Search results for: electric vehicle
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2569

Search results for: electric vehicle

649 Characterization of Shiga Toxin Escherichia coli Recovered from a Beef Processing Facility within Southern Ontario and Comparative Performance of Molecular Diagnostic Platforms

Authors: Jessica C. Bannon, Cleso M. Jordao Jr., Mohammad Melebari, Carlos Leon-Velarde, Roger Johnson, Keith Warriner

Abstract:

There has been an increased incidence of non-O157 Shiga Toxin Escherichia coli (STEC) with six serotypes (Top 6) being implicated in causing haemolytic uremic syndrome (HUS). Beef has been suggested to be a significant vehicle for non-O157 STEC although conclusive evidence has yet to be obtained. The following aimed to determine the prevalence of the Top 6 non-O157 STEC in beef processing using three different diagnostic platforms then characterize the recovered isolates. Hide, carcass and environmental swab samples (n = 60) were collected from a beef processing facility over a 12 month period. Enriched samples were screened using Biocontrol GDS, BAX or PALLgene molecular diagnostic tests. Presumptive non-O157 STEC positive samples were confirmed using conventional PCR and serology. STEC was detected by GDS (55% positive), BAX (85% positive), and PALLgene (93%). However, during confirmation testing only 8 of the 60 samples (13%) were found to harbour STEC. Interestingly, the presence of virulence factors in the recovered isolates was unstable and readily lost during subsequent sub-culturing. There is a low prevalence of Top 6 non-O157 STEC associated with beef although other serotypes are encountered. Yet, the instability of the virulence factors in recovered strains would question their clinical relevance.

Keywords: beef, food microbiology, shiga toxin, STEC

Procedia PDF Downloads 455
648 Study of the Physical Aging of Polyvinyl Chloride (PVC)

Authors: Mohamed Ouazene

Abstract:

The insulating properties of the polymers are widely used in electrical engineering for the production of insulators and various supports, as well as for the insulation of electric cables for medium and high voltage, etc. These polymeric materials have significant advantages both technically and economically. However, although the insulation with polymeric materials has advantages, there are also certain disadvantages such as the influence of the heat which can have a detrimental effect on these materials. Polyvinyl chloride (PVC) is one of the polymers used in a plasticized state in the cable insulation to medium and high voltage. The studied material is polyvinyl chloride (PVC 4000 M) from the Algerian national oil company whose formula is: Industrial PVC 4000 M is in the form of white powder. The test sample is a pastille of 1 mm thick and 1 cm in diameter. The consequences of increasing the temperature of a polymer are modifications; some of them are reversible and others irreversible [1]. The reversible changes do not affect the chemical composition of the polymer, or its structure. They are characterized by transitions and relaxations. The glass transition temperature is an important feature of a polymer. Physical aging of PVC is to maintain the material for a longer or shorter time to its glass transition temperature. The aim of this paper is to study this phenomenon by the method of thermally stimulated depolarization currents. Relaxations within the polymer have been recorded in the form of current peaks. We have found that the intensity decreases for more residence time in the polymer along its glass transition temperature. Furthermore, it is inferred from this work that the phenomenon of physical aging can have important consequences on the properties of the polymer. It leads to a more compact rearrangement of the material and a reconstruction or reinforcement of structural connections.

Keywords: depolarization currents, glass transition temperature, physical aging, polyvinyl chloride (PVC)

Procedia PDF Downloads 383
647 Energy Absorption Characteristic of a Coupler Rubber Buffer Used in Rail Vehicles

Authors: Zhixiang Li, Shuguang Yao, Wen Ma

Abstract:

Coupler rubber buffer has been widely applied on the high-speed trains and the main function of the rubber buffer is dissipating the impact energy between vehicles. The rubber buffer consists of two groups of rubbers, which are both pre-compressed and then installed into the frame body. This paper focuses on the energy absorption characteristics of the rubber buffers particularly. Firstly, the quasi-static compression tests were carried out for 1 and 3 pairs of rubber sheets and some energy absorption responses relationship, i.e. Eabn = n×Eab1, Edissn = n×Ediss1, and Ean = Ea1, were obtained. Next, a series of quasi-static tests were performed for 1 pair of rubber sheet to investigate the energy absorption performance with different compression ratio of the rubber buffers. Then the impact tests with five impact velocities were conducted and the coupler knuckle was destroyed when the impact velocity was 10.807 km/h. The impact tests results showed that with the increase of impact velocity, the Eab, Ediss and Ea of rear buffer increased a lot, but the three responses of front buffer had not much increase. Finally, the results of impact tests and quasi-static tests were contrastively analysed and the results showed that with the increase of the stroke, the values of Eab, Ediss, and Ea were all increase. However, the increasing rates of impact tests were all larger than that of quasi-static tests. The maximum value of Ea was 68.76% in impact tests, it was a relatively high value for vehicle coupler buffer. The energy capacity of the rear buffer was determined for dynamic loading, it was 22.98 kJ.

Keywords: rubber buffer, coupler, energy absorption, impact tests

Procedia PDF Downloads 189
646 Study on the Addition of Solar Generating and Energy Storage Units to a Power Distribution System

Authors: T. Costa, D. Narvaez, K. Melo, M. Villalva

Abstract:

Installation of micro-generators based on renewable energy in power distribution system has increased in recent years, with the main renewable sources being solar and wind. Due to the intermittent nature of renewable energy sources, such micro-generators produce time-varying energy which does not correspond at certain times of the day to the peak energy consumption of end users. For this reason, the use of energy storage units next to the grid contributes to the proper leveling of the buses’ voltage level according to Brazilian energy quality standards. In this work, the effect of the addition of a photovoltaic solar generator and a store of energy in the busbar voltages of an electric system is analyzed. The consumption profile is defined as the average hourly use of appliances in a common residence, and the generation profile is defined as a function of the solar irradiation available in a locality. The power summation method is validated with analytical calculation and is used to calculate the modules and angles of the voltages in the buses of an electrical system based on the IEEE standard, at each hour of the day and with defined load and generation profiles. The results show that bus 5 presents the worst voltage level at the power consumption peaks and stabilizes at the appropriate range with the inclusion of the energy storage during the night time period. Solar generator maintains improvement of the voltage level during the period when it receives solar irradiation, having peaks of production during the 12 pm (without exceeding the appropriate maximum levels of tension).

