Search results for: bare machine computing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3920

Search results for: bare machine computing

1970 The Impact of the Number of Neurons in the Hidden Layer on the Performance of MLP Neural Network: Application to the Fast Identification of Toxics Gases

Authors: Slimane Ouhmad, Abdellah Halimi

Abstract:

In this work, we have applied neural networks method MLP type to a database from an array of six sensors for the detection of three toxic gases. As the choice of the number of hidden layers and the weight values has a great influence on the convergence of the learning algorithm, we proposed, in this article, a mathematical formulation to determine the optimal number of hidden layers and good weight values based on the method of back propagation of errors. The results of this modeling have improved discrimination of these gases on the one hand, and optimize the computation time on the other hand, the comparison to other results achieved in this case.

Keywords: MLP Neural Network, back-propagation, number of neurons in the hidden layer, identification, computing time

Procedia PDF Downloads 352
1969 Touch Interaction through Tagging Context

Authors: Gabriel Chavira, Jorge Orozco, Salvador Nava, Eduardo Álvarez, Julio Rolón, Roberto Pichardo

Abstract:

Ambient Intelligence promotes a shift in computing which involves fitting-out the environments with devices to support context-aware applications. One of main objectives is the reduction to a minimum of the user’s interactive effort, the diversity and quantity of devices with which people are surrounded with, in existing environments; increase the level of difficulty to achieve this goal. The mobile phones and their amazing global penetration, makes it an excellent device for delivering new services to the user, without requiring a learning effort. The environment will have to be able to perceive all of the interaction techniques. In this paper, we present the PICTAC model (Perceiving touch Interaction through TAgging Context), which similarly delivers service to members of a research group.

Keywords: ambient intelligence, tagging context, touch interaction, touching services

Procedia PDF Downloads 388
1968 Cluster Analysis and Benchmarking for Performance Optimization of a Pyrochlore Processing Unit

Authors: Ana C. R. P. Ferreira, Adriano H. P. Pereira

Abstract:

Given the frequent variation of mineral properties throughout the Araxá pyrochlore deposit, even if a good homogenization work has been carried out before feeding the processing plants, an operation with quality and performance’s high variety standard is expected. These results could be improved and standardized if the blend composition parameters that most influence the processing route are determined, and then the types of raw materials are grouped by them, finally presenting a great reference with operational settings for each group. Associating the physical and chemical parameters of a unit operation through benchmarking or even an optimal reference of metallurgical recovery and product quality reflects in the reduction of the production costs, optimization of the mineral resource, and guarantee of greater stability in the subsequent processes of the production chain that uses the mineral of interest. Conducting a comprehensive exploratory data analysis to identify which characteristics of the ore are most relevant to the process route, associated with the use of Machine Learning algorithms for grouping the raw material (ore) and associating these with reference variables in the process’ benchmark is a reasonable alternative for the standardization and improvement of mineral processing units. Clustering methods through Decision Tree and K-Means were employed, associated with algorithms based on the theory of benchmarking, with criteria defined by the process team in order to reference the best adjustments for processing the ore piles of each cluster. A clean user interface was created to obtain the outputs of the created algorithm. The results were measured through the average time of adjustment and stabilization of the process after a new pile of homogenized ore enters the plant, as well as the average time needed to achieve the best processing result. Direct gains from the metallurgical recovery of the process were also measured. The results were promising, with a reduction in the adjustment time and stabilization when starting the processing of a new ore pile, as well as reaching the benchmark. Also noteworthy are the gains in metallurgical recovery, which reflect a significant saving in ore consumption and a consequent reduction in production costs, hence a more rational use of the tailings dams and life optimization of the mineral deposit.

Keywords: mineral clustering, machine learning, process optimization, pyrochlore processing

Procedia PDF Downloads 144
1967 Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks

Authors: Ksenia Volkova, Artur Petrosyan, Ignatii Dubyshkin, Alexei Ossadtchi

Abstract:

Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution.

