Search results for: earth observation data cube
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26878

Search results for: earth observation data cube

24928 Musical Composition by Computer with Inspiration from Files of Different Media Types

Authors: Cassandra Pratt Romero, Andres Gomez de Silva Garza

Abstract:

This paper describes a computational system designed to imitate human inspiration during musical composition. The system is called MIS (Musical Inspiration Simulator). The MIS system is inspired by media to which human beings are exposed daily (visual, textual, or auditory) to create new musical compositions based on the emotions detected in said media. After building the system we carried out a series of evaluations with volunteer users who used MIS to compose music based on images, texts, and audio files. The volunteers were asked to judge the harmoniousness and innovation in the system's compositions. An analysis of the results points to the difficulty of computational analysis of the characteristics of the media to which we are exposed daily, as human emotions have a subjective character. This observation will direct future improvements in the system.

Keywords: human inspiration, musical composition, musical composition by computer, theory of sensation and human perception

Procedia PDF Downloads 183
24927 Spatiotemporal Evaluation of Climate Bulk Materials Production in Atmospheric Aerosol Loading

Authors: Mehri Sadat Alavinasab Ashgezari, Gholam Reza Nabi Bidhendi, Fatemeh Sadat Alavinasab Ashkezari

Abstract:

Atmospheric aerosol loading (AAL) from anthropogenic sources is an evidence in industrial development. The accelerated trends in material consumption at the global scale in recent years demonstrate consumption paradigms sensible to the planetary boundaries (PB). This paper is a statistical approach on recognizing the path of climate-relevant bulk materials production (CBMP) of steel, cement and plastics to AAL via an updated and validated spatiotemporal distribution. The methodology of statistical analysis used the most updated regional or global databases or instrumental technologies. This corresponded to a selection of processes and areas capable for tracking AAL within the last decade, analyzing the most validated data while leading to explore the behavior functions or models. The results also represented a correlation within socio economic metabolism idea between the materials specified as macronutrients of society and AAL as a PB with an unknown threshold. The selected country contributors of China, India, US and the sample country of Iran show comparable cumulative AAL values vs to the bulk materials domestic extraction and production rate in the study period of 2012 to 2022. Generally, there is a tendency towards gradual descend in the worldwide and regional aerosol concentration after 2015. As of our evaluation, a considerable share of human role, equivalent 20% from CBMP, is for the main anthropogenic species of aerosols, including sulfate, black carbon and organic particulate matters too. This study, in an innovative approach, also explores the potential role of AAL control mechanisms from the economy sectors where ordered and smoothing loading trends are accredited through the disordered phenomena of CBMP and aerosol precursor emissions. The equilibrium states envisioned is an approval to the well-established theory of Spin Glasses applicable in physical system like the Earth and here to AAL.

Keywords: atmospheric aeroso loading, material flows, climate bulk materials, industrial ecology

Procedia PDF Downloads 80
24926 Adaptation to Climate Change: An Anthropological Study on Changing Livelihood Strategies in South-West Coastal Bangladesh

Authors: Ashik Sarder

Abstract:

Bangladesh is a disaster-prone and one of the most vulnerable countries to climate change. The country has a long coastal area which is frequently being affected by several types of natural disasters due to climate change. The disasters have impacts on the life and livelihood of different natural resources depending on communities living in the coastal areas. The Malo is a Hindu religious traditional fishing community living at Sarafpur Union of Dumuria Upazila of Khulna district of south-west coastal Bangladesh. Fishing is the only means of their livelihood and the community has been engaged in fishing practices inherently in rivers, estuaries, and sea for more than 300 years. and they are totally dependent on this traditional occupation. But, in recent year’s climate change has negative impacts on their only livelihood option. The study aims to examine the impacts of climate change on the livelihood of Malo fishing community in south-west coastal Bangladesh, identify the adaptation strategies undertaken and practiced by Malo fishing community to cope with climate change and sustain their livelihood and explore the changing adaptation strategies undertaken by Malo fishing community and others. The study has been conducted from both qualitative and quantitative perspectives. Data has been collected from both primary and secondary sources. The primary data has been collected in the participatory observation approach following both qualitative and quantitative method. The primary source of data includes village census, face-to-face interview and in-depth case studies using structured questionnaire. The secondary source of the literature includes different national and international documents, policy papers, books and articles; related websites and peer-viewed documents on climate change, vulnerability, adaptation, livelihood, and fisheries. The study has identified different practices of adaption to climate change by Malo fishing community and others in the selected area. Three types of adaption practices have been identified. Firstly, the indigenous adaptation practices by Malo fishing community to cope with climate change have been identified. These identified adaptation practices by Malo fishing community include; ensuring drinking water and sanitation facilities, planting trees to tackle impacts of cyclone, excavating dumps to preserve the valuable assets, growing vegetables and rearing domestic livestock to earn surplus money, taking loans for ensuring continuation of present livelihood and migrating to near city or towns for better livelihood options. Secondly, adaptation initiatives undertaken by the government have provided limited facility to this vulnerable fishing community and made them benefited. And thirdly, some adaptation initiatives commenced by few non-government and community-based organizations have also made the Malo fishing community as beneficiaries. The study has suggested recommendations for Malo fishing community to overcome the challenges and impacts of climate change for retaining their traditional fishing livelihood. The accumulated recommendations would be very useful for the researchers, academicians, policy-makers of Government and non-government organizations to conduct more researches and take initiatives for Malo fishing community to make them more capable to sustain their fishing livelihood.