Keywords: energy storage, power distribution system, solar generator, voltage level

Procedia PDF Downloads 135
645 Design and Development of Power Sources for Plasma Actuators to Control Flow Separation

Authors: Himanshu J. Bahirat, Apoorva S. Janawlekar

Abstract:

Plasma actuators are essential for aerodynamic flow separation control due to their lack of mechanical parts, lightweight, and high response frequency, which have numerous applications in hypersonic or supersonic aircraft. The working of these actuators is based on the formation of a low-temperature plasma between a pair of parallel electrodes by the application of a high-voltage AC signal across the electrodes, after which air molecules from the air surrounding the electrodes are ionized and accelerated through the electric field. The high-frequency operation is required in dielectric discharge barriers to ensure plasma stability. To carry out flow separation control in a hypersonic flow, the optimal design and construction of a power supply to generate dielectric barrier discharges is carried out in this paper. In this paper, it is aspired to construct a simplified circuit topology to emulate the dielectric barrier discharge and study its various frequency responses. The power supply can generate high voltage pulses up to 20kV at the repetitive frequency range of 20-50kHz with an input power of 500W. The power supply has been designed to be short circuit proof and can endure variable plasma load conditions. Its general outline is to charge a capacitor through a half-bridge converter and then later discharge it through a step-up transformer at a high frequency in order to generate high voltage pulses. After simulating the circuit, the PCB design and, eventually, lab tests are carried out to study its effectiveness in controlling flow separation.

Keywords: aircraft propulsion, dielectric barrier discharge, flow separation control, power source

Procedia PDF Downloads 122
644 A Comparative Study Mechanical Properties of Polytetrafluoroethylene Materials Synthesized by Non-Conventional and Conventional Techniques

Authors: H. Lahlali F. El Haouzi, A.M.Al-Baradi, I. El Aboudi, M. El Azhari, A. Mdarhri

Abstract:

Polytetrafluoroethylene (PTFE) is a high performance thermoplastic polymer with exceptional physical and chemical properties, such as a high melting temperature, high thermal stability, and very good chemical resistance. Nevertheless, manufacturing PTFE is problematic due to its high melt viscosity (10 12 Pa.s). In practice, it is by now well established that this property presents a serious problem when the classical methods are used to synthesized the dense PTFE materials in particularly hot pressing, high temperature extrusion. In this framework, we use here a new process namely spark plasma sintering (SPS) to elaborate PTFE samples from the micro metric particles powder. It consists in applying simultaneous electric current and pressure directly on the sample powder. By controlling the processing parameters of this technique, a series of PTFE samples are easy obtained and associated to remarkably short time as is reported in an early work. Our central goal in the present study is to understand how the non conventional SPS affects the mechanical properties at room temperature. For this end, a second commercially series of PTFE synthesized by using the extrusion method is investigated. The first data according to the tensile mechanical properties are found to be superior for the first set samples (SPS). However, this trend is not observed for the results obtained from the compression testing. The observed macro-behaviors are correlated to some physical properties of the two series of samples such as their crystallinity or density. Upon a close examination of these properties, we believe the SPS technique can be seen as a promising way to elaborate the polymer having high molecular mass without compromising their mechanical properties.

Keywords: PTFE, extrusion, Spark Plasma Sintering, physical properties, mechanical behavior

Procedia PDF Downloads 301
643 Triple Intercell Bar for Electrometallurgical Processes: A Design to Increase PV Energy Utilization

Authors: Eduardo P. Wiechmann, Jorge A. Henríquez, Pablo E. Aqueveque, Luis G. Muñoz

Abstract:

PV energy prices are declining rapidly. To take advantage of the benefits of those prices and lower the carbon footprint, operational practices must be modified. Undoubtedly, it challenges the electrowinning practice to operate at constant current throughout the day. This work presents a technology that contributes in providing modulation capacity to the electrode current distribution system. This is to raise the day time dc current and lower it at night. The system is a triple intercell bar that operates in current-source mode. The design is a capping board free dogbone type of bar that ensures an operation free of short circuits, hot swapability repairs and improved current balance. This current-source system eliminates the resetting currents circulating in equipotential bars. Twin auxiliary connectors are added to the main connectors providing secure current paths to bypass faulty or impaired contacts. All system conductive elements are positioned over a baseboard offering a large heat sink area to the ventilation of a facility. The system works with lower temperature than a conventional busbar. Of these attributes, the cathode current balance property stands out and is paramount for day/night modulation and the use of photovoltaic energy. A design based on a 3D finite element method model predicting electric and thermal performance under various industrial scenarios is presented. Preliminary results obtained in an electrowinning facility with industrial prototypes are included.