Keywords: brain-computer interface, deep learning, ECoG, movement decoding, sensorimotor cortex

Procedia PDF Downloads 182
1966 Sentinel-2 Based Burn Area Severity Assessment Tool in Google Earth Engine

Authors: D. Madhushanka, Y. Liu, H. C. Fernando

Abstract:

Fires are one of the foremost factors of land surface disturbance in diverse ecosystems, causing soil erosion and land-cover changes and atmospheric effects affecting people's lives and properties. Generally, the severity of the fire is calculated as the Normalized Burn Ratio (NBR) index. This is performed manually by comparing two images obtained afterward. Then by using the bitemporal difference of the preprocessed satellite images, the dNBR is calculated. The burnt area is then classified as either unburnt (dNBR<0.1) or burnt (dNBR>= 0.1). Furthermore, Wildfire Severity Assessment (WSA) classifies burnt areas and unburnt areas using classification levels proposed by USGS and comprises seven classes. This procedure generates a burn severity report for the area chosen by the user manually. This study is carried out with the objective of producing an automated tool for the above-mentioned process, namely the World Wildfire Severity Assessment Tool (WWSAT). It is implemented in Google Earth Engine (GEE), which is a free cloud-computing platform for satellite data processing, with several data catalogs at different resolutions (notably Landsat, Sentinel-2, and MODIS) and planetary-scale analysis capabilities. Sentinel-2 MSI is chosen to obtain regular processes related to burnt area severity mapping using a medium spatial resolution sensor (15m). This tool uses machine learning classification techniques to identify burnt areas using NBR and to classify their severity over the user-selected extent and period automatically. Cloud coverage is one of the biggest concerns when fire severity mapping is performed. In WWSAT based on GEE, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for both pre-fire and post-fire image compositing. The parallel processing capabilities and preloaded geospatial datasets of GEE facilitated the production of this tool. This tool consists of a Graphical User Interface (GUI) to make it user-friendly. The advantage of this tool is the ability to obtain burn area severity over a large extent and more extended temporal periods. Two case studies were carried out to demonstrate the performance of this tool. The Blue Mountain national park forest affected by the Australian fire season between 2019 and 2020 is used to describe the workflow of the WWSAT. This site detected more than 7809 km2, using Sentinel-2 data, giving an error below 6.5% when compared with the area detected on the field. Furthermore, 86.77% of the detected area was recognized as fully burnt out, of which high severity (17.29%), moderate-high severity (19.63%), moderate-low severity (22.35%), and low severity (27.51%). The Arapaho and Roosevelt National Forest Park, California, the USA, which is affected by the Cameron peak fire in 2020, is chosen for the second case study. It was found that around 983 km2 had burned out, of which high severity (2.73%), moderate-high severity (1.57%), moderate-low severity (1.18%), and low severity (5.45%). These spots also can be detected through the visual inspection made possible by cloud-free images generated by WWSAT. This tool is cost-effective in calculating the burnt area since satellite images are free and the cost of field surveys is avoided.

Keywords: burnt area, burnt severity, fires, google earth engine (GEE), sentinel-2

Procedia PDF Downloads 241
1965 Mask-Prompt-Rerank: An Unsupervised Method for Text Sentiment Transfer

Authors: Yufen Qin

Abstract:

Text sentiment transfer is an important branch of text style transfer. The goal is to generate text with another sentiment attribute based on a text with a specific sentiment attribute while maintaining the content and semantic information unrelated to sentiment unchanged in the process. There are currently two main challenges in this field: no parallel corpus and text attribute entanglement. In response to the above problems, this paper proposed a novel solution: Mask-Prompt-Rerank. Use the method of masking the sentiment words and then using prompt regeneration to transfer the sentence sentiment. Experiments on two sentiment benchmark datasets and one formality transfer benchmark dataset show that this approach makes the performance of small pre-trained language models comparable to that of the most advanced large models, while consuming two orders of magnitude less computing and memory.

Keywords: language model, natural language processing, prompt, text sentiment transfer

Procedia PDF Downloads 86
1964 Bag of Words Representation Based on Weighting Useful Visual Words

Authors: Fatma Abdedayem

Abstract:

The most effective and efficient methods in image categorization are almost based on bag-of-words (BOW) which presents image by a histogram of occurrence of visual words. In this paper, we propose a novel extension to this method. Firstly, we extract features in multi-scales by applying a color local descriptor named opponent-SIFT. Secondly, in order to represent image we use Spatial Pyramid Representation (SPR) and an extension to the BOW method which based on weighting visual words. Typically, the visual words are weighted during histogram assignment by computing the ratio of their occurrences in the image to the occurrences in the background. Finally, according to classical BOW retrieval framework, only a few words of the vocabulary is useful for image representation. Therefore, we select the useful weighted visual words that respect the threshold value. Experimentally, the algorithm is tested by using different image classes of PASCAL VOC 2007 and is compared against the classical bag-of-visual-words algorithm.