Keywords: climate change, livelihood, adaptation, anthropology, vulnerability

Procedia PDF Downloads 117
24925 Raising the Property Provisions of the Topographic Located near the Locality of Gircov, Romania

Authors: Carmen Georgeta Dumitrache

Abstract:

Measurements of terrestrial science aims to study the totality of operations and computing, which are carried out for the purposes of representation on the plan or map of the land surface in a specific cartographic projection and topographic scale. With the development of society, the metrics have evolved, and they land, being dependent on the achievement of a goal-bound utility of economic activity and of a scientific purpose related to determining the form and dimensions of the Earth. For measurements in the field, data processing and proper representation on drawings and maps of planimetry and landform of the land, using topographic and geodesic instruments, calculation and graphical reporting, which requires a knowledge of theoretical and practical concepts from different areas of science and technology. In order to use properly in practice, topographical and geodetic instruments designed to measure precise angles and distances are required knowledge of geometric optics, precision mechanics, the strength of materials, and more. For processing, the results from field measurements are necessary for calculation methods, based on notions of geometry, trigonometry, algebra, mathematical analysis and computer science. To be able to illustrate topographic measurements was established for the lifting of property located near the locality of Gircov, Romania. We determine this total surface of the plan (T30), parcel/plot, but also in the field trace the coordinates of a parcel. The purpose of the removal of the planimetric consisted of: the exact determination of the bounding surface; analytical calculation of the surface; comparing the surface determined with the one registered in the documents produced; drawing up a plan of location and delineation with closeness and distance contour, as well as highlighting the parcels comprising this property; drawing up a plan of location and delineation with closeness and distance contour for a parcel from Dave; in the field trace outline of plot points from the previous point. The ultimate goal of this work was to determine and represent the surface, but also to tear off a plot of the surface total, while respecting the first surface condition imposed by the Act of the beneficiary's property.

Keywords: topography, surface, coordinate, modeling

Procedia PDF Downloads 257
24924 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management

Authors: M. Graus, K. Westhoff, X. Xu

Abstract:

The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.

Keywords: data analytics, green production, industrial energy management, optimization, renewable energies, simulation

Procedia PDF Downloads 435
24923 Dissimilarity-Based Coloring for Symbolic and Multivariate Data Visualization

Authors: K. Umbleja, M. Ichino, H. Yaguchi

Abstract:

In this paper, we propose a coloring method for multivariate data visualization by using parallel coordinates based on dissimilarity and tree structure information gathered during hierarchical clustering. The proposed method is an extension for proximity-based coloring that suffers from a few undesired side effects if hierarchical tree structure is not balanced tree. We describe the algorithm by assigning colors based on dissimilarity information, show the application of proposed method on three commonly used datasets, and compare the results with proximity-based coloring. We found our proposed method to be especially beneficial for symbolic data visualization where many individual objects have already been aggregated into a single symbolic object.

Keywords: data visualization, dissimilarity-based coloring, proximity-based coloring, symbolic data

Procedia PDF Downloads 170
24922 The Impact of Data Science on Geography: A Review

Authors: Roberto Machado

Abstract:

We conducted a systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses methodology, analyzing 2,996 studies and synthesizing 41 of them to explore the evolution of data science and its integration into geography. By employing optimization algorithms, we accelerated the review process, significantly enhancing the efficiency and precision of literature selection. Our findings indicate that data science has developed over five decades, facing challenges such as the diversified integration of data and the need for advanced statistical and computational skills. In geography, the integration of data science underscores the importance of interdisciplinary collaboration and methodological innovation. Techniques like large-scale spatial data analysis and predictive algorithms show promise in natural disaster management and transportation route optimization, enabling faster and more effective responses. These advancements highlight the transformative potential of data science in geography, providing tools and methodologies to address complex spatial problems. The relevance of this study lies in the use of optimization algorithms in systematic reviews and the demonstrated need for deeper integration of data science into geography. Key contributions include identifying specific challenges in combining diverse spatial data and the necessity for advanced computational skills. Examples of connections between these two fields encompass significant improvements in natural disaster management and transportation efficiency, promoting more effective and sustainable environmental solutions with a positive societal impact.

