Search results for: optimized network
4274 Algorithm Development of Individual Lumped Parameter Modelling for Blood Circulatory System: An Optimization Study
Authors: Bao Li, Aike Qiao, Gaoyang Li, Youjun Liu
Abstract:
Background: Lumped parameter model (LPM) is a common numerical model for hemodynamic calculation. LPM uses circuit elements to simulate the human blood circulatory system. Physiological indicators and characteristics can be acquired through the model. However, due to the different physiological indicators of each individual, parameters in LPM should be personalized in order for convincing calculated results, which can reflect the individual physiological information. This study aimed to develop an automatic and effective optimization method to personalize the parameters in LPM of the blood circulatory system, which is of great significance to the numerical simulation of individual hemodynamics. Methods: A closed-loop LPM of the human blood circulatory system that is applicable for most persons were established based on the anatomical structures and physiological parameters. The patient-specific physiological data of 5 volunteers were non-invasively collected as personalized objectives of individual LPM. In this study, the blood pressure and flow rate of heart, brain, and limbs were the main concerns. The collected systolic blood pressure, diastolic blood pressure, cardiac output, and heart rate were set as objective data, and the waveforms of carotid artery flow and ankle pressure were set as objective waveforms. Aiming at the collected data and waveforms, sensitivity analysis of each parameter in LPM was conducted to determine the sensitive parameters that have an obvious influence on the objectives. Simulated annealing was adopted to iteratively optimize the sensitive parameters, and the objective function during optimization was the root mean square error between the collected waveforms and data and simulated waveforms and data. Each parameter in LPM was optimized 500 times. Results: In this study, the sensitive parameters in LPM were optimized according to the collected data of 5 individuals. Results show a slight error between collected and simulated data. The average relative root mean square error of all optimization objectives of 5 samples were 2.21%, 3.59%, 4.75%, 4.24%, and 3.56%, respectively. Conclusions: Slight error demonstrated good effects of optimization. The individual modeling algorithm developed in this study can effectively achieve the individualization of LPM for the blood circulatory system. LPM with individual parameters can output the individual physiological indicators after optimization, which are applicable for the numerical simulation of patient-specific hemodynamics.Keywords: blood circulatory system, individual physiological indicators, lumped parameter model, optimization algorithm
Procedia PDF Downloads 1414273 Graph Clustering Unveiled: ClusterSyn - A Machine Learning Framework for Predicting Anti-Cancer Drug Synergy Scores
Authors: Babak Bahri, Fatemeh Yassaee Meybodi, Changiz Eslahchi
Abstract:
In the pursuit of effective cancer therapies, the exploration of combinatorial drug regimens is crucial to leverage synergistic interactions between drugs, thereby improving treatment efficacy and overcoming drug resistance. However, identifying synergistic drug pairs poses challenges due to the vast combinatorial space and limitations of experimental approaches. This study introduces ClusterSyn, a machine learning (ML)-powered framework for classifying anti-cancer drug synergy scores. ClusterSyn employs a two-step approach involving drug clustering and synergy score prediction using a fully connected deep neural network. For each cell line in the training dataset, a drug graph is constructed, with nodes representing drugs and edge weights denoting synergy scores between drug pairs. Drugs are clustered using the Markov clustering (MCL) algorithm, and vectors representing the similarity of drug pairs to each cluster are input into the deep neural network for synergy score prediction (synergy or antagonism). Clustering results demonstrate effective grouping of drugs based on synergy scores, aligning similar synergy profiles. Subsequently, neural network predictions and synergy scores of the two drugs on others within their clusters are used to predict the synergy score of the considered drug pair. This approach facilitates comparative analysis with clustering and regression-based methods, revealing the superior performance of ClusterSyn over state-of-the-art methods like DeepSynergy and DeepDDS on diverse datasets such as Oniel and Almanac. The results highlight the remarkable potential of ClusterSyn as a versatile tool for predicting anti-cancer drug synergy scores.Keywords: drug synergy, clustering, prediction, machine learning., deep learning
Procedia PDF Downloads 894272 Comparative Efficacy of Vasodilators on Internal Mammary Artery Flow in Coronary Artery Bypass Grafting (CABG): A Systematic Review and Network Meta-Analysis
Authors: Umm E. Aimen Minhas, Sameen Tahira, Haneen Kamran, Syed Saad Ul Hassan, Haris Bin Khalid, Hadia Nadeem, Ahmed Sanan
Abstract:
In coronary artery bypass grafting (CABG) patients, vasodilators play a key role in optimizing graft patency by preventing vasospasm and enhancing blood flow. Limited literature is available comparing the effectiveness of various vasodilators on IMA flow in CABG patients. Thus, the rationale for conducting this Network-meta-analysis is to identify the most efficacious vasodilator for increasing IMA flow in CABG patients. A systematic search of 3 databases yielded 357 studies, with 19 meeting inclusion criteria (18 RCTs, 1 observational study). The primary outcome was IMA flow, with secondary outcomes including central venous pressure (CVP) and mean arterial pressure (MAP). Analyses were conducted on an intention-to-treat basis using the net meta package in R. A frequentist random-effects model was employed, with consistency assessed via node-splitting and heterogeneity evaluated. The risk of bias was assessed using RoB 2 and ROBINS-I tools. Out of 92 possible pairwise comparisons, 11 were direct, and 3 included both direct and indirect evidence. Network ranking identified milrinone as the most effective vasodilator for improving IMA flow (SMD: 1.12; 95% CI: 0.36–1.87), followed by nitroglycerin (SMD: 0.51; 95% CI: 0.01–1.00). On the contrary, CO₂ insufflation significantly reduced IMA flow (SMD: -1.17; 95% CI: -2.28 to -0.06). Dobutamine significantly increased CVP, favoring placebo, with no notable differences in MAP across interventions. This analysis positions milrinone as a potentially superior agent for enhancing IMA flow in CABG, warranting its consideration as a first-line therapy. However, moderate to high heterogeneity and limited direct evidence highlight the need for more head-to-head trials.Keywords: IMA flow, vasodilators, CABG, milrinone, cardiac outcomes