Keywords: electrowinning, intercell bars, PV energy, current modulation

Procedia PDF Downloads 148
642 Self-Calibration of Fish-Eye Camera for Advanced Driver Assistance Systems

Authors: Atef Alaaeddine Sarraj, Brendan Jackman, Frank Walsh

Abstract:

Tomorrow’s car will be more automated and increasingly connected. Innovative and intuitive interfaces are essential to accompany this functional enrichment. For that, today the automotive companies are competing to offer an advanced driver assistance system (ADAS) which will be able to provide enhanced navigation, collision avoidance, intersection support and lane keeping. These vision-based functions require an accurately calibrated camera. To achieve such differentiation in ADAS requires sophisticated sensors and efficient algorithms. This paper explores the different calibration methods applicable to vehicle-mounted fish-eye cameras with arbitrary fields of view and defines the first steps towards a self-calibration method that adequately addresses ADAS requirements. In particular, we present a self-calibration method after comparing different camera calibration algorithms in the context of ADAS requirements. Our method gathers data from unknown scenes while the car is moving, estimates the camera intrinsic and extrinsic parameters and corrects the wide-angle distortion. Our solution enables continuous and real-time detection of objects, pedestrians, road markings and other cars. In contrast, other camera calibration algorithms for ADAS need pre-calibration, while the presented method calibrates the camera without prior knowledge of the scene and in real-time.

Keywords: advanced driver assistance system (ADAS), fish-eye, real-time, self-calibration

Procedia PDF Downloads 243
641 Mobility-Aware Relay Selection in Two Hop Unmanned Aerial Vehicles Network

Authors: Tayyaba Hussain, Sobia Jangsher, Saqib Ali, Saqib Ejaz

Abstract:

Unmanned Aerial vehicles (UAV’s) have gained great popularity due to their remoteness, ease of deployment and high maneuverability in different applications like real-time surveillance, image capturing, weather atmospheric studies, disaster site monitoring and mapping. These applications can involve a real-time communication with the ground station. However, altitude and mobility possess a few challenges for the communication. UAV’s at high altitude usually require more transmit power. One possible solution can be with the use of multi hops (UAV’s acting as relays) and exploiting the mobility pattern of the UAV’s. In this paper, we studied a relay (UAV’s acting as relays) selection for a reliable transmission to a destination UAV. We exploit the mobility information of the UAV’s to propose a Mobility-Aware Relay Selection (MARS) algorithm with the objective of giving improved data rates. The results are compared with Non Mobility-Aware relay selection scheme and optimal values. Numerical results show that our proposed MARS algorithm gives 6% better achievable data rates for the mobile UAV’s as compared with Non MobilityAware relay selection scheme. On average a decrease of 20.2% in data rate is achieved with MARS as compared with SDP solver in Yalmip.

Keywords: mobility aware, relay selection, time division multiple acess, unmanned aerial vehicle

Procedia PDF Downloads 231
640 Titanium Alloys for Cryogenic Gas Bottle Applications: A Comparative Study

Authors: Bhanu Pant, Sanjay H. Upadhyay

Abstract:

Titanium alloys, owing to their high specific strength coupled with excellent resistance to corrosion in many severe environments, find extensive usage in the aerospace sector. Alpha and beta lean Titanium alloys have an additional characteristic of exhibiting high toughness with an NTS/ UTS ratio greater than one down to liquid oxygen and liquid helium temperatures. The cryogenic stage of high-performance rockets utilizes cryo-fluid submerged pressurizing tanks to improve volume to mass performance factor. A superior volume-to-mass ratio is achieved for LH2-submerged pressurizing tanks as compared to those submerged in LOX. Such high-efficiency tanks for LH2 submerged application necessitate the use of difficult to process alpha type Ti5Al2.5Sn-ELI alloy, which requires close control of process parameters to develop the tanks. In the present paper, a comparison of this alpha-type cryogenic Titanium alloy has been brought out with conventional alpha-beta Ti6Al4V-ELI alloy, which is usable up to LOX temperatures. Specific challenges faced during the development of these cryogenic pressurizing tanks for a launch vehicle based on the author's experience are included in the paper on the comparatively lesser-studied alpha Ti5Al2.5Sn-ELI alloy.

Keywords: cryogenic tanks, titanium Alloys, NTS/UTS ratio, alpha and alpha-beta ELI alloys

Procedia PDF Downloads 51
639 AgriInnoConnect Pro System Using Iot and Firebase Console

Authors: Amit Barde, Dipali Khatave, Vaishali Savale, Atharva Chavan, Sapna Wagaj, Aditya Jilla

Abstract:

AgriInnoConnect Pro is an advanced agricultural automation system designed to enhance irrigation efficiency and overall farm management through IoT technology. Using MIT App Inventor, Telegram, Arduino IDE, and Firebase Console, it provides a user-friendly interface for farmers. Key hardware includes soil moisture sensors, DHT11 sensors, a 12V motor, a solenoid valve, a stepdown transformer, Smart Fencing, and AC switches. The system operates in automatic and manual modes. In automatic mode, the ESP32 microcontroller monitors soil moisture and autonomously controls irrigation to optimize water usage. In manual mode, users can control the irrigation motor via a mobile app. Telegram bots enable remote operation of the solenoid valve and electric fencing, enhancing farm security. Additionally, the system upgrades conventional devices to smart ones using AC switches, broadening automation capabilities. AgriInnoConnect Pro aims to improve farm productivity and resource management, addressing the critical need for sustainable water conservation and providing a comprehensive solution for modern farm management. The integration of smart technologies in AgriInnoConnect Pro ensures precision farming practices, promoting efficient resource allocation and sustainable agricultural development.

