Search results for: learning attitudes
6452 Machine Learning Methods for Network Intrusion Detection
Authors: Mouhammad Alkasassbeh, Mohammad Almseidin
Abstract:
Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE. Procedia PDF Downloads 2356451 Fuzzy-Machine Learning Models for the Prediction of Fire Outbreak: A Comparative Analysis
Authors: Uduak Umoh, Imo Eyoh, Emmauel Nyoho
Abstract:
This paper compares fuzzy-machine learning algorithms such as Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) for the predicting cases of fire outbreak. The paper uses the fire outbreak dataset with three features (Temperature, Smoke, and Flame). The data is pre-processed using Interval Type-2 Fuzzy Logic (IT2FL) algorithm. Min-Max Normalization and Principal Component Analysis (PCA) are used to predict feature labels in the dataset, normalize the dataset, and select relevant features respectively. The output of the pre-processing is a dataset with two principal components (PC1 and PC2). The pre-processed dataset is then used in the training of the aforementioned machine learning models. K-fold (with K=10) cross-validation method is used to evaluate the performance of the models using the matrices – ROC (Receiver Operating Curve), Specificity, and Sensitivity. The model is also tested with 20% of the dataset. The validation result shows KNN is the better model for fire outbreak detection with an ROC value of 0.99878, followed by SVM with an ROC value of 0.99753.Keywords: Machine Learning Algorithms , Interval Type-2 Fuzzy Logic, Fire Outbreak, Support Vector Machine, K-Nearest Neighbour, Principal Component Analysis
Procedia PDF Downloads 1826450 Negative Perceptions of Ageing Predicts Greater Dysfunctional Sleep Related Cognition Among Adults Aged 60+
Authors: Serena Salvi
Abstract:
Ageistic stereotypes and practices have become a normal and therefore pervasive phenomenon in various aspects of everyday life. Over the past years, renewed awareness towards self-directed age stereotyping in older adults has given rise to a line of research focused on the potential role of attitudes towards ageing on seniors’ health and functioning. This set of studies has showed how a negative internalisation of ageistic stereotypes would discourage older adults in seeking medical advice, in addition to be associated to negative subjective health evaluation. An important dimension of mental health that is often affected in older adults is represented by sleep quality. Self-reported sleep quality among older adults has shown to be often unreliable when compared to their objective sleep measures. Investigations focused on self-reported sleep quality among older adults have suggested how this portion of the population would tend to accept disrupted sleep if believed to be up to standard for their age. On the other hand, unrealistic expectations, and dysfunctional beliefs towards sleep in ageing, might prompt older adults to report sleep disruption even in the absence of objective disrupted sleep. Objective of this study is to examine an association between personal attitudes towards ageing in adults aged 60+ and dysfunctional sleep related cognition. More in detail, this study aims to investigate a potential association between personal attitudes towards ageing, sleep locus of control and dysfunctional beliefs towards sleep among this portion of the population. Data in this study were statistically analysed in SPSS software. Participants were recruited through the online participants recruitment system Prolific. Inclusion of attention check questions throughout the questionnaire and consistency of responses were looked at. Prior to the commencement of this study, Ethical Approval was granted (ref. 39396). Descriptive statistics were used to determine the frequency, mean, and SDs of the variables. Pearson coefficient was used for interval variables, independent T-test for comparing means between two independent groups, analysis of variance (ANOVA) test for comparing the means in several independent groups, and hierarchical linear regression models for predicting criterion variables based on predictor variables. In this study self-perceptions of ageing were assessed using APQ-B’s subscales, while dysfunctional sleep related cognition was operationalised using the SLOC and the DBAS16 scales. Of the final subscales taken in consideration in the brief version of the APQ questionnaire, Emotional Representations (ER), Control Positive (PC) and Control and Consequences Negative (NC) have shown to be of particularly relevance for the remits of this study. Regression analysis show how an increase in the APQ-B subscale Emotional Representations (ER) predicts an increase in dysfunctional beliefs and attitudes towards sleep in this sample, after controlling for subjective sleep quality, level of depression and chronological age. A second regression analysis showed that APQ-B subscales Control Positive (PC) and Control and Consequences Negative (NC) were significant predictors in the change of variance of SLOC, after controlling for subjective sleep quality, level of depression and dysfunctional beliefs about sleep.Keywords: sleep-related cognition, perceptions of aging, older adults, sleep quality
Procedia PDF Downloads 1036449 Disruptions to Medical Education during COVID-19: Perceptions and Recommendations from Students at the University of the West, Indies, Jamaica
Authors: Charléa M. Smith, Raiden L. Schodowski, Arletty Pinel
Abstract:
Due to the COVID-19 pandemic, the Faculty of Medical Sciences of The University of the West Indies (UWI) Mona in Kingston, Jamaica, had to rapidly migrate to digital and blended learning. Students in the preclinical stage of the program transitioned to full-time online learning, while students in the clinical stage experienced decreased daily patient contact and the implementation of a blend of online lectures and virtual clinical practice. Such sudden changes were coupled with the institutional pressure of the need to introduce a novel approach to education without much time for preparation, as well as additional strain endured by the faculty, who were overwhelmed by serving as frontline workers. During the period July 20 to August 23, 2021, this study surveyed preclinical and clinical students to capture their experiences with these changes and their recommendations for future use of digital modalities of learning to enhance medical education. It was conducted with a fellow student of the 2021 cohort of the MultiPod mentoring program. A questionnaire was developed and distributed digitally via WhatsApp to all medical students of the UWI Mona campus to assess students’ experiences and perceptions of the advantages, challenges, and impact on individual knowledge proficiencies brought about by the transition to predominantly digital learning environments. 108 students replied, 53.7% preclinical and 46.3% clinical. 