Procedia PDF Downloads 114271 Monitoring System for Electronic Procurement Systems
Authors: Abdulah Fajar
Abstract:
Electronic Procurement System has been implemented at government institution in Indonesia. This system has been developed centrally at Institution of National Procurement Policy (LKPP) and implemented autonomously at either local or national government institution. The lack of competency at many institution on Information Technology Management arise several major problems. The main concern of LKPP to local administrator is assured that the system is running normally and always be able to serve the needs of its users. Monitoring system has been identified as the one of solution to prevent the problems appeared. Monitoring system is developed using Simple Network Management Protocol (SNMP) and implemented at LKPP. There are two modules; Main Dashboard and Local Agent. Main Dashboard is intended for LKPP and Local Agent is intended to implement at local autonomous e-procurement system (LPSE). There are several resources that must be monitored such as computation, memory and network traffic. Agile paradigm is applied to this project to assure user and system requirement is met. The length of project is the one of reason why agile paradigm has been chosen. The system has been successfully delivered to LKPP.Keywords: procurement system, SNMP, LKPP, LPSE
Procedia PDF Downloads 4294270 Optimization of Agricultural Water Demand Using a Hybrid Model of Dynamic Programming and Neural Networks: A Case Study of Algeria
Authors: M. Boudjerda, B. Touaibia, M. K. Mihoubi
Abstract:
In Algeria agricultural irrigation is the primary water consuming sector followed by the domestic and industrial sectors. Economic development in the last decade has weighed heavily on water resources which are relatively limited and gradually decreasing to the detriment of agriculture. The research presented in this paper focuses on the optimization of irrigation water demand. Dynamic Programming-Neural Network (DPNN) method is applied to investigate reservoir optimization. The optimal operation rule is formulated to minimize the gap between water release and water irrigation demand. As a case study, Foum El-Gherza dam’s reservoir system in south of Algeria has been selected to examine our proposed optimization model. The application of DPNN method allowed increasing the satisfaction rate (SR) from 12.32% to 55%. In addition, the operation rule generated showed more reliable and resilience operation for the examined case study.Keywords: water management, agricultural demand, dam and reservoir operation, Foum el-Gherza dam, dynamic programming, artificial neural network
Procedia PDF Downloads 1194269 Using Jumping Particle Swarm Optimization for Optimal Operation of Pump in Water Distribution Networks
Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi
Abstract:
Carefully scheduling the operations of pumps can be resulted to significant energy savings. Schedules can be defined either implicit, in terms of other elements of the network such as tank levels, or explicit by specifying the time during which each pump is on/off. In this study, two new explicit representations based on time-controlled triggers were analyzed, where the maximum number of pump switches was established beforehand, and the schedule may contain fewer switches than the maximum. The optimal operation of pumping stations was determined using a Jumping Particle Swarm Optimization (JPSO) algorithm to achieve the minimum energy cost. The model integrates JPSO optimizer and EPANET hydraulic network solver. The optimal pump operation schedule of VanZyl water distribution system was determined using the proposed model and compared with those from Genetic and Ant Colony algorithms. The results indicate that the proposed model utilizing the JPSP algorithm outperformed the others and is a versatile management model for the operation of real-world water distribution system.Keywords: JPSO, operation, optimization, water distribution system
Procedia PDF Downloads 2514268 Social Network Roles in Organizations: Influencers, Bridges, and Soloists
Authors: Sofia Dokuka, Liz Lockhart, Alex Furman
Abstract:
Organizational hierarchy, traditionally composed of individual contributors, middle management, and executives, is enhanced by the understanding of informal social roles. These roles, identified with organizational network analysis (ONA), might have an important effect on organizational functioning. In this paper, we identify three social roles – influencers, bridges, and soloists, and provide empirical analysis based on real-world organizational networks. Influencers are employees with broad networks and whose contacts also have rich networks. Influence is calculated using PageRank, initially proposed for measuring website importance, but now applied in various network settings, including social networks. Influencers, having high PageRank, become key players in shaping opinions and behaviors within an organization. Bridges serve as links between loosely connected groups within the organization. Bridges are identified using betweenness and Burt’s constraint. Betweenness quantifies a node's control over information flows by evaluating its role in the control over the shortest paths within the network. Burt's constraint measures the extent of interconnection among an individual's contacts. A high constraint value suggests fewer structural holes and lesser control over information flows, whereas a low value suggests the contrary. Soloists are individuals with fewer than 5 stable social contacts, potentially facing challenges due to reduced social interaction and hypothetical lack of feedback and communication. We considered social roles in the analysis of real-world organizations (N=1,060). Based on data from digital traces (Slack, corporate email and calendar) we reconstructed an organizational communication network and identified influencers, bridges and soloists. We also collected employee engagement data through an online survey. Among the top-5% of influencers, 10% are members of the Executive Team. 56% of the Executive Team members are part of the top influencers group. The same proportion of top influencers (10%) is individual contributors, accounting for just 0.6% of all individual contributors in the company. The majority of influencers (80%) are at the middle management level. Out of all middle managers, 19% hold the role of influencers. However, individual contributors represent a small proportion