Keywords: agricultural automation, IoT, soil moisture sensor, ESP32, MIT app inventor, telegram bot, smart farming, remote control, firebase console

Procedia PDF Downloads 26
638 Application of Cube IQ Software to Optimize Heterogeneous Packing Products in Logistics Cargo and Minimize Transportation Cost

Authors: Muhammad Ganda Wiratama

Abstract:

XYZ company is one of the upstream chemical companies that produce chemical products such as NaOH, HCl, NaClO, VCM, EDC, and PVC for downstream companies. The products are shipped by land using trucks and sea lanes using ship mode. Especially for solid products such as flake caustic soda (F-NaOH) and PVC resin, the products are sold in loose bag packing and palletize packing (packed in pallet). The focus of this study is to increase the number of items that can be loaded in pallet packaging on the company's logistics vehicle. This is very difficult because on this packaging, the dimensions or size of the material to be loaded become larger and certainly much heavier than the loose bag packing. This factor causes the arrangement and handling of materials in the mode of transportation more difficult. In this case, it is difficult to load a different type of volume packing pallet dimension in one truck or container. By using the Cube-IQ software, it is hoped that the planning of stuffing activity material by pallet can become easier in optimizing the existing space with various possible combinations of possibilities. In addition, the output of this software can also be used as a reference for operators in the material handling include the order and orientation of materials contained in the truck or container. The more optimal contents of logistics cargo, then transportation costs can also be minimized.

Keywords: loading activity, container loading, palletize product, simulation

Procedia PDF Downloads 292
637 Using Q-Learning to Auto-Tune PID Controller Gains for Online Quadcopter Altitude Stabilization

Authors: Y. Alrubyli

Abstract:

Unmanned Arial Vehicles (UAVs), and more specifically, quadcopters need to be stable during their flights. Altitude stability is usually achieved by using a PID controller that is built into the flight controller software. Furthermore, the PID controller has gains that need to be tuned to reach optimal altitude stabilization during the quadcopter’s flight. For that, control system engineers need to tune those gains by using extensive modeling of the environment, which might change from one environment and condition to another. As quadcopters penetrate more sectors, from the military to the consumer sectors, they have been put into complex and challenging environments more than ever before. Hence, intelligent self-stabilizing quadcopters are needed to maneuver through those complex environments and situations. Here we show that by using online reinforcement learning with minimal background knowledge, the altitude stability of the quadcopter can be achieved using a model-free approach. We found that by using background knowledge instead of letting the online reinforcement learning algorithm wander for a while to tune the PID gains, altitude stabilization can be achieved faster. In addition, using this approach will accelerate development by avoiding extensive simulations before applying the PID gains to the real-world quadcopter. Our results demonstrate the possibility of using the trial and error approach of reinforcement learning combined with background knowledge to achieve faster quadcopter altitude stabilization in different environments and conditions.

Keywords: reinforcement learning, Q-leanring, online learning, PID tuning, unmanned aerial vehicle, quadcopter

Procedia PDF Downloads 164
636 Investigation on a Wave-Powered Electrical Generator Consisted of a Geared Motor-Generator Housed by a Double-Cone Rolling on Concentric Circular Rails

Authors: Barenten Suciu

Abstract:

An electrical generator able to harness energy from the water waves and designed as a double-cone geared motor-generator (DCGMG), is proposed and theoretically investigated. Similar to a differential gear mechanism, used in the transmission system of the auto vehicle wheels, an angular speed differential is created between the cones rolling on two concentric circular rails. Water wave acting on the floating DCGMG produces and a gear-box amplifies the speed differential to gain sufficient torque for power generation. A model that allows computation of the speed differential, torque, and power of the DCGMG is suggested. Influence of various parameters, regarding the construction of the DCGMG, as well as the contact between the double-cone and rails, on the electro-mechanical output, is emphasized. Results obtained indicate that the generated electrical power can be increased by augmenting the mass of the double-cone, the span of the rails, the apex angle of the cones, the friction between cones and rails, the amplification factor of the gear-box, and the efficiency of the motor-generator. Such findings are useful to formulate a design methodology for the proposed wave-powered generator.

Keywords: amplification of angular speed differential, circular concentric rails, double-cone, wave-powered electrical generator

Procedia PDF Downloads 150
635 Mudlogging, a Key Tool in Effective Well Delivery: A Case Study of Bisas Field Niger Delta, Nigeria

Authors: Segun Steven Bodunde

Abstract:

Mudlogging is the continuous analysis of rock cuttings and drilling fluids to ascertain the presence or absence of oil and gas from the formation penetrated by the drilling bit. This research highlighted a case study of Well BSS-99ST from ‘Bisas Field’, Niger Delta, with depth extending from 1950m to 3640m (Measured Depth). It was focused on identifying the lithologies encountered at specified depth intervals and to accurately delineate the targeted potential reservoir on the field and prepare the lithology and Master log. Equipment such as the Microscope, Fluoroscope, spin drier, oven, and chemicals, which includes: hydrochloric acid, chloroethene, and phenolphthalein, were used to check the cuttings for their calcareous nature, for oil show and for the presence of Cement respectively. Gas analysis was done using the gas chromatograph and the Flame Ionization Detector, which was connected to the Total Hydrocarbon Analyzer (THA). Drilling Parameters and Gas concentration logs were used alongside the lithology log to predict and accurately delineate the targeted reservoir on the field. The result showed continuous intercalation of sand and shale, with the presence of small quantities of siltstone at a depth of 2300m. The lithology log was generated using Log Plot software. The targeted reservoir was identified between 3478m to 3510m after inspection of the gas analysis, lithology log, electric logs, and the drilling parameters. Total gas of about 345 units and five Alkane Gas components were identified in the specific depth range. A comparative check with the Gamma ray log from the well further confirmed the lithologic sequence and the accurate delineation of the targeted potential reservoir using mudlogging.