Keywords: BOW, useful visual words, weighted visual words, bag of visual words

Procedia PDF Downloads 438
1963 Review of Energy Efficiency Routing in Ad Hoc Wireless Networks

Authors: P. R. Dushantha Chaminda, Peng Kai

Abstract:

In this review paper, we enclose the thought of wireless ad hoc networks and particularly mobile ad hoc network (MANET), their field of study, intention, concern, benefit and disadvantages, modifications, with relation of AODV routing protocol. Mobile computing is developing speedily with progression in wireless communications and wireless networking protocols. Making communication easy, we function most wireless network devices and sensor networks, movable, battery-powered, thus control on a highly constrained energy budget. However, progress in battery technology presents that only little improvements in battery volume can be expected in the near future. Moreover, recharging or substitution batteries is costly or unworkable, it is preferable to support energy waste level of devices low.

Keywords: wireless ad hoc network, energy efficient routing protocols, AODV, EOAODV, AODVEA, AODVM, AOMDV, FF-AOMDV, AOMR-LM

Procedia PDF Downloads 219
1962 Measurement and Analysis of Human Hand Kinematics

Authors: Tamara Grujic, Mirjana Bonkovic

Abstract:

Measurements and quantitative analysis of kinematic parameters of human hand movements have an important role in different areas such as hand function rehabilitation, modeling of multi-digits robotic hands, and the development of machine-man interfaces. In this paper the assessment and evaluation of the reach-to-grasp movement by using computerized and robot-assisted method is described. Experiment involved the measurements of hand positions of seven healthy subjects during grasping three objects of different shapes and sizes. Results showed that three dominant phases of reach-to-grasp movements could be clearly identified.

Keywords: human hand, kinematics, measurement and analysis, reach-to-grasp movement

Procedia PDF Downloads 468
1961 Efficient Subgoal Discovery for Hierarchical Reinforcement Learning Using Local Computations

Authors: Adrian Millea

Abstract:

In hierarchical reinforcement learning, one of the main issues encountered is the discovery of subgoal states or options (which are policies reaching subgoal states) by partitioning the environment in a meaningful way. This partitioning usually requires an expensive global clustering operation or eigendecomposition of the Laplacian of the states graph. We propose a local solution to this issue, much more efficient than algorithms using global information, which successfully discovers subgoal states by computing a simple function, which we call heterogeneity for each state as a function of its neighbors. Moreover, we construct a value function using the difference in heterogeneity from one step to the next, as reward, such that we are able to explore the state space much more efficiently than say epsilon-greedy. The same principle can then be applied to higher level of the hierarchy, where now states are subgoals discovered at the level below.

Keywords: exploration, hierarchical reinforcement learning, locality, options, value functions

Procedia PDF Downloads 172
1960 Software Defined Storage: Object Storage over Hadoop Platform

Authors: Amritesh Srivastava, Gaurav Sharma

Abstract:

The purpose of this project is to develop an open source object storage system that is highly durable, scalable and reliable. There are two representative systems in cloud computing: Google and Amazon. Their storage systems for Google GFS and Amazon S3 provide high reliability, performance and stability. Our proposed system is highly inspired from Amazon S3. We are using Hadoop Distributed File System (HDFS) Java API to implement our system. We propose the architecture of object storage system based on Hadoop. We discuss the requirements of our system, what we expect from our system and what problems we may encounter. We also give detailed design proposal along with the abstract source code to implement it. The final goal of the system is to provide REST based access to our object storage system that exists on top of HDFS.

Keywords: Hadoop, HBase, object storage, REST

Procedia PDF Downloads 341
1959 The Primitive Code-Level Design Patterns for Distributed Programming

Authors: Bing Li

Abstract:

The primitive code-level design patterns (PDP) are the rudimentary programming elements to develop any distributed systems in the generic distributed programming environment, GreatFree. The PDP works with the primitive distributed application programming interfaces (PDA), the distributed modeling, and the distributed concurrency for scaling-up. They not only hide developers from underlying technical details but also support sufficient adaptability to a variety of distributed computing environments. Programming with them, the simplest distributed system, the lightweight messaging two-node client/server (TNCS) system, is constructed rapidly with straightforward and repeatable behaviors, copy-paste-replace (CPR). As any distributed systems are made up of the simplest ones, those PDAs, as well as the PDP, are generic for distributed programming.