of influencers, and having information about these individuals who hold influential roles can be crucial for management in identifying high-potential talents. Among the bridges, 4% are members of the Executive Team, 16% are individual contributors, and 80% are middle management. Predominantly middle management acts as a bridge. Bridge positions of some members of the executive team might indicate potential micromanagement on the leader's part. Recognizing the individuals serving as bridges in an organization uncovers potential communication problems. The majority of soloists are individual contributors (96%), and 4% of soloists are from middle management. These managers might face communication difficulties. We found an association between being an influencer and attitude toward a company's direction. There is a statistically significant 20% higher perception that the company is headed in the right direction among influencers compared to non-influencers (p < 0.05, Mann-Whitney test). Taken together, we demonstrate that considering social roles in the company might indicate both positive and negative aspects of organizational functioning that should be considered in data-driven decision-making.Keywords: organizational network analysis, social roles, influencer, bridge, soloist
Procedia PDF Downloads 1114267 Methodology for Various Sand Cone Testing
Authors: Abel S. Huaynacho, Yoni D. Huaynacho
Abstract:
The improvement of procedure test ASTM D1556, plays an important role in the developing of testing in field to obtain a higher quality of data QA/QC. The traditional process takes a considerable amount of time for only one test. Even making various testing are tasks repeating and it takes a long time to obtain better results. Moreover, if the adequate tools the help these testing are not properly managed, the improvement in the development for various testing could be stooped. This paper presents an optimized process for various testing ASTM D1556 which uses an initial standard process to another one the uses a simpler and improved management tools.Keywords: cone sand test, density bulk, ASTM D1556, QA/QC
Procedia PDF Downloads 1434266 Optimization of Temperature Coefficients for MEMS Based Piezoresistive Pressure Sensor
Authors: Vijay Kumar, Jaspreet Singh, Manoj Wadhwa
Abstract:
Piezo-resistive pressure sensors were one of the first developed micromechanical system (MEMS) devices and still display a significant growth prompted by the advancements in micromachining techniques and material technology. In MEMS based piezo-resistive pressure sensors, temperature can be considered as the main environmental condition which affects the system performance. The study of the thermal behavior of these sensors is essential to define the parameters that cause the output characteristics to drift. In this work, a study on the effects of temperature and doping concentration in a boron implanted piezoresistor for a silicon-based pressure sensor is discussed. We have optimized the temperature coefficient of resistance (TCR) and temperature coefficient of sensitivity (TCS) values to determine the effect of temperature drift on the sensor performance. To be more precise, in order to reduce the temperature drift, a high doping concentration is needed. And it is well known that the Wheatstone bridge in a pressure sensor is supplied with a constant voltage or a constant current input supply. With a constant voltage supply, the thermal drift can be compensated along with an external compensation circuit, whereas the thermal drift in the constant current supply can be directly compensated by the bridge itself. But it would be beneficial to also compensate the temperature coefficient of piezoresistors so as to further reduce the temperature drift. So, with a current supply, the TCS is dependent on both the TCπ and TCR. As TCπ is a negative quantity and TCR is a positive quantity, it is possible to choose an appropriate doping concentration at which both of them cancel each other. An exact cancellation of TCR and TCπ values is not readily attainable; therefore, an adjustable approach is generally used in practical applications. Thus, one goal of this work has been to better understand the origin of temperature drift in pressure sensor devices so that the temperature effects can be minimized or eliminated. This paper describes the optimum doping levels for the piezoresistors where the TCS of the pressure transducers will be zero due to the cancellation of TCR and TCπ values. Also, the fabrication and characterization of the pressure sensor are carried out. The optimized TCR value obtained for the fabricated die is 2300 ± 100ppm/ᵒC, for which the piezoresistors are implanted at a doping concentration of 5E13 ions/cm³ and the TCS value of -2100ppm/ᵒC is achieved. Therefore, the desired TCR and TCS value is achieved, which are approximately equal to each other, so the thermal effects are considerably reduced. Finally, we have calculated the effect of temperature and doping concentration on the output characteristics of the sensor. This study allows us to predict the sensor behavior against temperature and to minimize this effect by optimizing the doping concentration.Keywords: piezo-resistive, pressure sensor, doping concentration, TCR, TCS
Procedia PDF Downloads 1864265 A Bio-Inspired Approach for Self-Managing Wireless Sensor and Actor Networks
Authors: Lyamine Guezouli, Kamel Barka, Zineb Seghir
Abstract:
Wireless sensor and actor networks (WSANs) present a research challenge for different practice areas. Researchers are trying to optimize the use of such networks through their research work. This optimization is done on certain criteria, such as improving energy efficiency, exploiting node heterogeneity, self-adaptability and self-configuration. In this article, we present our proposal for BIFSA (Biologically-Inspired Framework for Wireless Sensor and Actor networks). Indeed, BIFSA is a middleware that addresses the key issues of wireless sensor and actor networks. BIFSA consists of two types of agents: sensor agents (SA) that operate at the sensor level to collect and transport data to actors and actor agents (AA) that operate at the actor level to transport data to base stations. Once the sensor agent arrives at the actor, it becomes an actor agent, which can exploit the resources of the actors and vice versa. BIFSA allows agents to evolve their genetic structures and adapt to the current network conditions. The simulation results show that BIFSA allows the agents to make better use of all the resources available in each type of node, which improves the performance of the network.Keywords: wireless sensor and actor networks, self-management, genetic algorithm, agent.