67.6% of the total were female and 30.6 % were male; 1.8% did not identify themselves by gender. 67.2% of preclinical students preferred blended learning and 60.3% considered that the content presented did not prepare them for clinical work. Only 31% considered that the online classes were interactive and encouraged student participation. 84.5% missed socialization with classmates and friends and 79.3% missed a focused environment for learning. 80% of the clinical students felt that they had not learned all that they expected and only 34% had virtual interaction with patients, mostly by telephone and video calls. Observing direct consultations was considered the most useful, yet this was the least-used modality. 96% of the preclinical students and 100% of the clinical ones supplemented their learning with additional online tools. The main recommendations from the survey are the use of interactive teaching strategies, more discussion time with lecturers, and increased virtual interactions with patients. Universities are returning to face-to-face learning, yet it is unlikely that blended education will disappear. This study demonstrates that students’ perceptions of their experience during mobility restrictions must be taken into consideration in creating more effective, inclusive, and efficient blended learning opportunities.Keywords: blended learning, digital learning, medical education, student perceptions
Procedia PDF Downloads 1666448 Information and Communication Technology Learning between Parents and High School Students
Authors: Yu-Mei Tseng, Chih-Chun Wu
Abstract:
As information and communication technology (ICT) has become a part of people’s lives, most teenagers born after the 1980s and grew up in internet generation are called digital natives. Meanwhile, those teenagers’ parents are called digital immigrants. They need to keep learning new skills of ICT. This study investigated that high school students helped their parents set up social network services (SNS) and taught them how to use ICT. This study applied paper and pencil anonymous questionnaires that asked the ICT learning and ICT products using in high school students’ parents. The sample size was 2,621 high school students, including 1,360 (51.9%) males and 1,261 (48.1%) females. The sample was from 12 high school and vocational high school in central Taiwan. Results from paired sample t-tests demonstrated regardless genders, both male and female high school students help mothers set up Facebook and LINE more often than fathers. In addition, both male and female high school students taught mothers to use ICT more often than fathers. Meanwhile, both male and female high school students teach mothers to use SNS more often than fathers. The results showed that intergenerational ICT teaching occurred more often between mothers and her children than fathers. It could imply that mothers play a more important role in family ICT learning than fathers, or it could be that mothers need more help regarding ICT than fathers. As for gender differences, results from the independent t-tests showed that female high school students were more likely than male ones to help their parents setup Facebook and LINE. In addition, compared to male high school students, female ones were more likely to teach their parents to use smartphone, Facebook and LINE. However, no gender differences were detected in teaching mothers. The gender differences results suggested that female teenagers offer more helps to their parents regarding ICT learning than their male counterparts. As for area differences, results from the independent t-tests showed that the high school in remote area students were more likely than metropolitan ones to teach parents to use computer, search engine and download files of audio and video. The area differences results might indicate that remote area students were more likely to teach their parents how to use ICT. The results from this study encourage children to help and teach their parents with ICT products.Keywords: adult ICT learning, family ICT learning, ICT learning, urban-rural gap
Procedia PDF Downloads 1776447 Education for Sustainability: Implementing a Place-Based Watershed Science Course for High School Students
Authors: Dina L. DiSantis
Abstract:
Development and implementation of a place-based watershed science course for high school students will prove to be a valuable experience for both student and teacher. By having students study and assess the watershed dynamics of a local stream, they will better understand how human activities affect this valuable resource. It is important that students gain tangible skills that will help them to have an understanding of water quality analysis and the importance of preserving our Earth's water systems. Having students participate in real world practices is the optimal learning environment and can offer students a genuine learning experience, by cultivating a knowledge of place, while promoting education for sustainability. Additionally, developing a watershed science course for high school students will give them a hands-on approach to studying science; which is both beneficial and more satisfying to students. When students conduct their own research, collect and analyze data, they will be intimately involved in addressing water quality issues and solving critical water quality problems. By providing students with activities that take place outside the confines of the indoor classroom, you give them the opportunity to gain an appreciation of the natural world. Placed-based learning provides students with problem-solving skills in everyday situations while enhancing skills of inquiry. An overview of a place-based watershed science course and its impact on student learning will be presented.Keywords: education for sustainability, place-based learning, watershed science, water quality
Procedia PDF Downloads 1546446 Curriculum Development in South African Higher Education Institutions: Key Considerations
Authors: Cosmas Maphosa, Ndileleni P. Mudzielwana, Lufuno Netshifhefhe
Abstract:
Core business in a university centers on a curriculum. Teaching, learning, assessment and university products all have a bearing on the curriculum. In this discussion paper, the researchers engage in theoretical underpinnings of curriculum development in universities in South Africa. The paper is hinged on the realization that meaningful curriculum development is only possible if academic staff member has a thorough understanding of curriculum, curriculum design principles, and processes. Such understanding should be informed by theory. In this paper, the researchers consider curriculum, curriculum orientations, and the role of learning outcomes in curriculum development. Important and key considerations in module/course design are discussed and relevant examples given. The issue of alignment, as an important aspect of module/course design, is also explained and exemplified. Conclusions and recommendations are made.Keywords: curriculum, curriculum development, knowledge, graduate attributes, competencies, teaching and learning
