Search results for: cyclic heating and cooling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2364

Search results for: cyclic heating and cooling

444 Numerical Simulation of Phase Transfer during Cryosurgery for an Irregular Tumor Using Hybrid Approach

Authors: Rama Bhargava, Surabhi Nishad

Abstract:

The infusion of nanofluids has dramatically enhanced the heat-carrying capacity of the fluids, applicable to many engineering and medical process where the temperature below freezing is required. Cryosurgery is an efficient therapy for the treatment of cancer, but sometimes the excessive cooling may harm the nearby healthy cells. Efforts are therefore done to develop a model which can cause to generate the low temperature as required. In the present study, a mathematical model is developed based on the bioheat transfer equation to simulate the heat transfer from the probe on a tumor (with irregular domain) using the hybrid technique consisting of element free Galerkin method with αα-family of approximation. The probe is loaded will nano-particles. The effects of different nanoparticles, namely Al₂O₃, Fe₃O₄, Au on the heat-producing rate, is obtained. It is observed that the temperature can be brought to (60°C)-(-30°C) at a faster freezing rate on the infusion of different nanoparticles. Besides increasing the freezing rate, the volume of the nanoparticle can also control the size and growth of ice crystals formed during the freezing process. The study is also made to find the time required to achieve the desired temperature. The problem is further extended for multi tumors of different shapes and sizes. The irregular shape of the frozen domain and the direction of ice growth are very sensitive issues, posing a challenge for simulation. The Meshfree method has been one of the accurate methods in such problems as a domain is naturally irregular. The discretization is done using the nodes only. MLS approximation is taken in order to generate the shape functions. Sufficiently accurate results are obtained.

Keywords: cryosurgery, EFGM, hybrid, nanoparticles

Procedia PDF Downloads 129
443 Investigating the Motion of a Viscous Droplet in Natural Convection Using the Level Set Method

Authors: Isadora Bugarin, Taygoara F. de Oliveira

Abstract:

Binary fluids and emulsions, in general, are present in a vast range of industrial, medical, and scientific applications, showing complex behaviors responsible for defining the flow dynamics and the system operation. However, the literature describing those highlighted fluids in non-isothermal models is currently still limited. The present work brings a detailed investigation on droplet migration due to natural convection in square enclosure, aiming to clarify the effects of drop viscosity on the flow dynamics by showing how distinct viscosity ratios (droplet/ambient fluid) influence the drop motion and the final movement pattern kept on stationary regimes. The analysis was taken by observing distinct combinations of Rayleigh number, drop initial position, and viscosity ratios. The Navier-Stokes and Energy equations were solved considering the Boussinesq approximation in a laminar flow using the finite differences method combined with the Level Set method for binary flow solution. Previous results collected by the authors showed that the Rayleigh number and the drop initial position affect drastically the motion pattern of the droplet. For Ra ≥ 10⁴, two very marked behaviors were observed accordingly with the initial position: the drop can travel either a helical path towards the center or a cyclic circular path resulting in a closed cycle on the stationary regime. The variation of viscosity ratio showed a significant alteration of pattern, exposing a large influence on the droplet path, capable of modifying the flow’s behavior. Analyses on viscosity effects on the flow’s unsteady Nusselt number were also performed. Among the relevant contributions proposed in this work is the potential use of the flow initial conditions as a mechanism to control the droplet migration inside the enclosure.

Keywords: binary fluids, droplet motion, level set method, natural convection, viscosity

Procedia PDF Downloads 123
442 Improving Performance of K₂CO₃ Sorbent Using Core/Shell Alumina-Based Supports in a Multicycle CO₂ Capture Process

Authors: S. Toufigh Bararpour, Amir H. Soleimanisalim, Davood Karami, Nader Mahinpey

Abstract:

The continued increase in the atmospheric concentration of CO2 is expected to have great impacts on the climate. In order to reduce CO2 emission to the atmosphere, an efficient and cost-effective technique is required. Using regenerable solid sorbents, especially K2CO3 is a promising method for low-temperature CO2 capture. Pure K2CO3 is a delinquent substance that requires modifications before it can be used for cyclic operations. For this purpose, various types of additives and supports have been used to improve the structure of K2CO3. However, hydrophilicity and reactivity of the support materials with K2CO3 have a negative effect on the CO2 capture capacity of the sorbents. In this research, two kinds of alumina supports (γ-Alumina and Boehmite) were used. In order to decrease the supports' hydrophilicity and reactivity with K2CO3, nonreactive additives such as Titania, Zirconia and Silisium were incorporated into their structures. These materials provide a shell around the alumina to protect it from undesirable reactions and improve its properties. K2CO3-based core/shell-supported sorbents were fabricated using two preparation steps. The sol-gel method was applied for shelling the supports. Then the shelled supports were impregnated on K2CO3. The physicochemical properties of the sorbents were determined using SEM and BET analyses, and their CO2 capture capacity was quantified using a thermogravimetric analyzer. It was shown that type of the shell's material had an important effect on the water adsorption capacity of the sorbents. Supported K2CO3 modified by Titania shell showed the lowest hydrophilicity among the prepared samples. Based on the obtained results, incorporating nonreactive additives in Boehmite had an outstanding impact on the CO2 capture performance of the sorbent. Incorporation of Titania into the Boehmite-supported K2CO3 enhanced its CO2 capture capacity significantly. Therefore, further study of this novel fabrication technique is highly recommended. In the second phase of this research project, the CO2 capture performance of the sorbents in fixed and fluidized bed reactors will be investigated.

