Search results for: self-regulated Learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7232

Search results for: self-regulated Learning

5312 Effectiveness of Virtual Escape Room in Biomimicry Producing Environmentally Friendly Attitudes and Learning

Authors: Vered Yeflach Wishkerman

Abstract:

This research follows the implementation of a virtual educational escape room (VEER) in Biomimicry for high school students (n=90) in order to expose them to the innovative field of biomimicry. The main idea behind biomimicry is that many of the wondrous solutions found in nature may be imitated by human technology and harnessed to different needs so that naturally occurring processes can become a source of knowledge for sustainable solutions. The escape room was developed by student trainers in order to teach Biomimicry through games. The room includes a variety of riddles, puzzles and movies in order to teach interdisciplinary subjects and different skills required in the 21st. The purpose of the study was to examine the impact of the gaming experience on students' attitudes toward the learning process and their attitudes toward nature as derived from a virtual escape room game centered on the theme of biomimicry. Three instruments were used: (1) a pre-test and a post-test to measure pupils’ increase in knowledge, (2) a survey to collect their opinions (3) an interview with the pupils. The learning experience within the game influenced the pupils in both emotional and cognitive dimensions, thereby enhancing their motivation and competence. From the results, we learned that the players had positive attitudes towards the game and a high sense of flow. We also found evidence that the escape room contributed to the internalization of new knowledge and values, such as respect for nature and the awareness of nature's importance. Furthermore, the players also reported that they developed learning skills. We conclude that virtual escape rooms are a new tool for assembling new knowledge for the players. The room increased curiosity and engagement to learn new content. However, in order to achieve maximum benefit, we need good infrastructure in addition to interesting and challenging tasks.

Keywords: biomimicry, virtual escape room, attitudes, learning

Procedia PDF Downloads 11
5311 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information

Authors: Haifeng Wang, Haili Zhang

Abstract:

Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.

Keywords: computational social science, movie preference, machine learning, SVM

Procedia PDF Downloads 261
5310 A Study on Puzzle-Based Game to Teach Elementary Students to Code

Authors: Jaisoon Baek, Gyuhwan Oh

Abstract:

In this study, we developed a puzzle game based on coding and a web-based management system to observe the user's learning status in real time and maximize the understanding of the coding of elementary students. We have improved upon and existing coding game which cannot be connected to textual language coding or comprehends learning state. We analyzed the syntax of various coding languages for the curriculum and provided a menu to convert icon into textual coding languages. In addition, the management system includes multiple types of tutoring, real-time analysis of user play data and feedback. Following its application in regular elementary school software classes, students reported positive effects on understanding and interest in coding were shown by students. It is expected that this will contribute to quality improvement in software education by providing contents with proven educational value by breaking away from simple learning-oriented coding games.

Keywords: coding education, serious game, coding, education management system

Procedia PDF Downloads 141
5309 Cultivating Concentration and Flow: Evaluation of a Strategy for Mitigating Digital Distractions in University Education

Authors: Vera G. Dianova, Lori P. Montross, Charles M. Burke

Abstract:

In the digital age, the widespread and frequently excessive use of mobile phones amongst university students is recognized as a significant distractor which interferes with their ability to enter a deep state of concentration during studies and diminishes their prospects of experiencing the enjoyable and instrumental state of flow, as defined and described by psychologist M. Csikszentmihalyi. This study has targeted 50 university students with the aim of teaching them to cultivate their ability to engage in deep work and to attain the state of flow, fostering more effective and enjoyable learning experiences. Prior to the start of the intervention, all participating students completed a comprehensive survey based on a variety of validated scales assessing their inclination toward lifelong learning, frequency of flow experiences during study, frustration tolerance, sense of agency, as well as their love of learning and daily time devoted to non-academic mobile phone activities. Several days after this initial assessment, students received a 90-minute lecture on the principles of flow and deep work, accompanied by a critical discourse on the detrimental effects of excessive mobile phone usage. They were encouraged to practice deep work and strive for frequent flow states throughout the semester. Subsequently, students submitted weekly surveys, including the 10-item CORE Dispositional Flow Scale, a 3-item agency scale and furthermore disclosed their average daily hours spent on non-academic mobile phone usage. As a final step, at the end of the semester students engaged in reflective report writing, sharing their experiences and evaluating the intervention's effectiveness. They considered alterations in their love of learning, reflected on the implications of their mobile phone usage, contemplated improvements in their tolerance for boredom and perseverance in complex tasks, and pondered the concept of lifelong learning. Additionally, students assessed whether they actively took steps towards managing their recreational phone usage and towards improving their commitment to becoming lifelong learners. Employing a mixed-methods approach our study offers insights into the dynamics of concentration, flow, mobile phone usage and attitudes towards learning among undergraduate and graduate university students. The findings of this study aim to promote profound contemplation, on the part of both students and instructors, on the rapidly evolving digital-age higher education environment. In an era defined by digital and AI advancements, the ability to concentrate, to experience the state of flow, and to love learning has never been more crucial. This study underscores the significance of addressing mobile phone distractions and providing strategies for cultivating deep concentration. The insights gained can guide educators in shaping effective learning strategies for the digital age. By nurturing a love for learning and encouraging lifelong learning, educational institutions can better prepare students for a rapidly changing labor market, where adaptability and continuous learning are paramount for success in a dynamic career landscape.