Procedia PDF Downloads 964264 Path Planning for Multiple Unmanned Aerial Vehicles Based on Adaptive Probabilistic Sampling Algorithm
Authors: Long Cheng, Tong He, Iraj Mantegh, Wen-Fang Xie
Abstract:
Path planning is essential for UAVs (Unmanned Aerial Vehicle) with autonomous navigation in unknown environments. In this paper, an adaptive probabilistic sampling algorithm is proposed for the GPS-denied environment, which can be utilized for autonomous navigation system of multiple UAVs in a dynamically-changing structured environment. This method can be used for Unmanned Aircraft Systems Traffic Management (UTM) solutions and in autonomous urban aerial mobility, where a number of platforms are expected to share the airspace. A path network is initially built off line based on available environment map, and on-board sensors systems on the flying UAVs are used for continuous situational awareness and to inform the changes in the path network. Simulation results based on MATLAB and Gazebo in different scenarios and algorithms performance measurement show the high efficiency and accuracy of the proposed technique in unknown environments.Keywords: path planning, adaptive probabilistic sampling, obstacle avoidance, multiple unmanned aerial vehicles, unknown environments
Procedia PDF Downloads 1634263 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry
Authors: Deepika Christopher, Garima Anand
Abstract:
To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications
Procedia PDF Downloads 634262 Highway Capacity and Level of Service
Authors: Kidist Mesfin Nguse
Abstract:
Ethiopia is the second most densely populated nation in Africa, and about 121 million people as the 2022 Ethiopia population live report recorded. In recent years, the Ethiopian government (GOE) has been gradually growing its road network. With 138,127 kilometers (85,825 miles) of all-weather roads as of the end of 2018–19, Ethiopia possessed just 39% of the nation's necessary road network and lacked a well-organized system. The Ethiopian urban population report recorded that about 21% of the population lives in urban areas, and the high population, coupled with growth in various infrastructures, has led to the migration of the workforce from rural areas to cities across the country. In main roads, the heterogeneous traffic flow with various operational features makes it more unfavorable, causing frequent congestion in the stretch of road. The Level of Service (LOS), a qualitative measure of traffic, is categorized based on the operating conditions in the traffic stream. Determining the capacity and LOS for this city is very crucial as this affects the planning and design of traffic systems and their operation, and the allocation of route selection for infrastructure building projects to provide for a considerably good level of service.Keywords: capacity, level of service, traffic volume, free flow speed
Procedia PDF Downloads 544261 Heat Transfer Enhancement via Using Al2O3/Water Nanofluid in Car Radiator
Authors: S. Movafagh, Y. Bakhshan
Abstract:
In this study, effect of adding Al2O3 nanoparticle to base fluid (water) in car radiator is investigated numerically. Radiators are compact heat exchangers optimized and evaluated by considering different working conditions. The cooling system of a car plays an important role in vehicle's performance, consists of two main parts, known as radiator and fan. Improving thermal efficiency of engine leads to increase the engine's performance, decline the fuel consumption and decrease the pollution emissions. In this study, the effects of fluid inlet flow rate and nanoparticle volume fraction on heat transfer and pressure drop of acar radiator are studied.Keywords: forced convection, nanofluid, radiator, CFD simulation
Procedia PDF Downloads 3464260 Optimized Renewable Energy Mix for Energy Saving in Waste Water Treatment Plants
Authors: J. D. García Espinel, Paula Pérez Sánchez, Carlos Egea Ruiz, Carlos Lardín Mifsut, Andrés López-Aranguren Oliver
Abstract:
This paper shortly describes three main actuations over a Waste Water Treatment Plant (WWTP) for reducing its energy consumption: Optimization of the biological reactor in the aeration stage by including new control algorithms and introducing new efficient equipment, the installation of an innovative hybrid system with zero Grid injection (formed by 100kW of PV energy and 5 kW of mini-wind energy generation) and an intelligent management system for load consumption and energy generation control in the most optimum way. This project called RENEWAT, involved in the European Commission call LIFE 2013, has the main objective of reducing the energy consumptions through different actions on the processes which take place in a WWTP and introducing renewable energies on these treatment plants, with the purpose of promoting the usage of treated waste water for irrigation and decreasing the C02 gas emissions. WWTP is always required before waste water can be reused for irrigation or discharged in water bodies. However, the energetic demand of the treatment process is high enough for making the price of treated water to exceed the one for drinkable water. This makes any policy very difficult to encourage the re-use of treated water, with a great impact on the water cycle, particularly in those areas suffering hydric stress or deficiency. The cost of treating waste water involves another climate-change related burden: the energy necessary for the process is obtained mainly from the electric network, which is, in most of the cases in Europe, energy obtained from the burning of fossil fuels. The innovative part of this project is based on the implementation, adaptation and integration of solutions for this problem, together with a new concept of the integration of energy input and operative energy demand. Moreover, there is an important qualitative jump between the technologies used and the alleged technologies to use in the project which give it an innovative character, due to the fact that there are no similar previous experiences of a WWTP including an intelligent discrimination of energy sources, integrating renewable ones (PV and Wind) and the grid.Keywords: aeration system, biological reactor, CO2 emissions, energy efficiency, hybrid systems, LIFE 2013 call, process optimization, renewable energy sources, wasted water treatment plants