Keywords: data science, geography, systematic review, optimization algorithms, supervised learning

Procedia PDF Downloads 29
24921 Developing Structured Sizing Systems for Manufacturing Ready-Made Garments of Indian Females Using Decision Tree-Based Data Mining

Authors: Hina Kausher, Sangita Srivastava

Abstract:

In India, there is a lack of standard, systematic sizing approach for producing readymade garments. Garments manufacturing companies use their own created size tables by modifying international sizing charts of ready-made garments. The purpose of this study is to tabulate the anthropometric data which covers the variety of figure proportions in both height and girth. 3,000 data has been collected by an anthropometric survey undertaken over females between the ages of 16 to 80 years from some states of India to produce the sizing system suitable for clothing manufacture and retailing. This data is used for the statistical analysis of body measurements, the formulation of sizing systems and body measurements tables. Factor analysis technique is used to filter the control body dimensions from a large number of variables. Decision tree-based data mining is used to cluster the data. The standard and structured sizing system can facilitate pattern grading and garment production. Moreover, it can exceed buying ratios and upgrade size allocations to retail segments.

Keywords: anthropometric data, data mining, decision tree, garments manufacturing, sizing systems, ready-made garments

Procedia PDF Downloads 133
24920 Investigating the Effect of Juncture on Comprehension among Adult Learners of English in Nigeria

Authors: Emmanuel Uba, Oluwasegun Omidiora, Eugenia Abiodun-Eniayekan

Abstract:

The role of phonology on reading comprehension is long established in the literature. However, the vast majority of studies on the relationship between phonology and reading or comprehension among adults involve investigating the role of intonation, stress, and segmental knowledge on understanding texts. Not much attention is paid to junctural observation and its effect on the interpretation of texts. This study, therefore, presents a preliminary case-study investigation of the effect of juncture on comprehension of texts among adult Nigerian learners of English. Eighty adult learners of English in Nigeria were presented with fifteen seemingly ambiguous sentences to interpret. The sentences were structured in a way that pausing at different points would produce different interpretations. The results reveal that wrong application of pause is capable of affecting comprehension even when other phonological factors such as stress and intonation are observed properly.

Keywords: comprehension, juncture, phonology, reading

Procedia PDF Downloads 298
24919 Water Supply and Utility Management to Address Urban Sanitation Issues

Authors: Akshaya P., Priyanjali Prabhkaran

Abstract:

The paper examines the formulation of strategies to develop a comprehensive model of city level water utility management to addressing urban sanitation issues. The water is prime life sustaining natural resources and nature’s gifts to all living beings on the earth multiple urban sanitation issues are addressed in the supply of water in a city. Many of these urban sanitation issues are linked to population expansion and economic inequity. Increased usage of water and the development caused water scarcity. The lack of water supply results increases the chance of unhygienic situations in the cities. In this study, the urban sanitation issues are identified with respect to water supply and utility management. The study compared based on their best practices and initiatives. From this, best practices and initiatives identify suitable sustainable measures to address water supply issues in the city level. The paper concludes with the listed provision that should be considered suitable measures for water supply and utility management in city level to address the urban sanitation issues.

Keywords: water, benchmarking water supply, water supply networks, water supply management

Procedia PDF Downloads 109
24918 A Framework on Data and Remote Sensing for Humanitarian Logistics

Authors: Vishnu Nagendra, Marten Van Der Veen, Stefania Giodini

Abstract:

Effective humanitarian logistics operations are a cornerstone in the success of disaster relief operations. However, for effectiveness, they need to be demand driven and supported by adequate data for prioritization. Without this data operations are carried out in an ad hoc manner and eventually become chaotic. The current availability of geospatial data helps in creating models for predictive damage and vulnerability assessment, which can be of great advantage to logisticians to gain an understanding on the nature and extent of the disaster damage. This translates into actionable information on the demand for relief goods, the state of the transport infrastructure and subsequently the priority areas for relief delivery. However, due to the unpredictable nature of disasters, the accuracy in the models need improvement which can be done using remote sensing data from UAVs (Unmanned Aerial Vehicles) or satellite imagery, which again come with certain limitations. This research addresses the need for a framework to combine data from different sources to support humanitarian logistic operations and prediction models. The focus is on developing a workflow to combine data from satellites and UAVs post a disaster strike. A three-step approach is followed: first, the data requirements for logistics activities are made explicit, which is done by carrying out semi-structured interviews with on field logistics workers. Second, the limitations in current data collection tools are analyzed to develop workaround solutions by following a systems design approach. Third, the data requirements and the developed workaround solutions are fit together towards a coherent workflow. The outcome of this research will provide a new method for logisticians to have immediately accurate and reliable data to support data-driven decision making.