Keywords: deep work, flow, higher education, lifelong learning, love of learning

Procedia PDF Downloads 68
5308 Effects of Mobile Assisted Language Learning on Madrassa Students’ ESL Learning

Authors: Muhammad Mooneeb Ali

Abstract:

Institutions, where religious knowledge is given are known as madrassas. They also give formal education along with religious education. This study will be a pioneer to explore if MALL can be beneficial for madrassa students or not in formal educational situations. For investigation, an experimental study was planned in Punjab where the sample size was 100 students, 10 each from 10 different madrassas of Punjab, who are studying at the intermediate level (i.e., 11th grade). The madrassas were chosen through a convenient sampling method, whereas the learners were chosen by a simple random sampling method. A pretest was conducted, and on the basis of the results, the learners were divided into two equal groups (experimental and controlled). After two months of treatment, a posttest was conducted, and the results of both groups were compared. The results indicated that the performance of the experimental group was significantly better than the control one. This indicates that MALL elevates the performance of Madrassa students.

Keywords: english language learners, madrassa students, formal education, mobile assisted language learning (MALL), Pakistan.

Procedia PDF Downloads 71
5307 A Three-modal Authentication Method for Industrial Robots

Authors: Luo Jiaoyang, Yu Hongyang

Abstract:

In this paper, we explore a method that can be used in the working scene of intelligent industrial robots to confirm the identity information of operators to ensure that the robot executes instructions in a sufficiently safe environment. This approach uses three information modalities, namely visible light, depth, and sound. We explored a variety of fusion modes for the three modalities and finally used the joint feature learning method to improve the performance of the model in the case of noise compared with the single-modal case, making the maximum noise in the experiment. It can also maintain an accuracy rate of more than 90%.

Keywords: multimodal, kinect, machine learning, distance image

Procedia PDF Downloads 80
5306 Copyright Clearance for Artificial Intelligence Training Data: Challenges and Solutions

Authors: Erva Akin

Abstract:

– The use of copyrighted material for machine learning purposes is a challenging issue in the field of artificial intelligence (AI). While machine learning algorithms require large amounts of data to train and improve their accuracy and creativity, the use of copyrighted material without permission from the authors may infringe on their intellectual property rights. In order to overcome copyright legal hurdle against the data sharing, access and re-use of data, the use of copyrighted material for machine learning purposes may be considered permissible under certain circumstances. For example, if the copyright holder has given permission to use the data through a licensing agreement, then the use for machine learning purposes may be lawful. It is also argued that copying for non-expressive purposes that do not involve conveying expressive elements to the public, such as automated data extraction, should not be seen as infringing. The focus of such ‘copy-reliant technologies’ is on understanding language rules, styles, and syntax and no creative ideas are being used. However, the non-expressive use defense is within the framework of the fair use doctrine, which allows the use of copyrighted material for research or educational purposes. The questions arise because the fair use doctrine is not available in EU law, instead, the InfoSoc Directive provides for a rigid system of exclusive rights with a list of exceptions and limitations. One could only argue that non-expressive uses of copyrighted material for machine learning purposes do not constitute a ‘reproduction’ in the first place. Nevertheless, the use of machine learning with copyrighted material is difficult because EU copyright law applies to the mere use of the works. Two solutions can be proposed to address the problem of copyright clearance for AI training data. The first is to introduce a broad exception for text and data mining, either mandatorily or for commercial and scientific purposes, or to permit the reproduction of works for non-expressive purposes. The second is that copyright laws should permit the reproduction of works for non-expressive purposes, which opens the door to discussions regarding the transposition of the fair use principle from the US into EU law. Both solutions aim to provide more space for AI developers to operate and encourage greater freedom, which could lead to more rapid innovation in the field. The Data Governance Act presents a significant opportunity to advance these debates. Finally, issues concerning the balance of general public interests and legitimate private interests in machine learning training data must be addressed. In my opinion, it is crucial that robot-creation output should fall into the public domain. Machines depend on human creativity, innovation, and expression. To encourage technological advancement and innovation, freedom of expression and business operation must be prioritised.