Procedia PDF Downloads 3544259 Development of One-Axis Didactic Solar Tracker for Photovoltaic Panels
Authors: L. J. de Bessa Neto, M. R. B. Guerra Vale, F. K. O. M. Varella Guerra
Abstract:
In recent years, solar energy has established itself as one of the main sources of renewable energy, gaining a large space in electricity generation around the world. However, due to the low performance of photovoltaic panels, technologies need to be sought to maximize the production of electricity. In this regard, the present study aims to develop a prototype of solar tracker for didactics applications, controlled with the Arduino® platform, that enables the movement of photovoltaic plates in relation to the sun positions throughout the day through an electromechanical system, optimizing, thus, the efficiency of solar photovoltaic generation and improvements for the photovoltaic effect. The solar tracking technology developed in this work was presented of the shape oral and practical in two middle schools in the municipality of Mossoró/RN, being one of the public network and other of the private network, always keeping the average age of the students, in the case, around 16 years, contemplating an average of 60 students in each of the visits. Thus, it is concluded that the present study contributed substantially to the dissemination of knowledge concerning the photovoltaic solar generation, as well as the study of solar trackers, thus arousing the interest and curiosity of the students regarding the thematic approached.Keywords: alternative energy, solar tracker, energy efficiency, photovoltaic panels
Procedia PDF Downloads 1534258 Bandwidth Efficient Cluster Based Collision Avoidance Multicasting Protocol in VANETs
Authors: Navneet Kaur, Amarpreet Singh
Abstract:
In Vehicular Adhoc Networks, Data Dissemination is a challenging task. There are number of techniques, types and protocols available for disseminating the data but in order to preserve limited bandwidth and to disseminate maximum data over networks makes it more challenging. There are broadcasting, multicasting and geocasting based protocols. Multicasting based protocols are found to be best for conserving the bandwidth. One such protocol named BEAM exists that improves the performance of Vehicular Adhoc Networks by reducing the number of in-network message transactions and thereby efficiently utilizing the bandwidth during an emergency situation. But this protocol may result in multicar chain collision as there was no V2V communication. So, this paper proposes a new protocol named Enhanced Bandwidth Efficient Cluster Based Multicasting Protocol (EBECM) that will overcome the limitations of existing BEAM protocol. And Simulation results will show the improved performance of EBECM in terms of Routing overhead, throughput and PDR when compared with BEAM protocol.Keywords: BEAM, data dissemination, emergency situation, vehicular adhoc network
Procedia PDF Downloads 3544257 Two-Stage Estimation of Tropical Cyclone Intensity Based on Fusion of Coarse and Fine-Grained Features from Satellite Microwave Data
Authors: Huinan Zhang, Wenjie Jiang
Abstract:
Accurate estimation of tropical cyclone intensity is of great importance for disaster prevention and mitigation. Existing techniques are largely based on satellite imagery data, and research and utilization of the inner thermal core structure characteristics of tropical cyclones still pose challenges. This paper presents a two-stage tropical cyclone intensity estimation network based on the fusion of coarse and fine-grained features from microwave brightness temperature data. The data used in this network are obtained from the thermal core structure of tropical cyclones through the Advanced Technology Microwave Sounder (ATMS) inversion. Firstly, the thermal core information in the pressure direction is comprehensively expressed through the maximal intensity projection (MIP) method, constructing coarse-grained thermal core images that represent the tropical cyclone. These images provide a coarse-grained feature range wind speed estimation result in the first stage. Then, based on this result, fine-grained features are extracted by combining thermal core information from multiple view profiles with a distributed network and fused with coarse-grained features from the first stage to obtain the final two-stage network wind speed estimation. Furthermore, to better capture the long-tail distribution characteristics of tropical cyclones, focal loss is used in the coarse-grained loss function of the first stage, and ordinal regression loss is adopted in the second stage to replace traditional single-value regression. The selection of tropical cyclones spans from 2012 to 2021, distributed in the North Atlantic (NA) regions. The training set includes 2012 to 2017, the validation set includes 2018 to 2019, and the test set includes 2020 to 2021. Based on the Saffir-Simpson Hurricane Wind Scale (SSHS), this paper categorizes tropical cyclone levels into three major categories: pre-hurricane, minor hurricane, and major hurricane, with a classification accuracy rate of 86.18% and an intensity estimation error of 4.01m/s for NA based on this accuracy. The results indicate that thermal core data can effectively represent the level and intensity of tropical cyclones, warranting further exploration of tropical cyclone attributes under this data.Keywords: Artificial intelligence, deep learning, data mining, remote sensing