Keywords: unmanned aerial vehicles, damage prediction models, remote sensing, data driven decision making

Procedia PDF Downloads 378
24917 Optimizing Operation of Photovoltaic System Using Neural Network and Fuzzy Logic

Authors: N. Drir, L. Barazane, M. Loudini

Abstract:

It is well known that photovoltaic (PV) cells are an attractive source of energy. Abundant and ubiquitous, this source is one of the important renewable energy sources that have been increasing worldwide year by year. However, in the V-P characteristic curve of GPV, there is a maximum point called the maximum power point (MPP) which depends closely on the variation of atmospheric conditions and the rotation of the earth. In fact, such characteristics outputs are nonlinear and change with variations of temperature and irradiation, so we need a controller named maximum power point tracker MPPT to extract the maximum power at the terminals of photovoltaic generator. In this context, the authors propose here to study the modeling of a photovoltaic system and to find an appropriate method for optimizing the operation of the PV generator using two intelligent controllers respectively to track this point. The first one is based on artificial neural networks and the second on fuzzy logic. After the conception and the integration of each controller in the global process, the performances are examined and compared through a series of simulation. These two controller have prove by their results good tracking of the MPPT compare with the other method which are proposed up to now.

Keywords: maximum power point tracking, neural networks, photovoltaic, P&O

Procedia PDF Downloads 339
24916 Facility Data Model as Integration and Interoperability Platform

Authors: Nikola Tomasevic, Marko Batic, Sanja Vranes

Abstract:

Emerging Semantic Web technologies can be seen as the next step in evolution of the intelligent facility management systems. Particularly, this considers increased usage of open source and/or standardized concepts for data classification and semantic interpretation. To deliver such facility management systems, providing the comprehensive integration and interoperability platform in from of the facility data model is a prerequisite. In this paper, one of the possible modelling approaches to provide such integrative facility data model which was based on the ontology modelling concept was presented. Complete ontology development process, starting from the input data acquisition, ontology concepts definition and finally ontology concepts population, was described. At the beginning, the core facility ontology was developed representing the generic facility infrastructure comprised of the common facility concepts relevant from the facility management perspective. To develop the data model of a specific facility infrastructure, first extension and then population of the core facility ontology was performed. For the development of the full-blown facility data models, Malpensa and Fiumicino airports in Italy, two major European air-traffic hubs, were chosen as a test-bed platform. Furthermore, the way how these ontology models supported the integration and interoperability of the overall airport energy management system was analyzed as well.

Keywords: airport ontology, energy management, facility data model, ontology modeling

Procedia PDF Downloads 448
24915 Plastic Degradation Activity of Bacillus Sp. Isolated from the Gut of Plastic-Fed Yellow Mealworm

Authors: Najat El-Kurdi, Sherif Hammad, Mohamed Ghazi, Sahar El-Shatoury, Khaled Zakaria

Abstract:

The increasing number of plastic production and its importance to humanity in daily life made it a headache to the planet earth. The persistence of plastic wastes in the environment formed a serious problem. They are prominent with their capability to resist microbial degradation for decades. Thus, it was crucial to find ways to eliminate the plastics without depending on conventional recycling methods, which causes the formation of more hazardous compounds and doubles the problem. In this paper, mealworms were fed with a mixture of plastic wastes such as plastic bags, Styrofoam, PE foam, and plastic tarpaulins film as the sole food source for a month. Frass was collected at the end of the test and examined using FTIR analysis. Also, the gut bacteria were isolated and identified using 16S rRNA. The results show the mineralization of plastic in the frass of plastic-fed worms when compared to control. The 16S rRNA and the BLAST analysis showed that the obtained isolate belongs to the genus Bacillus Sp especially Bacillus subtilis. Phylogenetic analysis showed their relatedness to the other Bacillus species in the NCBI database.

Keywords: mealworm, waste management, plastic-degrading bacteria, gut microbiome, Bacillus sp

Procedia PDF Downloads 146
24914 Impacts of Climate Elements on the Annual Periodic Behavior of the Shallow Groundwater Level: Case Study from Central-Eastern Europe

Authors: Tamas Garamhegyi, Jozsef Kovacs, Rita Pongracz, Peter Tanos, Balazs Trasy, Norbert Magyar, Istvan G. Hatvani

Abstract:

Like most environmental processes, shallow groundwater fluctuation under natural circumstances also behaves periodically. With the statistical tools at hand, it can easily be determined if a period exists in the data or not. Thus, the question may be raised: Does the estimated average period time characterize the whole time period, or not? This is especially important in the case of such complex phenomena as shallow groundwater fluctuation, driven by numerous factors. Because of the continuous changes in the oscillating components of shallow groundwater time series, the most appropriate method should be used to investigate its periodicity, this is wavelet spectrum analysis. The aims of the research were to investigate the periodic behavior of the shallow groundwater time series of an agriculturally important and drought sensitive region in Central-Eastern Europe and its relationship to the European pressure action centers. During the research ~216 shallow groundwater observation wells located in the eastern part of the Great Hungarian Plain with a temporal coverage of 50 years were scanned for periodicity. By taking the full-time interval as 100%, the presence of any period could be determined in percentages. With the complex hydrogeological/meteorological model developed in this study, non-periodic time intervals were found in the shallow groundwater levels. On the local scale, this phenomenon linked to drought conditions, and on a regional scale linked to the maxima of the regional air pressures in the Gulf of Genoa. The study documented an important link between shallow groundwater levels and climate variables/indices facilitating the necessary adaptation strategies on national and/or regional scales, which have to take into account the predictions of drought-related climatic conditions.