Keywords: mudlogging, chromatograph, drilling fluids, calcareous

Procedia PDF Downloads 146
634 Check Red Blood Cells Concentrations of a Blood Sample by Using Photoconductive Antenna

Authors: Ahmed Banda, Alaa Maghrabi, Aiman Fakieh

Abstract:

Terahertz (THz) range lies in the area between 0.1 to 10 THz. The process of generating and detecting THz can be done through different techniques. One of the most familiar techniques is done through a photoconductive antenna (PCA). The process of generating THz radiation at PCA includes applying a laser pump in femtosecond and DC voltage difference. However, photocurrent is generated at PCA, which its value is affected by different parameters (e.g., dielectric properties, DC voltage difference and incident power of laser pump). THz radiation is used for biomedical applications. However, different biomedical fields need new technologies to meet patients’ needs (e.g. blood-related conditions). In this work, a novel method to check the red blood cells (RBCs) concentration of a blood sample using PCA is presented. RBCs constitute 44% of total blood volume. RBCs contain Hemoglobin that transfers oxygen from lungs to body organs. Then it returns to the lungs carrying carbon dioxide, which the body then gets rid of in the process of exhalation. The configuration has been simulated and optimized using COMSOL Multiphysics. The differentiation of RBCs concentration affects its dielectric properties (e.g., the relative permittivity of RBCs in the blood sample). However, the effects of four blood samples (with different concentrations of RBCs) on photocurrent value have been tested. Photocurrent peak value and RBCs concentration are inversely proportional to each other due to the change of dielectric properties of RBCs. It was noticed that photocurrent peak value has dropped from 162.99 nA to 108.66 nA when RBCs concentration has risen from 0% to 100% of a blood sample. The optimization of this method helps to launch new products for diagnosing blood-related conditions (e.g., anemia and leukemia). The resultant electric field from DC components can not be used to count the RBCs of the blood sample.

Keywords: biomedical applications, photoconductive antenna, photocurrent, red blood cells, THz radiation

Procedia PDF Downloads 198
633 Effect of Cladding Direction on Residual Stress Distribution in Laser Cladded Rails

Authors: Taposh Roy, Anna Paradowska, Ralph Abrahams, Quan Lai, Michael Law, Peter Mutton, Mehdi Soodi, Wenyi Yan

Abstract:

In this investigation, a laser cladding process with a powder feeding was used to deposit stainless steel 410L (high strength, excellent resistance to abrasion and corrosion, and great laser compatibility) onto railhead (higher strength, heat treated hypereutectoid rail grade manufactured in accordance with the requirements of European standard EN 13674 Part 1 for R400HT grade), to investigate the development and controllability of process-induced residual stress in the cladding, heat-affected zone (HAZ) and substrate and to analyse their correlation with hardness profile during two different laser cladding directions (across and along the track). Residual stresses were analysed by neutron diffraction at OPAL reactor, ANSTO. Neutron diffraction was carried out on the samples in longitudinal (parallel to the rail), transverse (perpendicular to the rail) and normal (through thickness) directions with high spatial resolution through the thickness. Due to the thick rail and thin cladding, 4 mm thick reference samples were prepared from every specimen by Electric Discharge Machining (EDM). Metallography across the laser claded sample revealed four distinct zones: The clad zone, the dilution zone, HAZ and the substrate. Compressive residual stresses were found in the clad zone and tensile residual stress in the dilution zone and HAZ. Laser cladding in longitudinally cladding induced higher tensile stress in the HAZ, whereas transversely cladding rail showed lower tensile behavior.

Keywords: laser cladding, residual stress, neutron diffraction, HAZ

Procedia PDF Downloads 269
632 Real-World PM, PN and NOx Emission Differences among DOC+CDPF Retrofit Diesel-, Diesel- And Natural Gas-Fueled Bus

Authors: Zhiwen Yang, Jingyuan Li, Zhenkai Xie, Jian Ling, Jiguang Wang, Mengliang Li

Abstract:

To reflect the effects of different emission control strategies, such as retrofitting after-treatment system and replacing with natural gas-fueled vehicles, on particle number (PN), particle mass (PM) and nitrogen oxides (NOx) emissions emitted by urban bus, a portable emission measurement system (PEMS) was employed herein to conduct real-world driving emission measurements on a diesel oxidation catalytic converter (DOC) and catalyzed diesel particulate filter (CDPF) retrofitting China IV diesel bus, a China IV diesel bus, and a China V natural gas bus. The results show that both tested diesel buses possess markedly advantages in NOx emission control when compared to the lean-burn natural gas bus equipped without any NOx after-treatment system. As to PN and PM, only the DOC+CDPF retrofitting diesel bus exhibits enormous benefits on emission control relate to the natural gas bus, especially the normal diesel bus. Meanwhile, the differences in PM and PN emissions between retrofitted and normal diesel buses generally increase with the increase in vehicle-specific power (VSP). Furthermore, the differences in PM emissions, especially those in the higher VSP ranges, are more significant than those in PN. In addition, the maximum peak PN particle size (32 nm) of the retrofitted diesel bus was significantly lower than that of the normal diesel bus (100 nm). These phenomena indicate that the CDPF retrofitting can effectively reduce diesel bus exhaust particle emissions, especially those with large particle sizes.