Keywords: artificial intelligence, copyright, data governance, machine learning

Procedia PDF Downloads 85
5305 Learning Materials of Atmospheric Pressure Plasma Process: Application in Wrinkle-Resistant Finishing of Cotton Fabric

Authors: C. W. Kan

Abstract:

Cotton fibre is a commonly-used natural fibre because of its good fibre strength, high moisture absorption behaviour and minimal static problems. However, one of the main drawbacks of cotton fibre is wrinkling after washing, which is recently overcome by wrinkle-resistant treatment. 1,2,3,4-butanetetracarboxylic acid (BTCA) could improve the wrinkle-resistant properties of cotton fibre. Although the BTCA process is an effective method for wrinkle resistant application of cotton fabrics, reduced fabric strength was observed after treatment. Therefore, this paper would explore the use of atmospheric pressure plasma treatment under different discharge powers as a pretreatment process to enhance the application of BTCA process on cotton fabric without generating adverse effect. The aim of this study is to provide learning information to the users to know how the atmospheric pressure plasma treatment can be incorporated in textile finishing process with positive impact.

Keywords: learning materials, atmospheric pressure plasma treatment, cotton, wrinkle-resistant, BTCA

Procedia PDF Downloads 306
5304 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction

Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé

Abstract:

One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.

Keywords: input variable disposition, machine learning, optimization, performance, time series prediction

Procedia PDF Downloads 111
5303 A Learning Automata Based Clustering Approach for Underwater ‎Sensor Networks to Reduce Energy Consumption

Authors: Motahareh Fadaei

Abstract:

Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.

Keywords: clustering, energy consumption‎, learning automata, underwater sensor networks

Procedia PDF Downloads 318
5302 3D Text Toys: Creative Approach to Experiential and Immersive Learning for World Literacy

Authors: Azyz Sharafy

Abstract:

3D Text Toys is an innovative and creative approach that utilizes 3D text objects to enhance creativity, literacy, and basic learning in an enjoyable and gamified manner. By using 3D Text Toys, children can develop their creativity, visually learn words and texts, and apply their artistic talents within their creative abilities. This process incorporates haptic engagement with 2D and 3D texts, word building, and mechanical construction of everyday objects, thereby facilitating better word and text retention. The concept involves constructing visual objects made entirely out of 3D text/words, where each component of the object represents a word or text element. For instance, a bird can be recreated using words or text shaped like its wings, beak, legs, head, and body, resulting in a 3D representation of the bird purely composed of text. This can serve as an art piece or a learning tool in the form of a 3D text toy. These 3D text objects or toys can be crafted using natural materials such as leaves, twigs, strings, or ropes, or they can be made from various physical materials using traditional crafting tools. Digital versions of these objects can be created using 2D or 3D software on devices like phones, laptops, iPads, or computers. To transform digital designs into physical objects, computerized machines such as CNC routers, laser cutters, and 3D printers can be utilized. Once the parts are printed or cut out, students can assemble the 3D texts by gluing them together, resulting in natural or everyday 3D text objects. These objects can be painted to create artistic pieces or text toys, and the addition of wheels can transform them into moving toys. One of the significant advantages of this visual and creative object-based learning process is that students not only learn words but also derive enjoyment from the process of creating, painting, and playing with these objects. The ownership and creation process further enhances comprehension and word retention. Moreover, for individuals with learning disabilities such as dyslexia, ADD (Attention Deficit Disorder), or other learning difficulties, the visual and haptic approach of 3D Text Toys can serve as an additional creative and personalized learning aid. The application of 3D Text Toys extends to both the English language and any other global written language. The adaptation and creative application may vary depending on the country, space, and native written language. Furthermore, the implementation of this visual and haptic learning tool can be tailored to teach foreign languages based on age level and comprehension requirements. In summary, this creative, haptic, and visual approach has the potential to serve as a global literacy tool.

Keywords: 3D text toys, creative, artistic, visual learning for world literacy

Procedia PDF Downloads 65
5301 Use of Concept Maps as a Tool for Evaluating Students' Understanding of Science

Authors: Aregamalage Sujeewa Vijayanthi Polgampala, Fang Huang

Abstract:

This study explores the genesis and development of concept mapping as a useful tool for science education and its effectiveness as technique for teaching and learning and evaluation for secondary science in schools and the role played by National College of Education science teachers. Concept maps, when carefully employed and executed serves as an integral part of teaching method and measure of effectiveness of teaching and tool for evaluation. Research has shown that science concept maps can have positive influence on student learning and motivation. The success of concept maps played in an instruction class depends on the type of theme selected, the development of learning outcomes, and the flexibility of instruction in providing library unit that is equipped with multimedia equipment where learners can interact. The study was restricted to 6 male and 9 female respondents' teachers in third-year internship pre service science teachers in Gampaha district Sri Lanka. Data were collected through 15 item questionnaire provided to learners and in depth interviews and class observations of 18 science classes. The two generated hypotheses for the study were rejected, while the results revealed that significant difference exists between factors influencing teachers' choice of concept maps, its usefulness and problems hindering the effectiveness of concept maps for teaching and learning process of secondary science in schools. It was examined that concept maps can be used as an effective measure to evaluate students understanding of concepts and misconceptions. Even the teacher trainees could not identify, key concept is on top, and subordinate concepts fall below. It is recommended that pre service science teacher trainees should be provided a thorough training using it as an evaluation instrument.