Keywords: climate change, drought, groundwater periodicity, wavelet spectrum and coherence analyses

Procedia PDF Downloads 385
24913 Dilemma between the Education-Area and the Working-Area in Socialization of Teaching Profession: Scrutiny on the Beginning Teachers through the Relationality of the Regulations and Institutions in Turkey Case

Authors: Dilek Dede

Abstract:

This study aims at scrutinized the dilemma between education place and working place with professional socialization dimension over the beginning teachers in Turkey is to be found the solution for the dilemma in Turkey. The research question is that how can be explained the gap between education place and working place for beginning teachers in Turkey. That expected to contribute to literature with the solutions for shorting the gap between working area and education area of the teaching profession in Turkey case. The study is constructed in two section. Firstly, socialization of the teaching profession and teaching modules have been discussed through the profession, education, working place indicators. In the second section, Secondly, two educational specialists from Turkey has been interviewed about their observation on trainee teachers compelling to participate the class for candidate teachers after university grade. Then, the dilemma between education area and working area of the teaching profession has been detected by of semi-structured and in-depth interviews, the literature on the relationality of institutions and regulation is discussed. The following outcomes have been accessed in accordance with the data set and literature linkage axis: Firstly, teachers coming from the distinctive programmes as an educational background. Hence, teachers who pertain to distinctive cultures work in the same environment. That cause cultural conflicts and complication of socialization of profession. Secondly, the insufficient partnership between schools and universities besides, the education classes lead to a struggle of culture among these two institutions. Thirdly, the education classes are designed as bureaucratic form instead of coalescence between head teachers and trainee teachers around a common culture. That become deep the dilemma. In conclusion, on condition that applied-oriented education that advocates in-service learning is promoted and this programme is supported with well-structured the in-service training through the partnership of universities and schools, the gap between the working-area and education-area might be shortened.

Keywords: beginning teachers, construction of a common, social mobilization in the teaching profession, teacher training institution, the relationality of the regulations and institutions

Procedia PDF Downloads 165
24912 Effect of Drop Impact Behavior on Spray Retention

Authors: Hassina Hafida Boukhalfa, Mathieu Massinon, Fréderic Lebeau, Mohamed Belhamra

Abstract:

Drop behaviour during impact affects retention. The increase of adhesion is usually seen as the objective when applying crop protection products, while bouncing and shattering are seen as detrimental to spray retention. However, observation of drop impacts using high speed shadow graphy shows that fragmentation can occur in Wenzel wetting regime. In this case, a part of the drop sticks on the surface, what contributes to retention. Using simultaneous measurements of drop impacts with high speed imaging and of retention with fluorometry for 3 spray mixtures on excised barley leaves allowed us to observe that about 50% of the drops fragmented in Wenzel state remain on the leaf. Depending on spray mixture, these impact outcomes accounted for 25 to 50% of retention, the higher contribution being correlated with bigger VMD (Volume Median Diameter). This contribution is non-negligible and should be considered when a modelling of spray retention process is performed.

Keywords: drop impact, retention, fluorometry, high speed imaging

Procedia PDF Downloads 381
24911 Comparison Between Fuzzy and P&O Control for MPPT for Photovoltaic System Using Boost Converter

Authors: M. Doumi, A. Miloudi, A. G. Aissaoui, K. Tahir, C. Belfedal, S. Tahir

Abstract:

The studies on the photovoltaic system are extensively increasing because of a large, secure, essentially exhaustible and broadly available resource as a future energy supply. However, the output power induced in the photovoltaic modules is influenced by an intensity of solar cell radiation, temperature of the solar cells and so on. Therefore, to maximize the efficiency of the photovoltaic system, it is necessary to track the maximum power point of the PV array, for this Maximum Power Point Tracking (MPPT) technique is used. Some MPPT techniques are available in that perturbation and observation (P&O) and Fuzzy logic controller (FLC). The fuzzy control method has been compared with perturb and observe (P&O) method as one of the most widely conventional method used in this area. Both techniques have been analyzed and simulated. MPPT using fuzzy logic shows superior performance and more reliable control with respect to the P&O technique for this application.

Keywords: photovoltaic system, MPPT, perturb and observe, fuzzy logic

Procedia PDF Downloads 604
24910 Segmental Motion of Polymer Chain at Glass Transition Probed by Single Molecule Detection

Authors: Hiroyuki Aoki

Abstract:

The glass transition phenomenon has been extensively studied for a long time. The glass transition of polymer materials is assigned to the transition of the dynamics of the chain backbone segment. However, the detailed mechanism of the transition behavior of the segmental motion is still unclear. In the current work, the single molecule detection technique was employed to reveal the trajectory of the molecular motion of the single polymer chain. The center segment of poly(butyl methacrylate) chain was labeled by a perylenediimide dye molecule and observed by a highly sensitive fluorescence microscope in a defocus condition. The translational and rotational diffusion of the center segment in a single polymer chain was analyzed near the glass transition temperature. The direct observation of the individual polymer chains revealed the intermittent behavior of the segmental motion, indicating the spatial inhomogeneity.