Keywords: CDPF, diesel, natural gas, real-world emissions

Procedia PDF Downloads 283
631 Thermodynamic Modeling and Exergoeconomic Analysis of an Isobaric Adiabatic Compressed Air Energy Storage System

Authors: Youssef Mazloum, Haytham Sayah, Maroun Nemer

Abstract:

The penetration of renewable energy sources into the electric grid is significantly increasing. However, the intermittence of these sources breaks the balance between supply and demand for electricity. Hence, the importance of the energy storage technologies, they permit restoring the balance and reducing the drawbacks of intermittence of the renewable energies. This paper discusses the modeling and the cost-effectiveness of an isobaric adiabatic compressed air energy storage (IA-CAES) system. The proposed system is a combination among a compressed air energy storage (CAES) system with pumped hydro storage system and thermal energy storage system. The aim of this combination is to overcome the disadvantages of the conventional CAES system such as the losses due to the storage pressure variation, the loss of the compression heat and the use of fossil fuel sources. A steady state model is developed to perform an energy and exergy analyses of the IA-CAES system and calculate the distribution of the exergy losses in the latter system. A sensitivity analysis is also carried out to estimate the effects of some key parameters on the system’s efficiency, such as the pinch of the heat exchangers, the isentropic efficiency of the rotating machinery and the pressure losses. The conducted sensitivity analysis is a local analysis since the sensibility of each parameter changes with the variation of the other parameters. Therefore, an exergoeconomic study is achieved as well as a cost optimization in order to reduce the electricity cost produced during the production phase. The optimizer used is OmOptim which is a genetic algorithms based optimizer.

Keywords: cost-effectiveness, Exergoeconomic analysis, isobaric adiabatic compressed air energy storage (IA-CAES) system, thermodynamic modeling

Procedia PDF Downloads 242
630 Value Addition of Quinoa (Chenopodium Quinoa Willd.) Using an Indigenously Developed Saponin Removal Machine

Authors: M.A. Ali, M. Matloob, A. Sahar, M. Yamin, M. Imran, Y.A. Yusof

Abstract:

Quinoa (Chenopodium quinoa Willd.) is known as pseudocereal was originated in South America's Andes. Quinoa is a good source of protein, amino acids, micronutrients and bioactive components. The lack of gluten makes it suitable for celiac patients. Saponins, the leading ant-nutrient, are found in the pericarp, which adheres to the seed and transmits the bitter flavor to the quinoa grain. It is found in varying amounts in quinoa from 0.1% to 5%. This study was planned to design an indigenous machine to remove saponin from quinoa grains at the farm level to promote entrepreneurship. The machine consisted of a feeding hopper, rotating shaft, grooved stone, perforated steel cylinder, V-belts, pulleys, electric motor and mild steel angle iron and sheets. The motor transmitted power to the shaft with a belt drive. The shaft on which the grooved stone was attached rotated inside the perforated cylinder having a clearance of 2 mm and was removed saponin by an abrasion mechanism. The saponin-removed quinoa was then dipped in water to determine the presence of saponin as it produced foam in water and data were statistically analyzed. The results showed that the raw seed feeding rate of 25 g/s and milling time of 135 s completely removed saponin from seeds with minimum grain losses of 2.85% as compared to the economic analysis of the machine showed that its break-even point was achieved after one and half months with 18,000 s and a production capacity of 33 g/s.

Keywords: quinoa seeds, saponin, abrasion mechanism, stone polishing, indigenous machine

Procedia PDF Downloads 66
629 Design of a Satellite Solar Panel Deployment Mechanism Using the Brushed DC Motor as Rotational Speed Damper

Authors: Hossein Ramezani Ali-Akbari

Abstract:

This paper presents an innovative method to control the rotational speed of a satellite solar panel during its deployment phase. A brushed DC motor has been utilized in the passive spring driven deployment mechanism to reduce the deployment speed. In order to use the DC motor as a damper, its connector terminals have been connected with an external resistance in a closed circuit. It means that, in this approach, there is no external power supply in the circuit. The working principle of this method is based on the back electromotive force (or back EMF) of the DC motor when an external torque (here the torque produced by the torsional springs) is coupled to the DC motor’s shaft. In fact, the DC motor converts to an electric generator and the current flows into the circuit and then produces the back EMF. Based on Lenz’s law, the generated current produced a torque which acts opposite to the applied external torque, and as a result, the deployment speed of the solar panel decreases. The main advantage of this method is to set an intended damping coefficient to the system via changing the external resistance. To produce the sufficient current, a gearbox has been assembled to the DC motor which magnifies the number of turns experienced by the DC motor. The coupled electro-mechanical equations of the system have been derived and solved, then, the obtained results have been presented. A full-scale prototype of the deployment mechanism has been built and tested. The potential application of brushed DC motors as a rotational speed damper has been successfully demonstrated.

Keywords: back electromotive force, brushed DC motor, rotational speed damper, satellite solar panel deployment mechanism

Procedia PDF Downloads 319
628 Hybrid Lateral-Directional Robust Flight Control with Propulsive Systems

Authors: Alexandra Monteiro, K. Bousson, Fernando J. O. Moreira, Ricardo Reis

Abstract:

Fixed-wing flying vehicles are usually controlled by means of control surfaces such as elevators, ailerons, and rudders. The failure of these systems may lead to severe or even fatal crashes. These failures resulted in increased popularity for research activities on propulsion control in the last decades. The present work deals with a hybrid control architecture in which the propulsion-controlled vehicle maintains its traditional control surfaces, addressing the issue of robust lateral-directional dynamics control. The challenges stem from the parameter uncertainties in the stability and control derivatives and some unknown terms in the flight dynamics model. Two approaches are implemented and tested: linear quadratic regulation with robustness characteristics and H∞ control. The problem is centered on roll-yaw controller design with full state-feedback, which is able to deal with a standalone propulsion control mode as well as a hybrid mode combining both propulsion control and conventional control surface concepts while maintaining the original flight maneuverability characteristics. The results for both controllers emphasized very good control performances; however, the H∞ controller showed higher stabilization rates and robustness albeit with a slightly higher control magnitude than using the linear quadratic regulator.