Keywords: primitive APIs, primitive code-level design patterns, generic distributed programming, distributed systems, highly patterned development environment, messaging

Procedia PDF Downloads 197
1958 Acoustic Emission Monitoring of Surface Roughness in Ultra High Precision Grinding of Borosilicate-Crown Glass

Authors: Goodness Onwuka, Khaled Abou-El-Hossein

Abstract:

The increase in the demand for precision optics, coupled with the absence of much research output in the ultra high precision grinding of precision optics as compared to the ultrahigh precision diamond turning of optical metals has fostered the need for more research in the ultra high precision grinding of an optical lens. Furthermore, the increase in the stringent demands for nanometric surface finishes through lapping, polishing and grinding processes necessary for the use of borosilicate-crown glass in the automotive and optics industries has created the demand to effectively monitor the surface roughness during the production process. Acoustic emission phenomenon has been proven as useful monitoring technique in several manufacturing processes ranging from monitoring of bearing production to tool wear estimation. This paper introduces a rare and unique approach with the application of acoustic emission technique to monitor the surface roughness of borosilicate-crown glass during an ultra high precision grinding process. This research was carried out on a 4-axes Nanoform 250 ultrahigh precision lathe machine using an ultra high precision grinding spindle to machine the flat surface of the borosilicate-crown glass with the tip of the grinding wheel. A careful selection of parameters and design of experiment was implemented using Box-Behnken method to vary the wheel speed, feed rate and depth of cut at three levels with a 3-center point design. Furthermore, the average surface roughness was measured using Taylor Hobson PGI Dimension XL optical profilometer, and an acoustic emission data acquisition device from National Instruments was utilized to acquire the signals while the data acquisition codes were designed with National Instrument LabVIEW software for acquisition at a sampling rate of 2 million samples per second. The results show that the raw and root mean square amplitude values of the acoustic signals increased with a corresponding increase in the measured average surface roughness values for the different parameter combinations. Therefore, this research concludes that acoustic emission monitoring technique is a potential technique for monitoring the surface roughness in the ultra high precision grinding of borosilicate-crown glass.

Keywords: acoustic emission, borosilicate-crown glass, surface roughness, ultra high precision grinding

Procedia PDF Downloads 294
1957 Simulating the Hot Hand Phenomenon in Basketball with Bayesian Hidden Markov Models

Authors: Gabriel Calvo, Carmen Armero, Luigi Spezia

Abstract:

A basketball player is said to have a hot hand if his/her performance is better than expected in different periods of time. A way to deal with this phenomenon is to make use of latent variables, which can indicate whether the player is ‘on fire’ or not. This work aims to model the hot hand phenomenon through a Bayesian hidden Markov model (HMM) with two states (cold and hot) and two different probability of success depending on the corresponding hidden state. This task is illustrated through a comprehensive simulation study. The simulated data sets emulate the field goal attempts in an NBA season from different profile players. This model can be a powerful tool to assess the ‘streakiness’ of each player, and it provides information about the general performance of the players during the match. Finally, the Bayesian HMM allows computing the posterior probability of any type of streak.

Keywords: Bernoulli trials, field goals, latent variables, posterior distribution

Procedia PDF Downloads 195
1956 From Theory to Practice: Harnessing Mathematical and Statistical Sciences in Data Analytics

Authors: Zahid Ullah, Atlas Khan

Abstract:

The rapid growth of data in diverse domains has created an urgent need for effective utilization of mathematical and statistical sciences in data analytics. This abstract explores the journey from theory to practice, emphasizing the importance of harnessing mathematical and statistical innovations to unlock the full potential of data analytics. Drawing on a comprehensive review of existing literature and research, this study investigates the fundamental theories and principles underpinning mathematical and statistical sciences in the context of data analytics. It delves into key mathematical concepts such as optimization, probability theory, statistical modeling, and machine learning algorithms, highlighting their significance in analyzing and extracting insights from complex datasets. Moreover, this abstract sheds light on the practical applications of mathematical and statistical sciences in real-world data analytics scenarios. Through case studies and examples, it showcases how mathematical and statistical innovations are being applied to tackle challenges in various fields such as finance, healthcare, marketing, and social sciences. These applications demonstrate the transformative power of mathematical and statistical sciences in data-driven decision-making. The abstract also emphasizes the importance of interdisciplinary collaboration, as it recognizes the synergy between mathematical and statistical sciences and other domains such as computer science, information technology, and domain-specific knowledge. Collaborative efforts enable the development of innovative methodologies and tools that bridge the gap between theory and practice, ultimately enhancing the effectiveness of data analytics. Furthermore, ethical considerations surrounding data analytics, including privacy, bias, and fairness, are addressed within the abstract. It underscores the need for responsible and transparent practices in data analytics, and highlights the role of mathematical and statistical sciences in ensuring ethical data handling and analysis. In conclusion, this abstract highlights the journey from theory to practice in harnessing mathematical and statistical sciences in data analytics. It showcases the practical applications of these sciences, the importance of interdisciplinary collaboration, and the need for ethical considerations. By bridging the gap between theory and practice, mathematical and statistical sciences contribute to unlocking the full potential of data analytics, empowering organizations and decision-makers with valuable insights for informed decision-making.