Procedia PDF Downloads 684256 Design for Filter and Transitions to Substrat Integated Waveguide at Ka Band
Authors: Damou Mehdi, Nouri Keltouma, Fahem Mohammed
Abstract:
In this paper, the concept of substrate integrated waveguide (SIW) technology is used to design filter for 30 GHz communication systems. SIW is created in the substrate of RT/Duroid 5880 having relative permittivity ε_r= 2.2 and loss tangent tanφ = 0.0009. Four Via are placed on the century filter the structures of SIW are modeled using and have been optimized in software HFSS (High Frequency Structure Simulator), à transition is designed for a Ka-band transceiver module with a 28.5GHz center frequency, . and then the results are verified using another simulation CST Microwave Studio (Computer Simulation Technology). The return loss are less than -18 dB, and -13 dB respectively. The insertion loss is divided equally -1.2 dB and -1.4 respectively.Keywords: transition, microstrip, substrat integrated wave guide, filter, via
Procedia PDF Downloads 6604255 Calycosin Ameliorates Osteoarthritis by Regulating the Imbalance Between Chondrocyte Synthesis and Catabolism
Authors: Hong Su, Qiuju Yan, Wei Du, En Hu, Zhaoyu Yang, Wei Zhang, Yusheng Li, Tao Tang, Wang yang, Shushan Zhao
Abstract:
Osteoarthritis (OA) is a severe chronic inflammatory disease. As the main active component of Astragalus mongholicus Bunge, a classic traditional ethnic herb, calycosin exhibits anti-inflammatory action and its mechanism of exact targets for OA have yet to be determined. In this study, we established an anterior cruciate ligament transection (ACLT) mouse model. Mice were randomized to sham, OA, and calycosin groups. Cartilage synthesis markers type II collagen (Col-2) and SRY-Box Transcription Factor 9 (Sox-9) increased significantly after calycosin gavage. While cartilage matrix degradation index cyclooxygenase-2 (COX-2), phosphor-epidermal growth factor receptor (p-EGFR), and matrix metalloproteinase-9 (MMP9) expression were decreased. With the help of network pharmacology and molecular docking, these results were confirmed in chondrocyte ATDC5 cells. Our results indicated that the calycosin treatment significantly improved cartilage damage, this was probably attributed to reversing the imbalance between chondrocyte synthesis and catabolism.Keywords: calycosin, osteoarthritis, network pharmacology, molecular docking, inflammatory, cyclooxygenase 2
Procedia PDF Downloads 1094254 Monitoring Cellular Networks Performance Using Crowd Sourced IoT System: My Operator Coverage (MOC)
Authors: Bassem Boshra Thabet, Mohammed Ibrahim Elsabagh, Mohammad Adly Talaat
Abstract:
The number of cellular mobile phone users has increased enormously worldwide over the last two decades. Consequently, the monitoring of the performance of the Mobile Network Operators (MNOs) in terms of network coverage and broadband signal strength has become vital for both of the MNOs and regulators. This monitoring helps telecommunications operators and regulators keeping the market playing fair and most beneficial for users. However, the adopted methodologies to facilitate this continuous monitoring process are still problematic regarding cost, effort, and reliability. This paper introduces My Operator Coverage (MOC) system that is using Internet of Things (IoT) concepts and tools to monitor the MNOs performance using a crowd-sourced real-time methodology. MOC produces robust and reliable geographical maps for the user-perceived quality of the MNOs performance. MOC is also meant to enrich the telecommunications regulators with concrete, and up-to-date information that allows for adequate mobile market management strategies as well as appropriate decision making.Keywords: mobile performance monitoring, crowd-sourced applications, mobile broadband performance, cellular networks monitoring
Procedia PDF Downloads 4024253 Analysis of Production Forecasting in Unconventional Gas Resources Development Using Machine Learning and Data-Driven Approach
Authors: Dongkwon Han, Sangho Kim, Sunil Kwon
Abstract:
Unconventional gas resources have dramatically changed the future energy landscape. Unlike conventional gas resources, the key challenges in unconventional gas have been the requirement that applies to advanced approaches for production forecasting due to uncertainty and complexity of fluid flow. In this study, artificial neural network (ANN) model which integrates machine learning and data-driven approach was developed to predict productivity in shale gas. The database of 129 wells of Eagle Ford shale basin used for testing and training of the ANN model. The Input data related to hydraulic fracturing, well completion and productivity of shale gas were selected and the output data is a cumulative production. The performance of the ANN using all data sets, clustering and variables importance (VI) models were compared in the mean absolute percentage error (MAPE). ANN model using all data sets, clustering, and VI were obtained as 44.22%, 10.08% (cluster 1), 5.26% (cluster 2), 6.35%(cluster 3), and 32.23% (ANN VI), 23.19% (SVM VI), respectively. The results showed that the pre-trained ANN model provides more accurate results than the ANN model using all data sets.Keywords: unconventional gas, artificial neural network, machine learning, clustering, variables importance
Procedia PDF Downloads 1994252 Rheological Properties of Thermoresponsive Poly(N-Vinylcaprolactam)-g-Collagen Hydrogel
Authors: Serap Durkut, A. Eser Elcin, Y. Murat Elcin
Abstract:
Stimuli-sensitive polymeric hydrogels have received extensive attention in the biomedical field due to their sensitivity to physical and chemical stimuli (temperature, pH, ionic strength, light, etc.). This study describes the rheological properties of a novel thermoresponsive poly(N-vinylcaprolactam)-g-collagen hydrogel. In the study, we first synthesized a facile and novel synthetic carboxyl group-terminated thermo-responsive poly(N-vinylcaprolactam)-COOH (PNVCL-COOH) via free radical polymerization. Further, this compound was effectively grafted with native collagen, by utilizing the covalent bond between the carboxylic acid groups at the end of the chains and amine groups of the collagen using cross-linking agent (EDC/NHS), forming PNVCL-g-Col. Newly-formed hybrid hydrogel displayed novel properties, such as increased mechanical strength and thermoresponsive characteristics. PNVCL-g-Col showed low critical solution temperature (LCST) at 38ºC, which is very close to the body temperature. Rheological studies determine structural–mechanical properties of the materials and serve as a valuable tool for characterizing. The rheological properties of hydrogels are described in terms of two dynamic mechanical properties: the elastic modulus G′ (also known as dynamic rigidity) representing the reversible stored energy of the system, and the viscous modulus G″, representing the irreversible energy loss. In order to characterize the PNVCL-g-Col, the rheological properties were measured in terms of the function of temperature and time during phase transition. Below the LCST, favorable interactions allowed the dissolution of the polymer in water via hydrogen bonding. At temperatures above the LCST, PNVCL molecules within PNVCL-g-Col aggregated due to dehydration, causing the hydrogel structure to become dense. When the temperature reached ~36ºC, both the G′ and G″ values crossed over. This indicates that PNVCL-g-Col underwent a sol-gel transition, forming an elastic network. Following temperature plateau at 38ºC, near human body temperature the sample displayed stable elastic network characteristics. The G′ and G″ values of the PNVCL-g-Col solutions sharply increased at 6-9 minute interval, due to rapid transformation into gel-like state and formation of elastic networks. Copolymerization with collagen leads to an increase in G′, as collagen structure contains a flexible polymer chain, which bestows its elastic properties. Elasticity of the proposed structure correlates with the number of intermolecular cross-links in the hydrogel network, increasing viscosity. However, at 8 minutes, G′ and G″ values sharply decreased for pure collagen solutions due to the decomposition of the elastic and viscose network. Complex viscosity is related to the mechanical performance and resistance opposing deformation of the hydrogel. Complex viscosity of PNVCL-g-Col hydrogel was drastically changed with temperature and the mechanical performance of PNVCL-g-Col hydrogel network increased, exhibiting lesser deformation. Rheological assessment of the novel thermo-responsive PNVCL-g-Col hydrogel, exhibited that the network has stronger mechanical properties due to both permanent stable covalent bonds and physical interactions, such as hydrogen- and hydrophobic bonds depending on temperature.Keywords: poly(N-vinylcaprolactam)-g-collagen, thermoresponsive polymer, rheology, elastic modulus, stimuli-sensitive
Procedia PDF Downloads 2454251 A Neuron Model of Facial Recognition and Detection of an Authorized Entity Using Machine Learning System
Authors: J. K. Adedeji, M. O. Oyekanmi
Abstract:
This paper has critically examined the use of Machine Learning procedures in curbing unauthorized access into valuable areas of an organization. The use of passwords, pin codes, user’s identification in recent times has been partially successful in curbing crimes involving identities, hence the need for the design of a system which incorporates biometric characteristics such as DNA and pattern recognition of variations in facial expressions. The facial model used is the OpenCV library which is based on the use of certain physiological features, the Raspberry Pi 3 module is used to compile the OpenCV library, which extracts and stores the detected faces into the datasets directory through the use of camera. The model is trained with 50 epoch run in the database and recognized by the Local Binary Pattern Histogram (LBPH) recognizer contained in the OpenCV. The training algorithm used by the neural network is back propagation coded using python algorithmic language with 200 epoch runs to identify specific resemblance in the exclusive OR (XOR) output neurons. The research however confirmed that physiological parameters are better effective measures to curb crimes relating to identities.Keywords: biometric characters, facial recognition, neural network, OpenCV
Procedia PDF Downloads 2594250 The Environmental Benefits of the Adoption of Emission Control for Locomotives in Brazil
Authors: Rui de Abrantes, André Luiz Silva Forcetto
Abstract:
Air pollution is a big problem in many cities around the world. Brazilian big cities also have this problem, where millions of people are exposed daily to pollutants levels above the recommended by WHO. Brazil has taken several actions to reduce air pollution, among others, controlling the atmospheric emissions from vehicles, non-road mobile machinery, and motorcycles, but on the other side, there are no emissions controls for locomotives, which are exposing the population to tons of pollutants annually. The rail network is not homogeneously distributed in the national territory; it is denser near the big cities, and this way, the population is more exposed to pollutants; apart from that, the government intends to increase the rail network as one of the strategies for greenhouse gas mitigation, complying with the international agreements against the climate changes. This paper initially presents the estimated emissions from locomotive fleets with no emission control and with emission control equivalent to US Tier 3 from 2028 and for the next 20 years. However, we realized that a program equivalent to phase Tier 3 would not be effective, so we proposed a program in two steps that will avoid the release of more than 2.4 million tons of CO and 531,000 tons of hydrocarbons, 3.7 million tons of nitrogen oxides, and 102,000 tons of particulate matter in 20 years.Keywords: locomotives, emission control, air pollution, pollutants emission