Keywords: concept maps, evaluation, learning science, misconceptions

Procedia PDF Downloads 274
5300 Improvements in Double Q-Learning for Anomalous Radiation Source Searching

Authors: Bo-Bin Xiaoa, Chia-Yi Liua

Abstract:

In the task of searching for anomalous radiation sources, personnel holding radiation detectors to search for radiation sources may be exposed to unnecessary radiation risk, and automated search using machines becomes a required project. The research uses various sophisticated algorithms, which are double Q learning, dueling network, and NoisyNet, of deep reinforcement learning to search for radiation sources. The simulation environment, which is a 10*10 grid and one shielding wall setting in it, improves the development of the AI model by training 1 million episodes. In each episode of training, the radiation source position, the radiation source intensity, agent position, shielding wall position, and shielding wall length are all set randomly. The three algorithms are applied to run AI model training in four environments where the training shielding wall is a full-shielding wall, a lead wall, a concrete wall, and a lead wall or a concrete wall appearing randomly. The 12 best performance AI models are selected by observing the reward value during the training period and are evaluated by comparing these AI models with the gradient search algorithm. The results show that the performance of the AI model, no matter which one algorithm, is far better than the gradient search algorithm. In addition, the simulation environment becomes more complex, the AI model which applied Double DQN combined Dueling and NosiyNet algorithm performs better.

Keywords: double Q learning, dueling network, NoisyNet, source searching

Procedia PDF Downloads 114
5299 Deep Reinforcement Learning for Optimal Decision-Making in Supply Chains

Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol

Abstract:

We propose the use of reinforcement learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making makes it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and statistical analysis of the results. We study the generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.

Keywords: inventory management, reinforcement learning, supply chain optimization, uncertainty

Procedia PDF Downloads 107
5298 Subspace Rotation Algorithm for Implementing Restricted Hopfield Network as an Auto-Associative Memory

Authors: Ci Lin, Tet Yeap, Iluju Kiringa

Abstract:

This paper introduces the subspace rotation algorithm (SRA) to train the Restricted Hopfield Network (RHN) as an auto-associative memory. Subspace rotation algorithm is a gradient-free subspace tracking approach based on the singular value decomposition (SVD). In comparison with Backpropagation Through Time (BPTT) on training RHN, it is observed that SRA could always converge to the optimal solution and BPTT could not achieve the same performance when the model becomes complex, and the number of patterns is large. The AUTS case study showed that the RHN model trained by SRA could achieve a better structure of attraction basin with larger radius(in general) than the Hopfield Network(HNN) model trained by Hebbian learning rule. Through learning 10000 patterns from MNIST dataset with RHN models with different number of hidden nodes, it is observed that an several components could be adjusted to achieve a balance between recovery accuracy and noise resistance.

Keywords: hopfield neural network, restricted hopfield network, subspace rotation algorithm, hebbian learning rule

Procedia PDF Downloads 120
5297 Detecting Covid-19 Fake News Using Deep Learning Technique

Authors: AnjalI A. Prasad

Abstract:

Nowadays, social media played an important role in spreading misinformation or fake news. This study analyzes the fake news related to the COVID-19 pandemic spread in social media. This paper aims at evaluating and comparing different approaches that are used to mitigate this issue, including popular deep learning approaches, such as CNN, RNN, LSTM, and BERT algorithm for classification. To evaluate models’ performance, we used accuracy, precision, recall, and F1-score as the evaluation metrics. And finally, compare which algorithm shows better result among the four algorithms.

Keywords: BERT, CNN, LSTM, RNN

Procedia PDF Downloads 206
5296 Challenges of Teaching English as a Foreign Language in the Algerian Universities

Authors: Khedidja Benaicha Mati

Abstract:

The present research tries to highlight a very crucial issue which exists at the level of the faculty of Economics and Management at Chlef university. This issue is represented by the challenges and difficulties which face the teaching / learning process in the faculty on the part of the language teachers, the learners, and the administration staff, including mainly the absence of an agreed syllabus, lack of teaching materials, teachers’ qualifications and training, timing, coefficient, and lack of motivation and interest amongst students. All these negative factors make teaching and learning EFL rather ambiguous, ineffective and unsatisfactory. The students at the faculty of Economics and Management are looking for acquiring not only GE but also technical English to respond efficiently to the ongoing changes at the various levels most notably economy, business, technology, and sciences. Therefore, there is a need of ESP programmes which would focus on developing the communicative competence of the learners in their specific field of study or work. The aim of the present research is to explore the ways of improving the actual situation of teaching English in the faculty of Economics and to make the English courses more purposive, fulfilling and satisfactory. The sample population focused on second and third-year students of Economics from different specialties mainly commercial sciences, insurance and banking, accountancy, and management. This is done through a questionnaire which inquires students about their learning weaknesses, difficulties and challenges they encounter, and their expectations of the subject matter.