Keywords: glass transition, molecular motion, polymer materials, single molecule

Procedia PDF Downloads 337
24909 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices

Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu

Abstract:

Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.

Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction

Procedia PDF Downloads 105
24908 Understanding the Polygon with the Eyes of Blinds

Authors: Tuğba Horzum, Ahmet Arikan

Abstract:

This paper was part of a broader study that investigated what blind students (BSs) understood and how they used concept definitions (CDs) and concept images (CIs) for some mathematical concepts. This paper focused on the polygon concept. For this purpose, four open-ended questions were asked to five blind middle school students. During the interviews, BSs were presented with raised-line materials and were given opportunities to construct geometric shapes with magnetic sticks and micro-balls. Qualitative research techniques applied in grounded theory were used for analyzing documents pictures which were taken from magnetic geometric shapes that BSs constructed, raised-line materials and researcher’s observation notes and interviews. At the end of the analysis, it was observed that BSs used mostly their CIs and never took into account the CDs. Besides, BSs encountered with the difficulties associated with the combination of polygon edges’ endpoints consecutively. Additionally, they focused on the interior of the polygon and the angles which have smaller a size. Lastly, BSs were often conflicted about triangle, rectangle, square and circle whether or not a polygon.

Keywords: blind students, concept definition, concept image, polygon

Procedia PDF Downloads 297
24907 Road Accidents Bigdata Mining and Visualization Using Support Vector Machines

Authors: Usha Lokala, Srinivas Nowduri, Prabhakar K. Sharma

Abstract:

Useful information has been extracted from the road accident data in United Kingdom (UK), using data analytics method, for avoiding possible accidents in rural and urban areas. This analysis make use of several methodologies such as data integration, support vector machines (SVM), correlation machines and multinomial goodness. The entire datasets have been imported from the traffic department of UK with due permission. The information extracted from these huge datasets forms a basis for several predictions, which in turn avoid unnecessary memory lapses. Since data is expected to grow continuously over a period of time, this work primarily proposes a new framework model which can be trained and adapt itself to new data and make accurate predictions. This work also throws some light on use of SVM’s methodology for text classifiers from the obtained traffic data. Finally, it emphasizes the uniqueness and adaptability of SVMs methodology appropriate for this kind of research work.

Keywords: support vector mechanism (SVM), machine learning (ML), support vector machines (SVM), department of transportation (DFT)

Procedia PDF Downloads 274
24906 Farmers’ Awareness and Behavior of Chemical Pesticide Uses in Suan Luang Sub-District Municipality, Ampawa, Samut Songkram, Thailand

Authors: Paiboon Jeamponk, Tikamporn Thipsaeng

Abstract:

This paper is aimed to investigate farmers’ level of awareness and behavior of chemical pesticide uses, by using a case study of Suan Luang Sub- District Municipality, Ampawa, Samut Songkram Province. Questionnaire was employed in this study with the farmers from 46 households to explore their level of awareness in chemical pesticide uses, while interview and observation were adopted in exploring their behavior of chemical pesticide uses. The findings reflected the farmers’ high level of awareness in chemical pesticide uses in the hazardous effects of the chemical to human and environmental health, while their behavior of chemical pesticide uses explained their awareness paid to the right way of using pesticides, for instance reading the direction on the label, keeping children and animals away from the area of pesticide mixing, covering body with clothes and wearing hat and mask, no smoking, eating or drinking during pesticide spray or standing in windward direction.

Keywords: awareness, behavior, pesticide, farmers

Procedia PDF Downloads 429
24905 A Relational Data Base for Radiation Therapy

Authors: Raffaele Danilo Esposito, Domingo Planes Meseguer, Maria Del Pilar Dorado Rodriguez

Abstract:

As far as we know, it is still unavailable a commercial solution which would allow to manage, openly and configurable up to user needs, the huge amount of data generated in a modern Radiation Oncology Department. Currently, available information management systems are mainly focused on Record & Verify and clinical data, and only to a small extent on physical data. Thus, results in a partial and limited use of the actually available information. In the present work we describe the implementation at our department of a centralized information management system based on a web server. Our system manages both information generated during patient planning and treatment, and information of general interest for the whole department (i.e. treatment protocols, quality assurance protocols etc.). Our objective it to be able to analyze in a simple and efficient way all the available data and thus to obtain quantitative evaluations of our treatments. This would allow us to improve our work flow and protocols. To this end we have implemented a relational data base which would allow us to use in a practical and efficient way all the available information. As always we only use license free software.