Keywords: robust propulsion control, h-infinity control, lateral-directional flight dynamics, parameter uncertainties

Procedia PDF Downloads 145
627 Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles

Authors: Zehai Yu, Hui Zhu, Linglong Lin, Huawei Liang, Biao Yu, Weixin Huang

Abstract:

With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.

Keywords: curve fitting, lane-level road map, line recognition, multi-thresholding, two-stage clustering

Procedia PDF Downloads 125
626 Performance Evaluation of Dynamic Signal Control System for Mixed Traffic Conditions

Authors: Aneesh Babu, S. P. Anusha

Abstract:

A dynamic signal control system combines traditional traffic lights with an array of sensors to intelligently control vehicle and pedestrian traffic. The present study focus on evaluating the performance of dynamic signal control systems for mixed traffic conditions. Data collected from four different approaches to a typical four-legged signalized intersection at Trivandrum city in the Kerala state of India is used for the study. Performance of three other dynamic signal control methods, namely (i) Non-sequential method (ii) Webster design for consecutive signal cycle using flow as input, and (iii) dynamic signal control using RFID delay as input, were evaluated. The evaluation of the dynamic signal control systems was carried out using a calibrated VISSIM microsimulation model. Python programming was used to integrate the dynamic signal control algorithm through the COM interface in VISSIM. The intersection delay obtained from different dynamic signal control methods was compared with the delay obtained from fixed signal control. Based on the study results, it was observed that the intersection delay was reduced significantly by using dynamic signal control methods. The dynamic signal control method using delay from RFID sensors resulted in a higher percentage reduction in delay and hence is a suitable choice for implementation under mixed traffic conditions. The developed dynamic signal control strategies can be implemented in ITS applications under mixed traffic conditions.

Keywords: dynamic signal control, intersection delay, mixed traffic conditions, RFID sensors

Procedia PDF Downloads 93
625 Enhancing Aerodynamic Performance of Savonius Vertical Axis Turbine Used with Triboelectric Generator

Authors: Bhavesh Dadhich, Fenil Bamnoliya, Akshita Swaminathan

Abstract:

This project aims to design a system to generate energy from flowing wind due to the motion of a vehicle on the road or from the flow of wind in compact areas to utilize the wasteful energy into a useful one. It is envisaged through a design and aerodynamic performance improvement of a Savonius vertical axis wind turbine rotor and used in an integrated system with a Triboelectric Nanogenerator (TENG) that can generate a good amount of electrical energy. Aerodynamic calculations are performed numerically using Computational Fluid Dynamics software, and TENG's performance is evaluated analytically. The Turbine's coefficient of power is validated with published results for an inlet velocity of 7 m/s with a Tip Speed Ratio of 0.75 and found to reasonably agree with that of experiment results. The baseline design is modified with a new blade arc angle and rotor position angle based on the recommended parameter ranges suggested by previous researchers. Simulations have been performed for different T.S.R. values ranging from 0.25 to 1.5 with an interval of 0.25 with two applicable free stream velocities of 5 m/s and 7m/s. Finally, the newly designed VAWT CFD performance results are used as input for the analytical performance prediction of the triboelectric nanogenerator. The results show that this approach could be feasible and useful for small power source applications.

Keywords: savonius turbine, power, overlap ratio, tip speed ratio, TENG

Procedia PDF Downloads 117
624 Technological Innovations as a Potential Vehicle for Supply Chain Integration on Basic Metal Industries

Authors: Alie Wube Dametew, Frank Ebinger

Abstract:

This study investigated the roles of technological innovation on basic metal industries and then developed technological innovation framework for enhancing sustainable competitive advantage in the basic metal industries. The previous research work indicates that technological innovation has critical impact in promoting local industries to improve their performance and achieve sustainable competitive environments. The filed observation, questioner and expert interview result from basic metal industries indicate that the technological capability of local industries to invention, adoption, modification, improving and use a given innovative technology is very poor. As the result, this poor technological innovation was occurred due to improper innovation and technology transfer framework, non-collaborative operating environment between foreign and local industries, very weak national technology policies, problems research and innovation centers, the common miss points on basic metal industry innovation systems were investigated in this study. One of the conclusions of the article is that, through using the developed technological innovation framework in this study, basic metal industries improve innovation process and support an innovative culture for sector capabilities and achieve sustainable competitive advantage.

Keywords: technological innovation, competitive advantage, sustainable, basic metal industry, conceptual model, sustainability, supply chain integration

Procedia PDF Downloads 237
623 Design, Synthesis and Evaluation of 4-(Phenylsulfonamido)Benzamide Derivatives as Selective Butyrylcholinesterase Inhibitors

Authors: Sushil Kumar Singh, Ashok Kumar, Ankit Ganeshpurkar, Ravi Singh, Devendra Kumar

Abstract:

In spectrum of neurodegenerative diseases, Alzheimer’s disease (AD) is characterized by the presence of amyloid β plaques and neurofibrillary tangles in the brain. It results in cognitive and memory impairment due to loss of cholinergic neurons, which is considered to be one of the contributing factors. Donepezil, an acetylcholinesterase (AChE) inhibitor which also inhibits butyrylcholinesterase (BuChE) and improves the memory and brain’s cognitive functions, is the most successful and prescribed drug to treat the symptoms of AD. The present work is based on designing of the selective BuChE inhibitors using computational techniques. In this work, machine learning models were trained using classification algorithms followed by screening of diverse chemical library of compounds. The various molecular modelling and simulation techniques were used to obtain the virtual hits. The amide derivatives of 4-(phenylsulfonamido) benzoic acid were synthesized and characterized using 1H & 13C NMR, FTIR and mass spectrometry. The enzyme inhibition assays were performed on equine plasma BuChE and electric eel’s AChE by method developed by Ellman et al. Compounds 31, 34, 37, 42, 49, 52 and 54 were found to be active against equine BuChE. N-(2-chlorophenyl)-4-(phenylsulfonamido)benzamide and N-(2-bromophenyl)-4-(phenylsulfonamido)benzamide (compounds 34 and 37) displayed IC50 of 61.32 ± 7.21 and 42.64 ± 2.17 nM against equine plasma BuChE. Ortho-substituted derivatives were more active against BuChE. Further, the ortho-halogen and ortho-alkyl substituted derivatives were found to be most active among all with minimal AChE inhibition. The compounds were selective toward BuChE.