Keywords: faculty of economics and management, challenges, teaching/ learning process, EFL, GE, ESP, English courses, communicative competence

Procedia PDF Downloads 506
5295 A Neurosymbolic Learning Method for Uplink LTE-A Channel Estimation

Authors: Lassaad Smirani

Abstract:

In this paper we propose a Neurosymbolic Learning System (NLS) as a channel estimator for Long Term Evolution Advanced (LTE-A) uplink. The proposed system main idea based on Neural Network has modules capable of performing bidirectional information transfer between symbolic module and connectionist module. We demonstrate various strengths of the NLS especially the ability to integrate theoretical knowledge (rules) and experiential knowledge (examples), and to make an initial knowledge base (rules) converted into a connectionist network. Also to use empirical knowledge witch by learning will have the ability to revise the theoretical knowledge and acquire new one and explain it, and finally the ability to improve the performance of symbolic or connectionist systems. Compared with conventional SC-FDMA channel estimation systems, The performance of NLS in terms of complexity and quality is confirmed by theoretical analysis and simulation and shows that this system can make the channel estimation accuracy improved and bit error rate decreased.

Keywords: channel estimation, SC-FDMA, neural network, hybrid system, BER, LTE-A

Procedia PDF Downloads 394
5294 Perception of Inclusion in Higher Education

Authors: Hoi Nga Ng, Kam Weng Boey, Chi Wai Kwan

Abstract:

Supporters of Inclusive education proclaim that all students, regardless of disabilities or special educational needs (SEN), have the right to study in the normal school setting. It is asserted that students with SEN would benefit in academic performance and psychosocial adjustment via participation in common learning activities within the ordinary school system. When more and more students of SEN completed their early schooling, institute of higher education become the setting where students of SEN continue their learning. This study aimed to investigate the school well-being, social relationship, and academic self-concept of students of SEN in higher education. The Perception of Inclusion Questionnaire (PIQ) was used as the measuring instruments. PIQ was validated and incorporated in a questionnaire designed for online survey. Participation was voluntary and anonymous. A total of 90 students with SEN and 457 students without SEN responded to the online survey. Results showed no significant differences in school well-being and social relationship between students with and without SEN, but students with SEN, particularly those with learning and development impairment and those with mental illness and emotional problems, were significantly poorer in academic self-concept. Implications of the findings were discussed.

Keywords: ccademic self-concept, school well-being, social relationship, special educational needs

Procedia PDF Downloads 186
5293 Learning and Practicing Assessment in a Pre-Service Teacher Education Program: Comparative Perspective of UK and Pakistani Universities

Authors: Malik Ghulam Behlol, Alison Fox, Faiza Masood, Sabiha Arshad

Abstract:

This paper explores the barriers to the application of learning-supportive assessment at teaching practicum while investigating the role of university teachers (UT), cooperative teachers (CT), prospective teachers ( PT) and heads of the practicum schools (HPS) in the selected universities of Pakistan and the UK. It is a qualitative case study and data were collected through the lesson observation of UT in the pre-service teacher education setting and PT in practicum schools. Interviews with UT, HPS, and Focus Group Discussions with PT were conducted too. The study has concluded that as compared to the UK counterpart, PT in Pakistan faces significant barriers in applying learning-supportive assessment in the school practicum settings because of large class sizes, lack of institutionalised collaboration between universities and schools, poor modelling of the lesson, ineffective feedback practices, lower order thinking assignments, and limited opportunities to use technology in school settings.

Keywords: assessment, pre-service teacher education, theory-practice gap, teacher education

Procedia PDF Downloads 124
5292 Survey Study of Key Motivations and Drivers for Students to Enroll in Online Programs of Study

Authors: Tina Stavredes

Abstract:

Increasingly borderless learning opportunities including online learning are expanding. Singapore University of Social Science (SUSS) conducted research in February of 2017 to determine the level of consumer interest in undertaking a completely online distance learning degree program across three countries in the Asian Pacific region. The target audience was potential bachelor degree and post-degree students from Malaysia, Indonesia, and Vietnam. The results gathered were used to assess the market size and ascertain the business potential of online degree programs in Malaysia, Indonesia and Vietnam. Secondly, the results were used to determine the most receptive markets to prioritise entry and identify the most receptive student segments. In order to achieve the key outcomes, the key points of understanding were as follows: -Motivations for higher education & factors that influence the choice of institution, -Interest in online learning, -Interest in online learning from a Singapore university relative to other foreign institutions, -Key drivers and barriers of interest in online learning. An online survey was conducted from from 7th Feb 2017 to 27th Feb 2017 amongst n=600 respondents aged 21yo-45yo, who have a basic command of English, A-level qualifications and above, and who have an intent to further their education in the next 12 months. Key findings from the study regarding enrolling in an online program include the need for a marriage between intrinsic and extrinsic motivation factors and the flexibility and support offered in an online program. Overall, there was a high interest for online learning. Survey participants stated they are intrinsically motivated to learn because of their interest in the program of study and the need for extrinsic rewards including opportunities for employment or salary increment in their current job. Seven out of ten survey participants reported they are motivated to further their education and expand their knowledge to become more employable. Eight in ten claims that the feasibility of furthering their education depends on cost and maintaining a work-life balance. The top 2 programs of interest are business and information and communication technology. They describe their choice of university as a marriage of both motivational and feasibility factors including cost, choice, quality of support facilities, and the reputation of the institution. Survey participants reported flexibility as important and stated that appropriate support assures and grows their intent to enrol in an online program. Respondents also reported the importance of being able to work while studying as the main perceived advantage of online learning. Factors related to the choice of an online university emphasized the quality of support services. Despite concerns, overall there was a high interest for online learning. One in two expressed strong intent to enrol in an online programme of study. However, unfamiliarity with online learning is a concern including the concern with the lack of face-to-face interactions. Overall, the findings demonstrated an interest in online learning. A main driver was the ability to earn a recognised degree while still being able to be with the family and the ability to achieve a ‘better’ early career growth.

Keywords: distance education, student motivations, online learning, online student needs

Procedia PDF Downloads 124
5291 Using Signature Assignments and Rubrics in Assessing Institutional Learning Outcomes and Student Learning

Authors: Leigh Ann Wilson, Melanie Borrego

Abstract:

The purpose of institutional learning outcomes (ILOs) is to assess what students across the university know and what they do not. The issue is gathering this information in a systematic and usable way. This presentation will explain how one institution has engineered this process for both student success and maximum faculty curriculum and course design input. At Brandman University, there are three levels of learning outcomes: course, program, and institutional. Institutional Learning Outcomes (ILOs) are mapped to specific courses. Faculty course developers write the signature assignments (SAs) in alignment with the Institutional Learning Outcomes for each course. These SAs use a specific rubric that is applied consistently by every section and every instructor. Each year, the 12-member General Education Team (GET), as a part of their work, conducts the calibration and assessment of the university-wide SAs and the related rubrics for one or two of the five ILOs. GET members, who are senior faculty and administrators who represent each of the university's schools, lead the calibration meetings. Specifically, calibration is a process designed to ensure the accuracy and reliability of evaluating signature assignments by working with peer faculty to interpret rubrics and compare scoring. These calibration meetings include the full time and adjunct faculty members who teach the course to ensure consensus on the application of the rubric. Each calibration session is chaired by a GET representative as well as the course custodian/contact where the ILO signature assignment resides. The overall calibration process GET follows includes multiple steps, such as: contacting and inviting relevant faculty members to participate; organizing and hosting calibration sessions; and reviewing and discussing at least 10 samples of student work from class sections during the previous academic year, for each applicable signature assignment. Conversely, the commitment for calibration teams consist of attending two virtual meetings lasting up to three hours in duration. The first meeting focuses on interpreting the rubric, and the second meeting involves comparing scores for sample work and sharing feedback about the rubric and assignment. Next, participants are expected to follow all directions provided and participate actively, and respond to scheduling requests and other emails within 72 hours. The virtual meetings are recorded for future institutional use. Adjunct faculty are paid a small stipend after participating in both calibration meetings. Full time faculty can use this work on their annual faculty report for "internal service" credit.

Keywords: assessment, assurance of learning, course design, institutional learning outcomes, rubrics, signature assignments

Procedia PDF Downloads 280
5290 A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane

Authors: Maryam Zarabian, Hector Guzman, Pedro Pereira-Almao, Abraham Fapojuwo

Abstract:

Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively.

