contribute to the biodiversity conservation of CMNP. Spearman correlation between socio-economic variables and ecotourism impact on biodiversity conservation indicated relationships with gender (r = 0.200, p = 0.032), main occupation (r = 0.300 p = 0.012), time spent in the community (r = 0.287 p = 0.017), and number of children (r =-0.286 p = 0.018). Variables affecting ecotourism impact on biodiversity conservation were age (logistic regression (β) = -0.683; p = 0.037) and gender (logistic regression (β) = 0.917; p = 0.045). This study recommends the development of ecotourism-friendly policies that can accelerate Public Private Partnership for the sustainable management of the CMNP as a commitment toward good governance. It also recommends the development of gender-sensitive ecotourism packages, with fair opportunities for rural women and more parity in benefit sharing to improve livelihood and contribute more to biodiversity conservation in and around the Park.Keywords: biodiversity conservation, Campo Ma’an national park, ecotourism, ecotourism governance, rural livelihoods, protected area management
Procedia PDF Downloads 119389 Thick Data Techniques for Identifying Abnormality in Video Frames for Wireless Capsule Endoscopy
Authors: Jinan Fiaidhi, Sabah Mohammed, Petros Zezos
Abstract:
Capsule endoscopy (CE) is an established noninvasive diagnostic modality in investigating small bowel disease. CE has a pivotal role in assessing patients with suspected bleeding or identifying evidence of active Crohn's disease in the small bowel. However, CE produces lengthy videos with at least eighty thousand frames, with a frequency rate of 2 frames per second. Gastroenterologists cannot dedicate 8 to 15 hours to reading the CE video frames to arrive at a diagnosis. This is why the issue of analyzing CE videos based on modern artificial intelligence techniques becomes a necessity. However, machine learning, including deep learning, has failed to report robust results because of the lack of large samples to train its neural nets. In this paper, we are describing a thick data approach that learns from a few anchor images. We are using sound datasets like KVASIR and CrohnIPI to filter candidate frames that include interesting anomalies in any CE video. We are identifying candidate frames based on feature extraction to provide representative measures of the anomaly, like the size of the anomaly and the color contrast compared to the image background, and later feed these features to a decision tree that can classify the candidate frames as having a condition like the Crohn's Disease. Our thick data approach reported accuracy of detecting Crohn's Disease based on the availability of ulcer areas at the candidate frames for KVASIR was 89.9% and for the CrohnIPI was 83.3%. We are continuing our research to fine-tune our approach by adding more thick data methods for enhancing diagnosis accuracy.Keywords: thick data analytics, capsule endoscopy, Crohn’s disease, siamese neural network, decision tree
Procedia PDF Downloads 155