Keywords: Alzheimer disease, butyrylcholinesterase, machine learning, sulfonamides

Procedia PDF Downloads 133
622 Creation of Ultrafast Ultra-Broadband High Energy Laser Pulses

Authors: Walid Tawfik

Abstract:

The interaction of high intensity ultrashort laser pulses with plasma generates many significant applications, including soft x-ray lasers, time-resolved laser induced plasma spectroscopy LIPS, and laser-driven accelerators. The development in producing of femtosecond down to ten femtosecond optical pulses has facilitates scientists with a vital tool in a variety of ultrashort phenomena, such as high field physics, femtochemistry and high harmonic generation HHG. In this research, we generate a two-octave-wide ultrashort supercontinuum pulses with an optical spectrum extending from 3.5 eV (ultraviolet) to 1.3 eV (near-infrared) using a capillary fiber filled with neon gas. These pulses are formed according to nonlinear self-phase modulation in the neon gas as a nonlinear medium. The investigations of the created pulses were made using spectral phase interferometry for direct electric-field reconstruction (SPIDER). A complete description of the output pulses was considered. The observed characterization of the produced pulses includes the beam profile, the pulse width, and the spectral bandwidth. After reaching optimization conditions, the intensity of the reconstructed pulse autocorrelation function was applied for the shorts pulse duration to achieve transform limited ultrashort pulses with durations below 6-fs energies up to 600μJ. Moreover, the effect of neon pressure variation on the pulse width was examined. The nonlinear self-phase modulation realized to be increased with the pressure of the neon gas. The observed results may lead to an advanced method to control and monitor ultrashort transit interaction in femtochemistry.

Keywords: supercontinuum, ultrafast, SPIDER, ultra-broadband

Procedia PDF Downloads 222
621 Public Bus Transport Passenger Safety Evaluations in Ghana: A Phenomenological Constructivist Exploration

Authors: Enoch F. Sam, Kris Brijs, Stijn Daniels, Tom Brijs, Geert Wets

Abstract:

Notwithstanding the growing body of literature that recognises the importance of personal safety to public transport (PT) users, it remains unclear what PT users consider regarding their safety. In this study, we explore the criteria PT users in Ghana use to assess bus safety. This knowledge will afford a better understanding of PT users’ risk perceptions and assessments which may contribute to theoretical models of PT risk perceptions. We utilised phenomenological research methodology, with data drawn from 61 purposively sampled participants. Data collection (through focus group discussions and in-depth interviews) and analyses were done concurrently to the point of saturation. Our inductive data coding and analyses through the constant comparison and content analytic techniques resulted in 4 code categories (conceptual dimensions), 27 codes (safety items/criteria), and 100 quotations (data segments). Of the number of safety criteria participants use to assess bus safety, vehicle condition, driver’s marital status, and transport operator’s safety records were the most considered. With each criterion, participants rightly demonstrated its respective relevance to bus safety. These findings imply that investment in and maintenance of safer vehicles, and responsible and safety-conscious drivers, and prioritization of passengers’ safety are key-targets for public bus/minibus operators in Ghana.

Keywords: safety evaluations, public bus/minibus, passengers, phenomenology, Ghana

Procedia PDF Downloads 330
620 Electrochemical Recovery of Lithium from Geothermal Brines

Authors: Sanaz Mosadeghsedghi, Mathew Hudder, Mohammad Ali Baghbanzadeh, Charbel Atallah, Seyedeh Laleh Dashtban Kenari, Konstantin Volchek

Abstract:

Lithium has recently been extensively used in lithium-ion batteries (LIBs) for electric vehicles and portable electronic devices. The conventional evaporative approach to recover and concentrate lithium is extremely slow and may take 10-24 months to concentrate lithium from dilute sources, such as geothermal brines. To response to the increasing industrial lithium demand, alternative extraction and concentration technologies should be developed to recover lithium from brines with low concentrations. In this study, a combination of electrocoagulation (EC) and electrodialysis (ED) was evaluated for the recovery of lithium from geothermal brines. The brine samples in this study, collected in Western Canada, had lithium concentrations of 50-75 mg/L on a background of much higher (over 10,000 times) concentrations of sodium. This very high sodium-to-lithium ratio poses challenges to the conventional direct-lithium extraction processes which employ lithium-selective adsorbents. EC was used to co-precipitate lithium using a sacrificial aluminium electrode. The precipitate was then dissolved, and the leachate was treated using ED to separate and concentrate lithium from other ions. The focus of this paper is on the study of ED, including a two-step ED process that included a mono-valent selective stage to separate lithium from multi-valent cations followed by a bipolar ED stage to convert lithium chloride (LiCl) to LiOH product. Eventually, the ED cell was reconfigured using mono-valent cation exchange with the bipolar membranes to combine the two ED steps in one. Using this process at optimum conditions, over 95% of the co-existing cations were removed and the purity of lithium increased to over 90% in the final product.

Keywords: electrochemical separation, electrocoagulation, electrodialysis, lithium extraction

Procedia PDF Downloads 87