Keywords: artificial intelligence, dry reforming of methane, artificial neural network, deep learning, machine learning, transfer learning, greedy layer-wise pretraining

Procedia PDF Downloads 89
5289 Marketing Management and Cultural Learning Center: The Case Study of Arts and Cultural Office, Suansunandha Rajabhat University

Authors: Pirada Techaratpong

Abstract:

This qualitative research has 2 objectives: to study marketing management of the cultural learning center in Suansunandha Rajabhat University and to suggest guidelines to improve its marketing management. This research is based on a case study of the Arts and Culture Office in Suansunandha Rajabhat University, Bangkok. This research found the Art and Culture Office has no formal marketing management. However, the marketing management is partly covered in the overall business plan, strategic plan, and action plan. The process can be divided into 5 stages. The marketing concept has long been introduced to its policy but not apparently put into action due to inflexible system. Some gaps are found in the process. The research suggests the Art and Culture Office implement the concept of marketing orientation, meeting the needs and wants of its target customers and adapt to the changing situation. Minor guidelines for improvement are provided.

Keywords: cultural learning center, marketing, management, museum

Procedia PDF Downloads 386
5288 A Generalized Sparse Bayesian Learning Algorithm for Near-Field Synthetic Aperture Radar Imaging: By Exploiting Impropriety and Noncircularity

Authors: Pan Long, Bi Dongjie, Li Xifeng, Xie Yongle

Abstract:

The near-field synthetic aperture radar (SAR) imaging is an advanced nondestructive testing and evaluation (NDT&E) technique. This paper investigates the complex-valued signal processing related to the near-field SAR imaging system, where the measurement data turns out to be noncircular and improper, meaning that the complex-valued data is correlated to its complex conjugate. Furthermore, we discover that the degree of impropriety of the measurement data and that of the target image can be highly correlated in near-field SAR imaging. Based on these observations, A modified generalized sparse Bayesian learning algorithm is proposed, taking impropriety and noncircularity into account. Numerical results show that the proposed algorithm provides performance gain, with the help of noncircular assumption on the signals.

Keywords: complex-valued signal processing, synthetic aperture radar, 2-D radar imaging, compressive sensing, sparse Bayesian learning

Procedia PDF Downloads 133
5287 University Clusters Using ICT for Teaching and Learning

Authors: M. Roberts Masillamani

Abstract:

There is a phenomenal difference, as regard to the teaching methodology adopted at the urban and the rural area colleges. However, bright and talented student may be from rural back ground even. But there is huge dearth of the digitization in the rural areas and lesser developed countries. Today’s students need new skills to compete and successful in the future. Education should be combination of practical, intellectual, and social skills. What does this mean for rural classrooms and how can it be achieved. Rural colleges are not able to hire the best resources, since the best teacher’s aim is to move towards the city. If city is provided everywhere, then there will be no rural area. This is possible by forming university clusters (UC). The University cluster is a group of renowned and accredited universities coming together to bridge this dearth. The UC will deliver the live lectures and allow the students’ from remote areas to actively participate in the classroom. This paper tries to present a plan of action of providing a better live classroom teaching and learning system from the city to the rural and the lesser developed countries. This paper titled “University Clusters using ICT for teaching and learning” provides a true concept of opening live digital classroom windows for rural colleges, where resources are not available, thus reducing the digital divide. This is different from pod casting a lecture or distance learning and eLearning. The live lecture can be streamed through digital equipment to another classroom. The rural students can collaborate with their peers and critiques, be assessed, collect information, acquire different techniques in assessment and learning process. This system will benefit rural students and teachers and develop socio economic status. This will also will increase the degree of confidence of the Rural students and teachers. Thus bringing about the concept of ‘Train the Trainee’ in reality. An educational university cloud for each cluster will be built remote infrastructure facilities (RIF) for the above program. The users may be informed, about the available lecture schedules, through the RIF service. RIF with an educational cloud can be set by the universities under one cluster. This paper talks a little more about University clusters and the methodology to be adopted as well as some extended features like, tutorial classes, library grids, remote laboratory login, research and development.

Keywords: lesser developed countries, digital divide, digital learning, education, e-learning, ICT, library grids, live classroom windows, RIF, rural, university clusters and urban

Procedia PDF Downloads 474
5286 Comparison of Different Machine Learning Models for Time-Series Based Load Forecasting of Electric Vehicle Charging Stations

Authors: H. J. Joshi, Satyajeet Patil, Parth Dandavate, Mihir Kulkarni, Harshita Agrawal

Abstract:

As the world looks towards a sustainable future, electric vehicles have become increasingly popular. Millions worldwide are looking to switch to Electric cars over the previously favored combustion engine-powered cars. This demand has seen an increase in Electric Vehicle Charging Stations. The big challenge is that the randomness of electrical energy makes it tough for these charging stations to provide an adequate amount of energy over a specific amount of time. Thus, it has become increasingly crucial to model these patterns and forecast the energy needs of power stations. This paper aims to analyze how different machine learning models perform on Electric Vehicle charging time-series data. The data set consists of authentic Electric Vehicle Data from the Netherlands. It has an overview of ten thousand transactions from public stations operated by EVnetNL.