Procedia PDF Downloads 3866445 Developing a Hybrid Method to Diagnose and Predict Sports Related Concussions with Machine Learning
Authors: Melody Yin
Abstract:
Concussions impact a large amount of adolescents; they make up as much as half of the diagnosed concussions in America. This research proposes a hybrid machine learning model based on the combination of human/knowledge-based domains and computer-generated feature rankings to improve the accuracy of diagnosing sports related concussion (SRC). Using a data set of symptoms collected on the sideline post-SRC events, the symptom selection criteria method has been developed by using Google AutoML's important score function to identify the top 10 symptom features. In addition, symptom domains have been introduced as another parameter, categorizing the symptoms into physical, cognitive, sleep, and emotional domains. The hybrid machine learning model has been trained with a combination of the top 10 symptoms and 4 domains. From the results, the hybrid model was the best performer for symptom resolution time prediction in 2 and 4-week thresholds. This research is a proof of concept study in the use of domains along with machine learning in order to improve concussion prediction accuracy. It is also possible that the use of domains can make the model more efficient due to reduced training time. This research examines the use of a hybrid method in predicting sports-related concussion. This achievement is based on data preprocessing, using a hybrid method to select criteria to achieve high performance.Keywords: hybrid model, machine learning, sports related concussion, symptom resolution time
Procedia PDF Downloads 1686444 Becoming Vegan: The Theory of Planned Behavior and the Moderating Effect of Gender
Authors: Estela Díaz
Abstract:
This article aims to make three contributions. First, build on the literature on ethical decision-making literature by exploring factors that influence the intention of adopting veganism. Second, study the superiority of extended models of the Theory of Planned Behavior (TPB) for understanding the process involved in forming the intention of adopting veganism. Third, analyze the moderating effect of gender on TPB given that attitudes and behavior towards animals are gender-sensitive. No study, to our knowledge, has examined these questions. Veganism is not a diet but a political and moral stand that exclude, for moral reasons, the use of animals. Although there is a growing interest in studying veganism, it continues being overlooked in empirical research, especially within the domain of social psychology. TPB has been widely used to study a broad range of human behaviors, including moral issues. Nonetheless, TPB has rarely been applied to examine ethical decisions about animals and, even less, to veganism. Hence, the validity of TPB in predicting the intention of adopting veganism remains unanswered. A total of 476 non-vegan Spanish university students (55.6% female; the mean age was 23.26 years, SD= 6.1) responded to online and pencil-and-paper self-reported questionnaire based on previous studies. TPB extended models incorporated two background factors: ‘general attitudes towards humanlike-attributes ascribed to animals’ (AHA) (capacity for reason/emotions/suffer, moral consideration, and affect-towards-animals); and ‘general attitudes towards 11 uses of animals’ (AUA). SPSS 22 and SmartPLS 3.0 were used for statistical analyses. This study constructed a second-order reflective-formative model and took the multi-group analysis (MGA) approach to study gender effects. Six models of TPB (the standard and five competing) were tested. No a priori hypotheses were formulated. The results gave partial support to TPB. Attitudes (ATTV) (β = .207, p < .001), subjective norms (SNV) (β = .323, p < .001), and perceived control behavior (PCB) (β = .149, p < .001) had a significant direct effect on intentions (INTV). This model accounted for 27,9% of the variance in intention (R2Adj = .275) and had a small predictive relevance (Q2 = .261). However, findings from this study reveal that contrary to what TPB generally proposes, the effect of the background factors on intentions was not fully mediated by the proximal constructs of intentions. For instance, in the final model (Model#6), both factors had significant multiple indirect effect on INTV (β = .074, 95% C = .030, .126 [AHA:INTV]; β = .101, 95% C = .055, .155 [AUA:INTV]) and significant direct effect on INTV (β = .175, p < .001 [AHA:INTV]; β = .100, p = .003 [AUA:INTV]). Furthermore, the addition of direct paths from background factors to intentions improved the explained variance in intention (R2 = .324; R2Adj = .317) and the predictive relevance (Q2 = .300) over the base-model. This supports existing literature on the superiority of enhanced TPB models to predict ethical issues; which suggests that moral behavior may add additional complexity to decision-making. Regarding gender effect, MGA showed that gender only moderated the influence of AHA on ATTV (e.g., βWomen−βMen = .296, p < .001 [Model #6]). However, other observed gender differences (e.g. the explained variance of the model for intentions were always higher for men that for women, for instance, R2Women = .298; R2Men = .394 [Model #6]) deserve further considerations, especially for developing more effective communication strategies.Keywords: veganism, Theory of Planned Behavior, background factors, gender moderation
Procedia PDF Downloads 3486443 Internationalization and Multilingualism in Brazil: Possibilities of Content and Language Integrated Learning and Intercomprehension Approaches
Authors: Kyria Rebeca Finardi
Abstract:
The study discusses the role of foreign languages in general and of English in particular in the process of internationalization of higher education (IHE), defined as the intentional integration of an international, intercultural or global dimension in the purpose, function or offer of higher education. The study is bibliographical and offers a brief outline of the current political, economic and educational scenarios in Brazil, before discussing some possibilities and challenges for the development of multilingualism and IHE there. The theoretical background includes a review of Brazilian language and internationalization policies. The review and discussion concludes that the use of the Content and Language Integrated Learning (CLIL) approach and the Intercomprehension approach to foreign language teaching/learning are relevant alternatives to foster multilingualism in that context.Keywords: Brazil, higher education, internationalization, multilingualism