Keywords: data analytics, mathematical sciences, optimization, machine learning, interdisciplinary collaboration, practical applications

Procedia PDF Downloads 96
1955 PSS and SVC Controller Design by BFA to Enhance the Power System Stability

Authors: Saeid Jalilzadeh

Abstract:

Designing of PSS and SVC controller based on Bacterial Foraging Algorithm (BFA) to improve the stability of power system is proposed in this paper. Same controllers for PSS and SVC has been considered and Single machine infinite bus (SMIB) system with SVC located at the terminal of generator is used to evaluate the proposed controllers. BFA is used to optimize the coefficients of the controllers. Finally simulation for a special disturbance as an input power of generator with the proposed controllers in order to investigate the dynamic behavior of generator is done. The simulation results demonstrate that the system composed with optimized controllers has an outstanding operation in fast damping of oscillations of power system.

Keywords: PSS, SVC, SMIB, optimize controller

Procedia PDF Downloads 459
1954 Toward Cloud E-learning System Based on Smart Tools

Authors: Mohsen Maraoui

Abstract:

In the face of the growth in the quantity of data produced, several methods and techniques appear to remedy the problems of processing and analyzing large amounts of information mainly in the field of teaching. In this paper, we propose an intelligent cloud-based teaching system for E-learning content services. This system makes easy the manipulation of various educational content forms, including text, images, videos, 3 dimensions objects and scenes of virtual reality and augmented reality. We discuss the integration of institutional and external services to provide personalized assistance to university members in their daily activities. The proposed system provides an intelligent solution for media services that can be accessed from smart devices cloud-based intelligent service environment with a fully integrated system.

Keywords: cloud computing, e-learning, indexation, IoT, learning in Arabic language, smart tools

Procedia PDF Downloads 138
1953 Book Exchange System with a Hybrid Recommendation Engine

Authors: Nilki Upathissa, Torin Wirasinghe

Abstract:

This solution addresses the challenges faced by traditional bookstores and the limitations of digital media, striking a balance between the tactile experience of printed books and the convenience of modern technology. The book exchange system offers a sustainable alternative, empowering users to access a diverse range of books while promoting community engagement. The user-friendly interfaces incorporated into the book exchange system ensure a seamless and enjoyable experience for users. Intuitive features for book management, search, and messaging facilitate effortless exchanges and interactions between users. By streamlining the process, the system encourages readers to explore new books aligned with their interests, enhancing the overall reading experience. Central to the system's success is the hybrid recommendation engine, which leverages advanced technologies such as Long Short-Term Memory (LSTM) models. By analyzing user input, the engine accurately predicts genre preferences, enabling personalized book recommendations. The hybrid approach integrates multiple technologies, including user interfaces, machine learning models, and recommendation algorithms, to ensure the accuracy and diversity of the recommendations. The evaluation of the book exchange system with the hybrid recommendation engine demonstrated exceptional performance across key metrics. The high accuracy score of 0.97 highlights the system's ability to provide relevant recommendations, enhancing users' chances of discovering books that resonate with their interests. The commendable precision, recall, and F1score scores further validate the system's efficacy in offering appropriate book suggestions. Additionally, the curve classifications substantiate the system's effectiveness in distinguishing positive and negative recommendations. This metric provides confidence in the system's ability to navigate the vast landscape of book choices and deliver recommendations that align with users' preferences. Furthermore, the implementation of this book exchange system with a hybrid recommendation engine has the potential to revolutionize the way readers interact with printed books. By facilitating book exchanges and providing personalized recommendations, the system encourages a sense of community and exploration within the reading community. Moreover, the emphasis on sustainability aligns with the growing global consciousness towards eco-friendly practices. With its robust technical approach and promising evaluation results, this solution paves the way for a more inclusive, accessible, and enjoyable reading experience for book lovers worldwide. In conclusion, the developed book exchange system with a hybrid recommendation engine represents a progressive solution to the challenges faced by traditional bookstores and the limitations of digital media. By promoting sustainability, widening access to printed books, and fostering engagement with reading, this system addresses the evolving needs of book enthusiasts. The integration of user-friendly interfaces, advanced machine learning models, and recommendation algorithms ensure accurate and diverse book recommendations, enriching the reading experience for users.