Procedia PDF Downloads 554249 A Fast Algorithm for Electromagnetic Compatibility Estimation for Radio Communication Network Equipment in a Complex Electromagnetic Environment
Authors: C. Temaneh-Nyah
Abstract:
Electromagnetic compatibility (EMC) is the ability of a Radio Communication Equipment (RCE) to operate with a desired quality of service in a given Electromagnetic Environment (EME) and not to create harmful interference with other RCE. This paper presents an algorithm which improves the simulation speed of estimating EMC of RCE in a complex EME, based on a stage by stage frequency-energy criterion of filtering. This algorithm considers different interference types including: Blocking and intermodulation. It consist of the following steps: simplified energy criterion where filtration is based on comparing the free space interference level to the industrial noise, frequency criterion which checks whether the interfering emissions characteristic overlap with the receiver’s channels characteristic and lastly the detailed energy criterion where the real channel interference level is compared to the noise level. In each of these stages, some interference cases are filtered out by the relevant criteria. This reduces the total number of dual and different combinations of RCE involved in the tedious detailed energy analysis and thus provides an improved simulation speed.Keywords: electromagnetic compatibility, electromagnetic environment, simulation of communication network
Procedia PDF Downloads 2234248 Reinforcement Learning for Self Driving Racing Car Games
Authors: Adam Beaunoyer, Cory Beaunoyer, Mohammed Elmorsy, Hanan Saleh
Abstract:
This research aims to create a reinforcement learning agent capable of racing in challenging simulated environments with a low collision count. We present a reinforcement learning agent that can navigate challenging tracks using both a Deep Q-Network (DQN) and a Soft Actor-Critic (SAC) method. A challenging track includes curves, jumps, and varying road widths throughout. Using open-source code on Github, the environment used in this research is based on the 1995 racing game WipeOut. The proposed reinforcement learning agent can navigate challenging tracks rapidly while maintaining low racing completion time and collision count. The results show that the SAC model outperforms the DQN model by a large margin. We also propose an alternative multiple-car model that can navigate the track without colliding with other vehicles on the track. The SAC model is the basis for the multiple-car model, where it can complete the laps quicker than the single-car model but has a higher collision rate with the track wall.Keywords: reinforcement learning, soft actor-critic, deep q-network, self-driving cars, artificial intelligence, gaming
Procedia PDF Downloads 534247 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation
Authors: Hamed Alqahtani, Manolya Kavakli-Thorne
Abstract:
The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.Keywords: disentanglement, face detection, generative adversarial networks, video surveillance
Procedia PDF Downloads 1334246 Disaster Management Using Wireless Sensor Networks
Authors: Akila Murali, Prithika Manivel
Abstract:
Disasters are defined as a serious disruption of the functioning of a community or a society, which involves widespread human, material, economic or environmental impacts. The number of people suffering food crisis as a result of natural disasters has tripled in the last thirty years. The economic losses due to natural disasters have shown an increase with a factor of eight over the past four decades, caused by the increased vulnerability of the global society, and also due to an increase in the number of weather-related disasters. Efficient disaster detection and alerting systems could reduce the loss of life and properties. In the event of a disaster, another important issue is a good search and rescue system with high levels of precision, timeliness and safety for both the victims and the rescuers. Wireless Sensor Networks technology has the capability of quick capturing, processing, and transmission of critical data in real-time with high resolution. This paper studies the capacity of sensors and a Wireless Sensor Network to collect, collate and analyze valuable and worthwhile data, in an ordered manner to help with disaster management.Keywords: alerting systems, disaster detection, Ad Hoc network, WSN technology
Procedia PDF Downloads 4094245 Internet Usage Behavior on Mobile Phones of the Faculty of Management Science Students at Suan Sunandha Rajabhat University
Authors: Arpapron Phokajang
Abstract:
The objectives of this research were to study the internet usage, including; date, time, description of using service, network service, telephone charge, and to study the internet usage behavior on mobile phones of the Faculty of Management Science students at Suan Sunandha Rajabhat University. The samples consisted of 395 students from the Faculty of Management Science. Questionnaires were used for collecting the data. Descriptive statistics used in this research including percentage, mean, and standard deviation. The findings of this research found that most respondents were female, aged between 21 and 25 years old, used the monthly AIS network service calls on Monday to Friday around 6.01-12.00 p.m., the internet usage behavior on mobile phones for entertainment was found in the highest level in all aspects, and education, business and commerce, and communication were found in the moderate level and using the internet to watch YouTube in the highest level also.Keywords: faculty of management science, internet usage behavior, mobile phones, Suan Sunandha Rajabhat University
Procedia PDF Downloads 241