Procedia PDF Downloads 1556442 The Engagement of Students with Learning Disabilities in Regular Public Primary School in Indonesia
Authors: Costrie Ganes Widayanti
Abstract:
Learning Disabilities (LDs) are less understood by the Indonesia’s educational practitioners. As a result, students with LDs are at risk of being outcast from the learning process that requires participation, which potentially disconnects them academically and socially. Its objective is to raise the voice of students with LDs regarding their engagement in the classroom. This research is conducted in two urban regular public primary schools in Indonesia. The study uses an ethnographic case study research design, which explores the views and experiences of four (4) students with LDs. The data were collected using participant observations and interviews. The preliminary findings highlighted two areas: 1) the stigmatization about LDs; and 2) perceived membership. Having LDs was a barrier to fully engage in the academic and social life. Interestingly, they were more likely dependent on each other for support as limited assistance was offered by teachers and peers. Their peers did not take a keen interest in helping them when they found difficulties with the assignments. Furthermore, due to their low academic performance, they were not in favor of being nominated as a group member. In a situation that required them to do a group assignment, they were not expected to give a contribution, positioning themselves as incompatible. These findings indicated that such practices legitimate the hegemony of the superior over those who are powerless and left behind.Keywords: engagement, experiences, learning disability, qualitative design
Procedia PDF Downloads 1276441 Development of a Distance Training Package on Production of Handbook and Report Writing for Innovative Learning and Teaching for Vocational Teachers of Office of the Vocational Education Commission
Authors: Petchpong Mayukhachot
Abstract:
The purposes of this research were (1) to develop a distance training package on topic of Production of Handbook and Report writing for innovative learning and teaching for Vocational Teachers of Office of The Vocational Education Commission; (2) to study the effects of using the distance training package on topic Production of Handbook and Report writing for innovative learning and teaching for Vocational Teachers of Office of The Vocational Education Commission. and (3) to study the samples’ opinion on the distance training package on topic Production of Handbook and Report writing for innovative learning and teaching for Vocational Teachers of Office of The Vocational Education Commission Research and Development was used in this research. The purposive sampling group of this research was 39 Vocational Teachers of Office of The Vocational Education Commission. Instruments were; (1) the distance training package, (2) achievement tests on understanding of Production of Handbook and Report writing for innovative learning and teaching and learning activities to develop practical skills, and (3) a questionnaire for sample’s opinion on the distance training package. Percent, Mean, Standard Deviation, the E1/E2 efficiency index and t-test were used for data analysis. The findings of the research were as follows: (1) The efficiency of the distance training package was established as 80.90 / 81.90. The distance training package composed of the distance training package document and a manual for the distance training package. The distance training package document consisted of the name of the distance training package, direction for studying the distance training package, content’s structure, concepts, objectives, and activities after studying the distance training package. The manual for the distance training package consisted of the explanation of the distance training package and objectives, direction for using the distance training package, training schedule, documents as a manual of speech, and evaluations. (2) The effects of using the distance training package on topic Production of Handbook and Report writing for innovative learning and teaching for Vocational Teachers of Office of The Vocational Education Commission were the posttest average scores of achievement on understanding of Technology and Occupations teaching for development of critical thinking of the sample group were higher than the pretest average scores. (3) The most appropriate of trainees’ opinion were contents of the distance training package is beneficial to performance. That can be utilized in Teaching or operations. Due to the content of the two units is consistent and activities assigned to the appropriate content.Keywords: distance training package, handbook writing for innovative learning, teaching report writing for innovative learning, teaching
Procedia PDF Downloads 4356440 Simulation-Based Learning: Cases at Slovak University of Technology, at Faculty of Materials Science and Technology
Authors: Gabriela Chmelikova, Ludmila Hurajova, Pavol Bozek
Abstract:
Current era has brought hand in hand with the vast and fast development of technologies enormous pressure on individuals to keep being well - oriented in their professional fields. Almost all projects in the real world require an interdisciplinary perspective. These days we notice some cases when students face that real requirements for jobs are in contrast to the knowledge and competences they gained at universities. Interlacing labor market and university programs is a big issue these days. Sometimes it seems that higher education only “chases” reality. Simulation-based learning can support students’ touch with real demand on competences and knowledge of job world. The contribution provided a descriptive study of some cases of simulation-based teaching environment in different courses at STU MTF in Trnava and discussed how students and teachers perceive this model of teaching-learning approach. Finally, some recommendations are proposed how to enhance closer relationship between academic world and labor market.Keywords: interdisciplinary approach, simulation-based learning, students' job readiness, teaching environment in higher education
Procedia PDF Downloads 2736439 Machine Learning Data Architecture
Authors: Neerav Kumar, Naumaan Nayyar, Sharath Kashyap
Abstract:
Most companies see an increase in the adoption of machine learning (ML) applications across internal and external-facing use cases. ML applications vend output either in batch or real-time patterns. A complete batch ML pipeline architecture comprises data sourcing, feature engineering, model training, model deployment, model output vending into a data store for downstream application. Due to unclear role expectations, we have observed that scientists specializing in building and optimizing models are investing significant efforts into building the other components of the architecture, which we do not believe is the best use of scientists’ bandwidth. We propose a system architecture created using AWS services that bring industry best practices to managing the workflow and simplifies the process of model deployment and end-to-end data integration for an ML application. This narrows down the scope of scientists’ work to model building and refinement while specialized data engineers take over the deployment, pipeline orchestration, data quality, data permission system, etc. The pipeline infrastructure is built and deployed as code (using terraform, cdk, cloudformation, etc.) which makes it easy to replicate and/or extend the architecture to other models that are used in an organization.Keywords: data pipeline, machine learning, AWS, architecture, batch machine learning
Procedia PDF Downloads 646438 Efficient Subgoal Discovery for Hierarchical Reinforcement Learning Using Local Computations
Authors: Adrian Millea
Abstract:
In hierarchical reinforcement learning, one of the main issues encountered is the discovery of subgoal states or options (which are policies reaching subgoal states) by partitioning the environment in a meaningful way. This partitioning usually requires an expensive global clustering operation or eigendecomposition of the Laplacian of the states graph. We propose a local solution to this issue, much more efficient than algorithms using global information, which successfully discovers subgoal states by computing a simple function, which we call heterogeneity for each state as a function of its neighbors. Moreover, we construct a value function using the difference in heterogeneity from one step to the next, as reward, such that we are able to explore the state space much more efficiently than say epsilon-greedy. The same principle can then be applied to higher level of the hierarchy, where now states are subgoals discovered at the level below.Keywords: exploration, hierarchical reinforcement learning, locality, options, value functions
Procedia PDF Downloads 1716437 Effects of Exhibition Firms' Resource Investment Behavior on Their Booth Staffs' Role Perceptions, Goal Acceptance and Work Effort during the Exhibition Period
Authors: Po-Chien Li
Abstract:
Despite the extant literature has hosted a wide-range of knowledge about trade shows, this knowledge base deserves to be further expanded and extended because there exist many unclear issues and overlooked topics. One area that needs much research attention is regarding the behavior and performance of booth workers at the exhibition site. Booth staffs play many key roles in interacting with booth visitors. Their exhibiting-related attitudes and motivations might have significant consequences on a firm’s exhibition results. However, to date, little research, if any, has studied how booth workers are affected and behave in the context of trade fair. The primary purpose of the current study is to develop and test a research model, derived from role theory and resource-based viewpoint, that depicts the effects of a firm’s pre-exhibition resource investment behavior on booth staff’s role perceptions and work behavior during the exhibition period. The author collects data with two survey questionnaires at two trade shows in 2016. One questionnaire is given to the booth head of an exhibiting company, asking about the firm’s resource commitment behavior prior to the exhibition period. In contrast, another questionnaire is provided for a booth worker of the same firm, requesting the individual staff to report his/her own role perceptions, degree of exhibition goal acceptance, and level of work effort during the exhibition period. The study has utilized the following analytic methods, including descriptive statistics, exploratory factor analysis, reliability analysis, and regression analysis. The results of a set of regression analyses show that a firm’s pre-exhibition resource investment behavior has significant effects on a booth staff’s exhibiting perceptions and attitudes. Specifically, an exhibitor’s resource investment behavior has impacts on the factors of booth staff’s role clarity and role conflict. In addition, a booth worker’s role clarity is related to the degree of exhibition goal acceptance, but his/her role conflict is not. Finally, a booth worker’s exhibiting effort is significantly related to the individual’s role clarity, role conflict and goal acceptance. In general, the major contribution of the current research is that it offers insight into and early evidence on the links between an exhibiting firm’s resource commitment behavior and the work perceptions and attitudes of booth staffs during the exhibition period. The current research’s results can benefit the extant literature of exhibition marketing.Keywords: exhibition resource investment, role perceptions, goal acceptance, work effort
Procedia PDF Downloads 2176436 Machine Learning for Classifying Risks of Death and Length of Stay of Patients in Intensive Unit Care Beds
Authors: Itamir de Morais Barroca Filho, Cephas A. S. Barreto, Ramon Malaquias, Cezar Miranda Paula de Souza, Arthur Costa Gorgônio, João C. Xavier-Júnior, Mateus Firmino, Fellipe Matheus Costa Barbosa
Abstract:
Information and Communication Technologies (ICT) in healthcare are crucial for efficiently delivering medical healthcare services to patients. These ICTs are also known as e-health and comprise technologies such as electronic record systems, telemedicine systems, and personalized devices for diagnosis. The focus of e-health is to improve the quality of health information, strengthen national health systems, and ensure accessible, high-quality health care for all. All the data gathered by these technologies make it possible to help clinical staff with automated decisions using machine learning. In this context, we collected patient data, such as heart rate, oxygen saturation (SpO2), blood pressure, respiration, and others. With this data, we were able to develop machine learning models for patients’ risk of death and estimate the length of stay in ICU beds. Thus, this paper presents the methodology for applying machine learning techniques to develop these models. As a result, although we implemented these models on an IoT healthcare platform, helping clinical staff in healthcare in an ICU, it is essential to create a robust clinical validation process and monitoring of the proposed models.Keywords: ICT, e-health, machine learning, ICU, healthcare
Procedia PDF Downloads 1106435 Neuropsychology of Social Awareness: A Research Study Applied to University Students in Greece
Authors: Argyris Karapetsas, Maria Bampou, Andriani Mitropoulou
Abstract:
The aim of the present work is to study the role of brain function in social awareness processing. Mind controls all the psychosomatic functions. Mind’s functioning enables individual not only to recognize one's own self and propositional attitudes, but also to assign such attitudes to other individuals, and to consider such observed mental states in the elucidation of behavior. Participants and Methods: Twenty (n=20) undergraduate students (mean age 18 years old) were involved in this study. Students participated in a clinical assessment, being conducted in Laboratory of Neuropsychology, at University of Thessaly, in Volos, Greece. Assessment included both electrophysiological (i.e.Event Related Potentials (ERPs) esp.P300 waveform) and neuropsychological tests (Raven's Progressive Matrices (RPM) and Sally-Anne test). Results: Initial assessment’s results confirmed statistically significant differences between the males and females, as well as in score performance to the tests applied. Strong correlations emerged between prefrontal lobe functioning, RPM, Sally-Anne test and P300 latencies. Also, significant dysfunction of mind has been found, regarding its three dimensions (straight, circular and helical). At the end of the assessment, students received consultation and appropriate guidelines in order to improve their intrapersonal and interpersonal skills. Conclusions: Mind and social awareness phenomena play a vital role in human development and may act as determinants of the quality of one’s own life. Meanwhile, brain function is highly correlated with social awareness and it seems that different set of brain structures are involved in social behavior.Keywords: brain activity, emotions, ERP's, social awareness
Procedia PDF Downloads 1936434 Changing Misconceptions in Heat Transfer: A Problem Based Learning Approach for Engineering Students
Authors: Paola Utreras, Yazmina Olmos, Loreto Sanhueza
Abstract:
This work has the purpose of study and incorporate Problem Based Learning (PBL) for engineering students, through the analysis of several thermal images of dwellings located in different geographical points of the Region de los Ríos, Chile. The students analyze how heat is transferred in and out of the houses and how is the relation between heat transfer and climatic conditions that affect each zone. As a result of this activity students are able to acquire significant learning in the unit of heat and temperature, and manage to reverse previous conceptual errors related with energy, temperature and heat. In addition, student are able to generate prototype solutions to increase thermal efficiency using low cost materials. Students make public their results in a report using scientific writing standards and in a science fair open to the entire university community. The methodology used to measure previous Conceptual Errors has been applying diagnostic tests with everyday questions that involve concepts of heat, temperature, work and energy, before the unit. After the unit the same evaluation is done in order that themselves are able to evidence the evolution in the construction of knowledge. As a result, we found that in the initial test, 90% of the students showed deficiencies in the concepts previously mentioned, and in the subsequent test 47% showed deficiencies, these percent ages differ between students who carry out the course for the first time and those who have performed this course previously in a traditional way. The methodology used to measure Significant Learning has been by comparing results in subsequent courses of thermodynamics among students who have received problem based learning and those who have received traditional training. We have observe that learning becomes meaningful when applied to the daily lives of students promoting internalization of knowledge and understanding through critical thinking.Keywords: engineering students, heat flow, problem-based learning, thermal images
Procedia PDF Downloads 2326433 A Study of Taiwanese Students' Language Use in the Primary International Education via Video Conferencing Course
Authors: Chialing Chang
Abstract:
Language and culture are critical foundations of international mobility. However, the students who are limited to the local environment may affect their learning outcome and global perspective. Video Conferencing has been proven an economical way for students as a medium to communicate with international students around the world. In Taiwan, the National Development Commission advocated the development of bilingual national policies in 2030 to enhance national competitiveness and foster English proficiency and fully launched bilingual activation of the education system. Globalization is closely related to the development of Taiwan's education. Therefore, the teacher conducted an integrated lesson through interdisciplinary learning. This study aims to investigate how the teacher helps develop students' global and language core competencies in the international education class. The methodology comprises four stages, which are lesson planning, class observation, learning data collection, and speech analysis. The Grice's Conversational Maxims are adopted to analyze the students' conversation in the video conferencing course. It is the action research from the teacher's reflection on approaches to developing students' language learning skills. The study lays the foundation for mastering the teacher's international education professional development and improving teachers' teaching quality and teaching effectiveness as a reference for teachers' future instruction.Keywords: international education, language learning, Grice's conversational maxims, video conferencing course
Procedia PDF Downloads 1226432 Autonomy in Teaching and Learning Subject-Specific Academic Literacy
Authors: Maureen Lilian Klos
Abstract:
In this paper, the notion of autonomy in language teaching and learning is explored with a view to designing particular subject-specific academic literacy at higher education level, for mostly English second or third language learners at the Nelson Mandela University, Port Elizabeth, South Africa. These courses that are contextualized in subject-specific fields studied by students in Arts, Education and Social Science Faculties aim to facilitate learners in the manipulation of cognitively demanding academic texts. However, classroom contact time for these courses is limited to one ninety sessions per week. Thus, learners need to be autonomously responsible for developing their own skills when manipulating and negotiating appropriate academic textual conventions. Thus, a model was designed to allow for gradual learner independence in language learning skills. Learners experience of the model was investigated using the Phenomenological Research Approach. Data in the form of individual written reflections and transcripts of unstructured group interviews were analyzed for themes and sub-themes. These findings are discussed in the article with a view to addressing the practical concerns of the learners in this case study.Keywords: academic literacies, autonomy, language learning and teaching, subject-specific language