Keywords: recommendation systems, hybrid recommendation systems, machine learning, data science, long short-term memory, recurrent neural network

Procedia PDF Downloads 99
1952 SeCloudBPMN: A Lightweight Extension for BPMN Considering Security Threats in the Cloud

Authors: Somayeh Sobati Moghadam

Abstract:

Business processes are crucial for organizations and help businesses to evaluate and optimize their performance and processes against current and future-state business goals. Outsourcing business processes to the cloud becomes popular due to a wide varsity of benefits and cost-saving. However, cloud outsourcing raises enterprise data security concerns, which must be incorporated in Business Process Model and Notation (BPMN). This paper, presents SeCloudBPMN, a lightweight extension for BPMN which extends the BPMN to explicitly support the security threats in the cloud as an outsourcing environment. SeCloudBPMN helps business’s security experts to outsource business processes to the cloud considering different threats from inside and outside the cloud. In this way, appropriate security countermeasures could be considered to preserve data security in business processes outsourcing to the cloud.

Keywords: BPMN, security threats, cloud computing, business processes outsourcing, privacy

Procedia PDF Downloads 274
1951 Simulation-Based Unmanned Surface Vehicle Design Using PX4 and Robot Operating System With Kubernetes and Cloud-Native Tooling

Authors: Norbert Szulc, Jakub Wilk, Franciszek Górski

Abstract:

This paper presents an approach for simulating and testing robotic systems based on PX4, using a local Kubernetes cluster. The approach leverages modern cloud-native tools and runs on single-board computers. Additionally, this solution enables the creation of datasets for computer vision and the evaluation of control system algorithms in an end-to-end manner. This paper compares this approach to method commonly used Docker based approach. This approach was used to develop simulation environment for an unmanned surface vehicle (USV) for RoboBoat 2023 by running a containerized configuration of the PX4 Open-source Autopilot connected to ROS and the Gazebo simulation environment.

Keywords: cloud computing, Kubernetes, single board computers, simulation, ROS

Procedia PDF Downloads 81
1950 Optimizing PharmD Education: Quantifying Curriculum Complexity to Address Student Burnout and Cognitive Overload

Authors: Frank Fan

Abstract:

PharmD (Doctor of Pharmacy) education has confronted an increasing challenge — curricular overload, a phenomenon resulting from the expansion of curricular requirements, as PharmD education strives to produce graduates who are practice-ready. The aftermath of the global pandemic has amplified the need for healthcare professionals, leading to a growing trend of assigning more responsibilities to them to address the global healthcare shortage. For instance, the pharmacist’s role has expanded to include not only compounding and distributing medication but also providing clinical services, including minor ailments management, patient counselling and vaccination. Consequently, PharmD programs have responded by continually expanding their curricula adding more requirements. While these changes aim to enhance the education and training of future professionals, they have also led to unintended consequences, including curricular overload, student burnout, and a potential decrease in program quality. To address the issue and ensure program quality, there is a growing need for evidence-based curriculum reforms. My research seeks to integrate Cognitive Load Theory, emerging machine learning algorithms within artificial intelligence (AI), and statistical approaches to develop a quantitative framework for optimizing curriculum design within the PharmD program at the University of Toronto, the largest PharmD program within Canada, to provide quantification and measurement of issues that currently are only discussed in terms of anecdote rather than data. This research will serve as a guide for curriculum planners, administrators, and educators, aiding in the comprehension of how the pharmacy degree program compares to others within and beyond the field of pharmacy. It will also shed light on opportunities to reduce the curricular load while maintaining its quality and rigor. Given that pharmacists constitute the third-largest healthcare workforce, their education shares similarities and challenges with other health education programs. Therefore, my evidence-based, data-driven curriculum analysis framework holds significant potential for training programs in other healthcare professions, including medicine, nursing, and physiotherapy.