Keywords: forecasting, smart grid, electric vehicle load forecasting, machine learning, time series forecasting

Procedia PDF Downloads 109
5285 The Development of Integrated Real-Life Video and Animation with Addie Based on Constructive for Improving Students’ Mastery Concept in Rotational Dynamics

Authors: Silka Abyadati, Dadi Rusdiana, Enjang Akhmad Juanda

Abstract:

This study aims to investigate the students’ mastery concepts enhancement between students who are studying by using Integrated Real-Life Video and Animation (IRVA) and students who are studying without using IRVA. The development of IRVA is conducted by five stages: Analyze, Design, Development, Implementation and Evaluation (ADDIE) based on constructivist for Rotational Dynamics material in Physics learning. A constructivist model-based learning used is Interpretation Construction (ICON), which has the following phases: 1) Observation, 2) Construction interpretation, 3) Contextualization prior knowledge, 4) Conflict cognitive, 5) Learning cognitive, 6) Collaboration, 7) Multiple interpretation, 8) Multiple manifestation. The IRVA is developed for the stages of observation, cognitive conflict and cognitive learning. The sample of this study consisted of 32 students experimental group and a control group of 32 students in class XI of the school year 2015/2016 in one of Senior High Schools Bandung. The study was conducted by giving the pretest and posttest in the form of 20 items of multiple choice questions to determine the enhancement of mastery concept of Rotational Dynamics. Hypothesis testing is done by using T-test on the value of N-gain average of mastery concepts. The results showed that there is a significant difference in an enhancement of students’ mastery concepts between students who are studying by using IRVA and students who are studying without IRVA. Students in the experimental group increased by 0.468 while students in the control group increased by 0.207.

Keywords: ADDIE, constructivist learning, Integrated Real-Life Video and Animation, mastery concepts, rotational dynamics

Procedia PDF Downloads 233
5284 Introducing Thermodynamic Variables through Scientific Inquiry for Engineering Students

Authors: Paola Utreras, Yazmina Olmos, Loreto Sanhueza

Abstract:

This work shows how the learning of physics is enriched with scientific inquiry practices, achieving learning that results in the use of higher-level cognitive skills. The activities, which were carried out with students of the 3rd semester of the courses of the Faculty of Sciences of the Engineering of the Austral University of Chile, focused on the understanding of the nature of the thermodynamic variables and how they relate to each other. This, through the analysis of atmospheric data obtained in the meteorological station Miraflores, located on the campus. The proposed activities consisted of the elaboration of time series, linear analysis of variables, as well as the analysis of frequencies and periods. From their results, the students reached conclusions associated with the nature of the thermodynamic variables studied and the relationships between them, to finally make public their results in a report using scientific writing standards. It is observed that introducing topics that are close to them, interesting and which affect their daily lives allows a better understanding of the subjects, which is reflected in higher levels of approval and motivation for the subject.

Keywords: basic sciences, inquiry-based learning, scientific inquiry, thermodynamics

Procedia PDF Downloads 259
5283 Motivational Strategies for Young Learners in Distance Education

Authors: Saziye Darendeli

Abstract:

Motivation has a significant impact on a second/foreign language learning process, so it plays a vital role while achieving the learning goal. As it is defined by Simon (1967, p. 29), motivation is “a goal terminating mechanism, permitting goals to be processed serially.”AccordingtoSimon, if a learning goal is activated and enough attention is given, the learner starts learning. In connection with this view, the more attention is given on a subject, and the more activation takes place on it, the quicker learning will occur. Moreover, today almost every teacher is familiar with the term “distance education” regardless of their student's age group. As it is stated by Visser (2002), when compared to the traditional classrooms, in distance education, the rate and success of language learningdecreasesandone of the most essential reasons is that motivating students in distance education contexts, in which interaction is lower, is much more challenging than face-to-face training especially with young learners(Lim& Kim, 2003). Besides, there are limited numbers of studies conducted on motivational strategies for young learners in distance education contexts since we have been experiencing full time the online schooling process recently, yet online teaching seems to be permanent in our lives with the new technological era. Therefore, there appears to be a need for various strategies to motivate young learners in distance education, and the current study aims to find out the strategies that young learners’ teachers use to increase their students’ motivation level in distance education. To achieve this aim, a qualitative research approach and a phenomenological method with an interpretive design will be used. The participants, who are teachers of young learners, will be interviewed using a structured interview format consisting of 7 questions. As the participants are young learners’teacherswhohavebeenexperiencingteaching online, exploring thestrategiesthattheyusetoincreasetheirstudents’ motivationlevelwillprovidesomesuggestionsaboutthemotivationalstrategiesforfuture online classes. Also, in this paper, I will move beyond the traditional classrooms that have face-to-face lessons and discuss the effective motivational strategies for young learners in distance education.

Keywords: motivation, distance education, young learners, strategies

Procedia PDF Downloads 192