Procedia PDF Downloads 2596431 Mayan Culture and Attitudes towards Sustainability
Authors: Sarah Ryu
Abstract:
Agricultural methods and ecological approaches employed by the pre-colonial Mayans may provide valuable insights into forest management and viable alternatives for resource sustainability in the face of major deforestation across Central and South America.Using a combination of observation data collected from the modern indigenous inhabitants near Mixco in Guatemala and historical data, this study was able to create a holistic picture of how the Maya maintained their ecosystems. Surveys and observations were conducted in the field, over a period of twelve weeks across two years. Geographic and archaeological data for this area was provided by Guatemalan organizations such as the Universidad de San Carlos de Guatemala. Observations of current indigenous populations around Mixco showed that they adhered to traditional Mayan methods of agriculture, such as terrace construction and arboriculture. Rather than planting one cash crop as was done by the Spanish, indigenous peoples practice agroforestry, cultivating forests that would provide trees for construction material, wild plant foods, habitat for game, and medicinal herbs. The emphasis on biodiversity prevented deforestation and created a sustainable balance between human consumption and forest regrowth. Historical data provided by MayaSim showed that the Mayans successfully maintained their ecosystems from about 800BCE to 700CE. When the Mayans practiced natural resource conservation and cultivated a harmonious relationship with the forest around them, they were able to thrive and prosper alongside nature. Having lasted over a thousand years, the Mayan empire provides a valuable lesson in sustainability and human attitudes towards the environment.Keywords: biodiversity, forestry, mayan, sustainability
Procedia PDF Downloads 1776430 An Adaptive Conversational AI Approach for Self-Learning
Authors: Airy Huang, Fuji Foo, Aries Prasetya Wibowo
Abstract:
In recent years, the focus of Natural Language Processing (NLP) development has been gradually shifting from the semantics-based approach to deep learning one, which performs faster with fewer resources. Although it performs well in many applications, the deep learning approach, due to the lack of semantics understanding, has difficulties in noticing and expressing a novel business case with a pre-defined scope. In order to meet the requirements of specific robotic services, deep learning approach is very labor-intensive and time consuming. It is very difficult to improve the capabilities of conversational AI in a short time, and it is even more difficult to self-learn from experiences to deliver the same service in a better way. In this paper, we present an adaptive conversational AI algorithm that combines both semantic knowledge and deep learning to address this issue by learning new business cases through conversations. After self-learning from experience, the robot adapts to the business cases originally out of scope. The idea is to build new or extended robotic services in a systematic and fast-training manner with self-configured programs and constructed dialog flows. For every cycle in which a chat bot (conversational AI) delivers a given set of business cases, it is trapped to self-measure its performance and rethink every unknown dialog flows to improve the service by retraining with those new business cases. If the training process reaches a bottleneck and incurs some difficulties, human personnel will be informed of further instructions. He or she may retrain the chat bot with newly configured programs, or new dialog flows for new services. One approach employs semantics analysis to learn the dialogues for new business cases and then establish the necessary ontology for the new service. With the newly learned programs, it completes the understanding of the reaction behavior and finally uses dialog flows to connect all the understanding results and programs, achieving the goal of self-learning process. We have developed a chat bot service mounted on a kiosk, with a camera for facial recognition and a directional microphone array for voice capture. The chat bot serves as a concierge with polite conversation for visitors. As a proof of concept. We have demonstrated to complete 90% of reception services with limited self-learning capability.Keywords: conversational AI, chatbot, dialog management, semantic analysis
Procedia PDF Downloads 1366429 Parkinson’s Disease Detection Analysis through Machine Learning Approaches
Authors: Muhtasim Shafi Kader, Fizar Ahmed, Annesha Acharjee
Abstract:
Machine learning and data mining are crucial in health care, as well as medical information and detection. Machine learning approaches are now being utilized to improve awareness of a variety of critical health issues, including diabetes detection, neuron cell tumor diagnosis, COVID 19 identification, and so on. Parkinson’s disease is basically a disease for our senior citizens in Bangladesh. Parkinson's Disease indications often seem progressive and get worst with time. People got affected trouble walking and communicating with the condition advances. Patients can also have psychological and social vagaries, nap problems, hopelessness, reminiscence loss, and weariness. Parkinson's disease can happen in both men and women. Though men are affected by the illness at a proportion that is around partial of them are women. In this research, we have to get out the accurate ML algorithm to find out the disease with a predictable dataset and the model of the following machine learning classifiers. Therefore, nine ML classifiers are secondhand to portion study to use machine learning approaches like as follows, Naive Bayes, Adaptive Boosting, Bagging Classifier, Decision Tree Classifier, Random Forest classifier, XBG Classifier, K Nearest Neighbor Classifier, Support Vector Machine Classifier, and Gradient Boosting Classifier are used.Keywords: naive bayes, adaptive boosting, bagging classifier, decision tree classifier, random forest classifier, XBG classifier, k nearest neighbor classifier, support vector classifier, gradient boosting classifier
Procedia PDF Downloads 1296428 Diversity: Understanding Multicultural Concerns in Counseling
Authors: Zuwaira Abdullahi
Abstract:
In this increasing changing world, it is important to be aware of the needs of clients when it comes to race and ethnic diversities. These diversities create difficulties for multicultural counselling: the counsellor’s own culture, attitudes, and theoretical perspective; the client's culture; and the multiplicity of variables comprising an individual's identity. This paper examines the level of realization, sensitization and attitude of counsellors towards individuals that come from different cultural, social and economic background.Keywords: multicultural, diversities, counselling, needs