Keywords: curriculum, curriculum analysis, health professions education, reflective writing, machine learning

Procedia PDF Downloads 65
1949 Computing Maximum Uniquely Restricted Matchings in Restricted Interval Graphs

Authors: Swapnil Gupta, C. Pandu Rangan

Abstract:

A uniquely restricted matching is defined to be a matching M whose matched vertices induces a sub-graph which has only one perfect matching. In this paper, we make progress on the open question of the status of this problem on interval graphs (graphs obtained as the intersection graph of intervals on a line). We give an algorithm to compute maximum cardinality uniquely restricted matchings on certain sub-classes of interval graphs. We consider two sub-classes of interval graphs, the former contained in the latter, and give O(|E|^2) time algorithms for both of them. It is to be noted that both sub-classes are incomparable to proper interval graphs (graphs obtained as the intersection graph of intervals in which no interval completely contains another interval), on which the problem can be solved in polynomial time.

Keywords: uniquely restricted matching, interval graph, matching, induced matching, witness counting

Procedia PDF Downloads 394
1948 Development of a Data-Driven Method for Diagnosing the State of Health of Battery Cells, Based on the Use of an Electrochemical Aging Model, with a View to Their Use in Second Life

Authors: Desplanches Maxime

Abstract:

Accurate estimation of the remaining useful life of lithium-ion batteries for electronic devices is crucial. Data-driven methodologies encounter challenges related to data volume and acquisition protocols, particularly in capturing a comprehensive range of aging indicators. To address these limitations, we propose a hybrid approach that integrates an electrochemical model with state-of-the-art data analysis techniques, yielding a comprehensive database. Our methodology involves infusing an aging phenomenon into a Newman model, leading to the creation of an extensive database capturing various aging states based on non-destructive parameters. This database serves as a robust foundation for subsequent analysis. Leveraging advanced data analysis techniques, notably principal component analysis and t-Distributed Stochastic Neighbor Embedding, we extract pivotal information from the data. This information is harnessed to construct a regression function using either random forest or support vector machine algorithms. The resulting predictor demonstrates a 5% error margin in estimating remaining battery life, providing actionable insights for optimizing usage. Furthermore, the database was built from the Newman model calibrated for aging and performance using data from a European project called Teesmat. The model was then initialized numerous times with different aging values, for instance, with varying thicknesses of SEI (Solid Electrolyte Interphase). This comprehensive approach ensures a thorough exploration of battery aging dynamics, enhancing the accuracy and reliability of our predictive model. Of particular importance is our reliance on the database generated through the integration of the electrochemical model. This database serves as a crucial asset in advancing our understanding of aging states. Beyond its capability for precise remaining life predictions, this database-driven approach offers valuable insights for optimizing battery usage and adapting the predictor to various scenarios. This underscores the practical significance of our method in facilitating better decision-making regarding lithium-ion battery management.

Keywords: Li-ion battery, aging, diagnostics, data analysis, prediction, machine learning, electrochemical model, regression

Procedia PDF Downloads 74
1947 Privacy for the Internet of Things and its Different Dimensions

Authors: Maryam M Esfahani

Abstract:

The Internet of Things is a concept that has fundamentally changed the way information technology works and communication environments. This concept, which is referred to as the next revolution in the field of information and communication technology, takes advantage of existing technologies such as wireless sensor networks, RFID, cloud computing, M2M, etc., to the final slogan of providing the possibility of connecting any object anywhere and everywhere. This use of technologies, along with the possibility of providing new services, also inherits their threats, and although the Internet of Things is facing many challenges, it can be said that its most important challenge is security and privacy, and perhaps even a more tangible challenge is privacy. In this article, we will first introduce the definition and concepts related to privacy, and then we will examine some threats against the privacy of the Internet of Things in different layers of a typical architecture. Also, while examining the differences and the relationship between security and privacy, we study different dimensions of privacy, and finally, we review some of the methods and technologies for improving the level of privacy.

Keywords: Iot, privacy, different dimension of privacy, W3model, privacy enhancing technologies

Procedia PDF Downloads 103
1946 Analyzing the Practicality of Drawing Inferences in Automation of Commonsense Reasoning

Authors: Chandan Hegde, K. Ashwini

Abstract:

Commonsense reasoning is the simulation of human ability to make decisions during the situations that we encounter every day. It has been several decades since the introduction of this subfield of artificial intelligence, but it has barely made some significant progress. The modern computing aids also have remained impotent in this regard due to the absence of a strong methodology towards commonsense reasoning development. Among several accountable reasons for the lack of progress, drawing inference out of commonsense knowledge-base stands out. This review paper emphasizes on a detailed analysis of representation of reasoning uncertainties and feasible prospects of programming aids for drawing inferences. Also, the difficulties in deducing and systematizing commonsense reasoning and the substantial progress made in reasoning that influences the study have been discussed. Additionally, the paper discusses the possible impacts of an effective inference technique in commonsense reasoning.