Keywords: information management system, radiation oncology, medical physics, free software

Procedia PDF Downloads 241
24904 A Study of Safety of Data Storage Devices of Graduate Students at Suan Sunandha Rajabhat University

Authors: Komol Phaisarn, Natcha Wattanaprapa

Abstract:

This research is a survey research with an objective to study the safety of data storage devices of graduate students of academic year 2013, Suan Sunandha Rajabhat University. Data were collected by questionnaire on the safety of data storage devices according to CIA principle. A sample size of 81 was drawn from population by purposive sampling method. The results show that most of the graduate students of academic year 2013 at Suan Sunandha Rajabhat University use handy drive to store their data and the safety level of the devices is at good level.

Keywords: security, safety, storage devices, graduate students

Procedia PDF Downloads 353
24903 Investigating Sub-daily Responses of Water Flow of Trees in Tropical Successional Forests in Thailand

Authors: Pantana Tor-Ngern

Abstract:

In the global water cycle, tree water use (Tr) largely contributes to evapotranspiration which is the total amount of water evaporated from terrestrial ecosystems to the atmosphere, regulating climates. Tree water use responds to environmental factors, including atmospheric humidity and sunlight (represented by vapor pressure deficit or VPD and photosynthetically active radiation or PAR, respectively) and soil moisture. In forests, Tr responses to such factors depend on species and their spatial and temporal variations. Tropical forests in Southeast Asia (SEA) have experienced land-use conversion from abandoned agricultural practices, resulting in patches of forests at different stages including old-growth and secondary forests. Because the inherent structures, such as canopy height and tree density, significantly vary among forests at different stages and can strongly affect their respective microclimate, Tr and its responses to changing environmental conditions in successional forests may differ. Daily and seasonal variations in the environmental factors may exert significant impacts on the respective Tr patterns. Extrapolating Tr data from short periods of days to longer periods of seasons or years can be complex and is important for estimating long-term ecosystem water use which often includes normal and abnormal climatic conditions. Thus, this study aims to investigate the diurnal variation of Tr, using measured sap flux density (JS) data, with changes in VPD in eight evergreen tree species in an old-growth forest (hereafter OF; >200 years old) and a young forest (hereafter YF, <10 years old) in Khao Yai National Park, Thailand. The studied species included Sysygium syzygoides, Aquilaria crassna, Cinnamomum subavenium, Nephelium melliferum, Altingia excelsa in OF, and Syzygium nervosum and Adinandra integerrima in YF. Only Sysygium antisepticum was found in both forest stages. Specifically, hysteresis, which indicates the asymmetrical changes of JS in response to changing VPD across daily timescale, was examined in these species. Results showed no hysteresis in all species in OF, except Altingia excelsa which exhibited a 3-hour delayed JS response to VPD. In contrast, JS of all species in YF displayed one-hour delayed responses to VPD. The OF species that showed no hysteresis indicated their well-coupling of their canopies with the atmosphere, facilitating the gas exchange which is essential for tree growth. The delayed responses in Altingia excelsa in OF and all species in YF were associated with higher JS in the morning than that in the afternoon. This implies that these species were sensitive to drying air, closing stomata relatively rapidly compared to the decreasing atmospheric humidity (VPD). Such behavior is often observed in trees growing in dry environments. This study suggests that detailed investigation of JS at sub-daily timescales is imperative for better understanding of mechanistic responses of trees to the changing climate, which will benefit the improvement of earth system models.

Keywords: sap flow, tropical forest, forest succession, thermal dissipcation probe

Procedia PDF Downloads 60
24902 Simulation of a Cost Model Response Requests for Replication in Data Grid Environment

Authors: Kaddi Mohammed, A. Benatiallah, D. Benatiallah

Abstract:

Data grid is a technology that has full emergence of new challenges, such as the heterogeneity and availability of various resources and geographically distributed, fast data access, minimizing latency and fault tolerance. Researchers interested in this technology address the problems of the various systems related to the industry such as task scheduling, load balancing and replication. The latter is an effective solution to achieve good performance in terms of data access and grid resources and better availability of data cost. In a system with duplication, a coherence protocol is used to impose some degree of synchronization between the various copies and impose some order on updates. In this project, we present an approach for placing replicas to minimize the cost of response of requests to read or write, and we implement our model in a simulation environment. The placement techniques are based on a cost model which depends on several factors, such as bandwidth, data size and storage nodes.

Keywords: response time, query, consistency, bandwidth, storage capacity, CERN

Procedia PDF Downloads 271
24901 Prompt Design for Code Generation in Data Analysis Using Large Language Models

Authors: Lu Song Ma Li Zhi

Abstract:

With the rapid advancement of artificial intelligence technology, large language models (LLMs) have become a milestone in the field of natural language processing, demonstrating remarkable capabilities in semantic understanding, intelligent question answering, and text generation. These models are gradually penetrating various industries, particularly showcasing significant application potential in the data analysis domain. However, retraining or fine-tuning these models requires substantial computational resources and ample downstream task datasets, which poses a significant challenge for many enterprises and research institutions. Without modifying the internal parameters of the large models, prompt engineering techniques can rapidly adapt these models to new domains. This paper proposes a prompt design strategy aimed at leveraging the capabilities of large language models to automate the generation of data analysis code. By carefully designing prompts, data analysis requirements can be described in natural language, which the large language model can then understand and convert into executable data analysis code, thereby greatly enhancing the efficiency and convenience of data analysis. This strategy not only lowers the threshold for using large models but also significantly improves the accuracy and efficiency of data analysis. Our approach includes requirements for the precision of natural language descriptions, coverage of diverse data analysis needs, and mechanisms for immediate feedback and adjustment. Experimental results show that with this prompt design strategy, large language models perform exceptionally well in multiple data analysis tasks, generating high-quality code and significantly shortening the data analysis cycle. This method provides an efficient and convenient tool for the data analysis field and demonstrates the enormous potential of large language models in practical applications.

Keywords: large language models, prompt design, data analysis, code generation

Procedia PDF Downloads 39
24900 Comparison of Different Methods to Produce Fuzzy Tolerance Relations for Rainfall Data Classification in the Region of Central Greece

Authors: N. Samarinas, C. Evangelides, C. Vrekos

Abstract:

The aim of this paper is the comparison of three different methods, in order to produce fuzzy tolerance relations for rainfall data classification. More specifically, the three methods are correlation coefficient, cosine amplitude and max-min method. The data were obtained from seven rainfall stations in the region of central Greece and refers to 20-year time series of monthly rainfall height average. Three methods were used to express these data as a fuzzy relation. This specific fuzzy tolerance relation is reformed into an equivalence relation with max-min composition for all three methods. From the equivalence relation, the rainfall stations were categorized and classified according to the degree of confidence. The classification shows the similarities among the rainfall stations. Stations with high similarity can be utilized in water resource management scenarios interchangeably or to augment data from one to another. Due to the complexity of calculations, it is important to find out which of the methods is computationally simpler and needs fewer compositions in order to give reliable results.

Keywords: classification, fuzzy logic, tolerance relations, rainfall data

Procedia PDF Downloads 314
24899 Entrepreneurial Venture Creation through Anchor Event Activities: Pop-Up Stores as On-Site Arenas

Authors: Birgit A. A. Solem, Kristin Bentsen

Abstract:

Scholarly attention in entrepreneurship is currently directed towards understanding entrepreneurial venture creation as a process -the journey of new economic activities from nonexistence to existence often studied through flow- or network models. To complement existing research on entrepreneurial venture creation with more interactivity-based research of organized activities, this study examines two pop-up stores as anchor events involving on-site activities of fifteen participating entrepreneurs launching their new ventures. The pop-up stores were arranged in two middle-sized Norwegian cities and contained different brand stores that brought together actors of sub-networks and communities executing venture creation activities. The pop-up stores became on-site arenas for the entrepreneurs to create, maintain, and rejuvenate their networks, at the same time as becoming venues for temporal coordination of activities involving existing and potential customers in their venture creation. In this work, we apply a conceptual framework based on frequently addressed dilemmas within entrepreneurship theory (discovery/creation, causation/effectuation) to further shed light on the broad aspect of on-site anchor event activities and their venture creation outcomes. The dilemma-based concepts are applied as an analytic toolkit to pursue answers regarding the nature of anchor event activities typically found within entrepreneurial venture creation and how these anchor event activities affect entrepreneurial venture creation outcomes. Our study combines researcher participation with 200 hours of observation and twenty in-depth interviews. Data analysis followed established guidelines for hermeneutic analysis and was intimately intertwined with ongoing data collection. Data was coded and categorized in NVivo 12 software, and iterated several times as patterns were steadily developing. Our findings suggest that core anchor event activities typically found within entrepreneurial venture creation are; a concept- and product experimentation with visitors, arrangements to socialize (evening specials, auctions, and exhibitions), store-in-store concepts, arranged meeting places for peers and close connection with municipality and property owners. Further, this work points to four main entrepreneurial venture creation outcomes derived from the core anchor event activities; (1) venture attention, (2) venture idea-realization, (3) venture collaboration, and (4) venture extension. Our findings show that, depending on which anchor event activities are applied, the outcomes vary. Theoretically, this study offers two main implications. First, anchor event activities are both discovered and created, following the logic of causation, at the same time as being experimental, based on “learning by doing” principles of effectuation during the execution. Second, our research enriches prior studies on venture creation as a process. In this work, entrepreneurial venture creation activities and outcomes are understood through pop-up stores as on-site anchor event arenas, particularly suitable for interactivity-based research requested by the entrepreneurship field. This study also reveals important managerial implications, such as that entrepreneurs should allow themselves to find creative physical venture creation arenas (e.g., pop-up stores, showrooms), as well as collaborate with partners when discovering and creating concepts and activities based on new ideas. In this way, they allow themselves to both strategically plan for- and continually experiment with their venture.

Keywords: anchor event, interactivity-based research, pop-up store, entrepreneurial venture creation

Procedia PDF Downloads 91