Procedia PDF Downloads 4186427 Training of Future Computer Science Teachers Based on Machine Learning Methods
Authors: Meruert Serik, Nassipzhan Duisegaliyeva, Danara Tleumagambetova
Abstract:
The article highlights and describes the characteristic features of real-time face detection in images and videos using machine learning algorithms. Students of educational programs reviewed the research work "6B01511-Computer Science", "7M01511-Computer Science", "7M01525- STEM Education," and "8D01511-Computer Science" of Eurasian National University named after L.N. Gumilyov. As a result, the advantages and disadvantages of Haar Cascade (Haar Cascade OpenCV), HoG SVM (Histogram of Oriented Gradients, Support Vector Machine), and MMOD CNN Dlib (Max-Margin Object Detection, convolutional neural network) detectors used for face detection were determined. Dlib is a general-purpose cross-platform software library written in the programming language C++. It includes detectors used for determining face detection. The Cascade OpenCV algorithm is efficient for fast face detection. The considered work forms the basis for the development of machine learning methods by future computer science teachers.Keywords: algorithm, artificial intelligence, education, machine learning
Procedia PDF Downloads 736426 Personal Information Classification Based on Deep Learning in Automatic Form Filling System
Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao
Abstract:
Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.Keywords: artificial intelligence and office, NLP, deep learning, text classification
Procedia PDF Downloads 2006425 Integrating Practice-Based Learning in Accounting Education: Bolstering Students Engagement and Learning
Authors: Humayun Murshed, Shibly Abdullah
Abstract:
This paper focuses on sharing experience gained through a pilot project undertaken to teach an introductory accounting subject linking real-life ground realities with the fundamental concepts of accounting. In view of the practical dimensions of Accounting it has been observed that adopting a teaching approach based on practical illustrations help students to motivate and generate interests to take accounting profession as their career. The paper reports that students’ perception about accounting as ‘dreary’ has been changed to ‘interesting’ due to adoption of practice based approach in teaching. The authors argue that ‘concept mapping’ can play a vital role in facilitating practice based education in accounting which promotes a rewarding learning experience among the students. The paper considers taking into account generic skills development, student centric learning, development of innovative assessment tasks, making students aware of the potential benefits of practice based education primarily through concept mapping, and engaging them both inside and outside of the class rooms are critical for ensuring success of this approach.Keywords: accounting education, pedagogy, practice-based education, concept mapping
Procedia PDF Downloads 3446424 Factors Affecting Adequate Utilisation of Ante-natal Health Care Services among Pregnant Women in Dutsin-Ma Local Government Area of Katsina State
Authors: Ilim Moses Msughter
Abstract:
The study was carried out to examine the availability of Ante-natal care services and the socio-cultural factors affecting the utilization of these services in Dutsin-Ma Local Government Area of Katsina State. Four specific objectives were outlined as thus to examine the availability of antenatal care services in Dutsin-Ma local government area, to identify the socio-cultural factors affecting the utilisation of ante-natal care services, to ascertain the challenges affecting utilisation of ante-natal care services and suggest strategies to improve efficiency in ante-natal service delivery and utilisation of same services. Data were collected from 110 respondents using a questionnaire and through the use of the interview. Data were analysed quantitatively and qualitatively. The findings revealed that ante-natal care services are available in the study area, but access to such services is hindered by several factors, which include religious and traditional beliefs, cost of services and poor attitudes of health care workers which has an adverse effect on people’s desire to visit ante-natal centres. The study recommended that Traditional Birth Attendants (TBA) need to be trained on how to handle pregnancy-related complications. It is also recommended that essential ante-natal drugs and services should be subsidised or made free by the government, and this must be closely monitored to ensure efficiency. Finally, human relation training should be organised for nurses and midwives to improve their attitudes towards patients during ante-natal visits.Keywords: utilisation, religion, traditional birth attendant, ante-natal
Procedia PDF Downloads 1666423 Taking Learning beyond Kirkpatrick’s Levels: Applying Return on Investment Measurement in Training
Authors: Charles L. Sigmund, M. A. Aed, Lissa Graciela Rivera Picado
Abstract:
One critical component of the training development process is the evaluation of the impact and value of the program. Oftentimes, however, learning organizations bypass this phase either because they are unfamiliar with effective methods for measuring the success or effect of the training or because they believe the effort to be too time-consuming or cumbersome. As a result, most organizations that do conduct evaluation limit their scope to Kirkpatrick L1 (reaction) and L2 (learning), or at most carry through to L4 (results). In 2021 Microsoft made a strategic decision to assess the measurable and monetized impact for all training launches and designed a scalable and program-agnostic tool for providing full-scale L5 return on investment (ROI) estimates for each. In producing this measurement tool, the learning and development organization built a framework for making business prioritizations and resource allocations that is based on the projected ROI of a course. The analysis and measurement posed by this process use a combination of training data and operational metrics to calculate the effective net benefit derived from a given training effort. Business experts in the learning field generally consider a 10% ROI to be an outstanding demonstration of the value of a project. Initial findings from this work applied to a critical customer-facing program yielded an estimated ROI of more than 49%. This information directed the organization to make a more concerted and concentrated effort in this specific line of business and resulted in additional investment in the training methods and technologies being used.Keywords: evaluation, measurement, return on investment, value
Procedia PDF Downloads 185