Keywords: artificial intelligence, commonsense reasoning, knowledge base, uncertainty in reasoning

Procedia PDF Downloads 190
1945 Laban Movement Analysis Using Kinect

Authors: Bernstein Ran, Shafir Tal, Tsachor Rachelle, Studd Karen, Schuster Assaf

Abstract:

Laban Movement Analysis (LMA), developed in the dance community over the past seventy years, is an effective method for observing, describing, notating, and interpreting human movement to enhance communication and expression in everyday and professional life. Many applications that use motion capture data might be significantly leveraged if the Laban qualities will be recognized automatically. This paper presents an automated recognition method of Laban qualities from motion capture skeletal recordings and it is demonstrated on the output of Microsoft’s Kinect V2 sensor.

Keywords: Laban movement analysis, multitask learning, Kinect sensor, machine learning

Procedia PDF Downloads 345
1944 Modeling and Simulation of the Tripod Gait of a Hexapod Robot

Authors: El Hansali Hasnaa, Bennani Mohammed

Abstract:

Hexapod legged robot’s missions, particularly in irregular and dangerous areas, require high stability and high precision. In this paper, we consider the rectangular architecture body of legged robots with six legs distributed symmetrically along two sides, each leg contains three degrees of freedom for greater mobility. The aim of this work is planning tripod gait trajectory, based on the computing of the kinematic model to determine the joint variables in the lifting and the propelling phases. For this, appropriate coordinate frames are attached to the body and legs in order to obtain clear representation and efficient generation of the system equations. A simulation in MATLAB software platform is developed to confirm the kinematic model and various trajectories to the tripod gait adopted by the hexapod robot in its locomotion.

Keywords: hexapod legged robot, inverse kinematic model, simulation in MATLAB, tripod gait

Procedia PDF Downloads 280
1943 Monte Carlo Simulation of Magnetic Properties in Bit Patterned Media

Authors: O. D. Arbeláez-Echeverri, E. Restrepo-Parra, J. C. Riano-Rojas

Abstract:

A two dimensional geometric model of Bit Patterned Media is proposed, the model is based on the crystal structure of the materials commonly used to produce the nano islands in bit patterned materials and the possible defects that may arise from the interaction between the nano islands and the matrix material. The dynamic magnetic properties of the material are then computed using time aware integration methods for the multi spin Hamiltonian. The Hamiltonian takes into account both the spatial and topological disorder of the sample as well as the high perpendicular anisotropy that is pursued when building bit patterned media. The main finding of the research was the possibility of replicating the results of previous experiments on similar materials and the ability of computing the switching field distribution given the geometry of the material and the parameters required by the model.

Keywords: nanostructures, Monte Carlo, pattern media, magnetic properties

Procedia PDF Downloads 506
1942 Computing Some Topological Descriptors of Single-Walled Carbon Nanotubes

Authors: Amir Bahrami

Abstract:

In the fields of chemical graph theory, molecular topology, and mathematical chemistry, a topological index or a descriptor index also known as a connectivity index is a type of a molecular descriptor that is calculated based on the molecular graph of a chemical compound. Topological indices are numerical parameters of a graph which characterize its topology and are usually graph invariant. Topological indices are used for example in the development of quantitative structure-activity relationships (QSARs) in which the biological activity or other properties of molecules are correlated with their chemical structure. In this paper some descriptor index (descriptor index) of single-walled carbon nanotubes, is determined.

Keywords: chemical graph theory, molecular topology, molecular descriptor, single-walled carbon nanotubes

Procedia PDF Downloads 342
1941 Autonomic Recovery Plan with Server Virtualization

Authors: S. Hameed, S. Anwer, M. Saad, M. Saady

Abstract:

For autonomic recovery with server virtualization, a cogent plan that includes recovery techniques and backups with virtualized servers can be developed instead of assigning an idle server to backup operations. In addition to hardware cost reduction and data center trail, the disaster recovery plan can ensure system uptime and to meet objectives of high availability, recovery time, recovery point, server provisioning, and quality of services. This autonomic solution would also support disaster management, testing, and development of the recovery site. In this research, a workflow plan is proposed for supporting disaster recovery with virtualization providing virtual monitoring, requirements engineering, solution decision making, quality testing, and disaster management. This recovery model would make disaster recovery a lot easier, faster, and less error prone.

Keywords: autonomous intelligence, disaster recovery, cloud computing, server virtualization

Procedia PDF Downloads 165