Keywords: CO₂ capture, core/shell support, K₂CO₃, post-combustion

Procedia PDF Downloads 153
441 Exploring Alignability Effects and the Role of Information Structure in Promoting Uptake of Energy Efficient Technologies

Authors: Rebecca Hafner, David Elmes, Daniel Read

Abstract:

The current research applies decision-making theory to the problem of increasing uptake of energy efficient technologies in the market place, where uptake is currently slower than one might predict following rational choice models. We apply the alignable/non-alignable features effect and explore the impact of varying information structure on the consumers’ preference for standard versus energy efficient technologies. In two studies we present participants with a choice between similar (boiler vs. boiler) vs. dissimilar (boiler vs. heat pump) technologies, described by a list of alignable and non-alignable attributes. In study One there is a preference for alignability when options are similar; an effect mediated by an increased tendency to infer missing information is the same. No effects of alignability on preference are found when options differ. One explanation for this split-shift in attentional focus is a change in construal levels potentially induced by the added consideration of environmental concern. Study two was designed to explore the interplay between alignability and construal level in greater detail. We manipulated construal level via a thought prime task prior to taking part in the same heating systems choice task, and find that there is a general preference for non-alignability, regardless of option type. We draw theoretical and applied implications for the type of information structure best suited for the promotion of energy efficient technologies.

Keywords: alignability effects, decision making, energy-efficient technologies, sustainable behaviour change

Procedia PDF Downloads 317
440 A Low Order Thermal Envelope Model for Heat Transfer Characteristics of Low-Rise Residential Buildings

Authors: Nadish Anand, Richard D. Gould

Abstract:

A simplistic model is introduced for determining the thermal characteristics of a Low-rise Residential (LRR) building and then predicts the energy usage by its Heating Ventilation & Air Conditioning (HVAC) system according to changes in weather conditions which are reflected in the Ambient Temperature (Outside Air Temperature). The LRR buildings are treated as a simple lump for solving the heat transfer problem and the model is derived using the lumped capacitance model of transient conduction heat transfer from bodies. Since most contemporary HVAC systems have a thermostat control which will have an offset temperature and user defined set point temperatures which define when the HVAC system will switch on and off. The aim is to predict without any error the Body Temperature (i.e. the Inside Air Temperature) which will estimate the switching on and off of the HVAC system. To validate the mathematical model derived from lumped capacitance we have used EnergyPlus simulation engine, which simulates Buildings with considerable accuracy. We have predicted through the low order model the Inside Air Temperature of a single house kept in three different climate zones (Detroit, Raleigh & Austin) and different orientations for summer and winter seasons. The prediction error from the model for the same day as that of model parameter calculation has showed an error of < 10% in winter for almost all the orientations and climate zones. Whereas the prediction error is only <10% for all the orientations in the summer season for climate zone at higher latitudes (Raleigh & Detroit). Possible factors responsible for the large variations are also noted in the work, paving way for future research.

Keywords: building energy, energy consumption, energy+, HVAC, low order model, lumped capacitance

Procedia PDF Downloads 270
439 Effect of Iron Oxide Addition on the Solid-State Synthesis of Ye’Elimite

Authors: F. Z. Abir, M. Mesnaoui, Y. Abouliatim, L. Nibou, Y. El Hafiane, A. Smith

Abstract:

The cement industry has been taking significant steps for years to reduce its carbon footprint by opting for an eco-friendly alternative such as Calcium Sulfoaluminate Cements (CSA). These binders, compared to Ordinary Portland Cements (OPC), have two advantages: reduction of the CO2 emissions and energy-saving because the sintering temperature of CSA cements is between 1250 and 1350 °C, which means 100 to 200 °C less than OPC. The aim of this work is to study the impurities effect, such as iron oxide, on the formation of the ye'elimite phase, which represents the main phase of Calcium Sulfoaluminate Cements and the consequence on its hydration. Several elaborations and characterization techniques were used to study the structure and microstructure of ye'elimite, such as X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), thermal analysis, specific surface area measurement, and electrical conductivity of diluted solutions. This study details the protocol for the solid-state synthesis of ye'elimite containing increasing amounts of iron (general formula: Ca4Al(6-2x)Fe2xSO16 with x = 0.00 to 1.13). Ye'elimite is formed by solid-state reactions between Al2O3, CaO and CaSO4 and the maximum ye'elimite content is reached at a sintering temperature of 1300 °C. The presence of iron promotes the formation of cubic ye'elimite at the expense of the orthorhombic phase. The total incorporation of iron in ye'elimite structure is possible when x < 0.12. Beyond this content, the ferritic phase (CaO)2(Al2O3,Fe2O3) appears as a minor phase and develops two different morphologies during cooling: dendritic crystals and melt morphology. The formation of the ferrous liquid phase affects the evolution of grain size of the ye’elimite and calcium aluminates.

Keywords: calcium sulfoaluminate cement, ferritic phase, sintering, solid-state synthesis, ye’elimite

Procedia PDF Downloads 194
438 The Impact of Regulatory Changes on the Development of Mobile Medical Apps

Authors: M. McHugh, D. Lillis

Abstract:

Mobile applications are being used to perform a wide variety of tasks in day-to-day life, ranging from checking email to controlling your home heating. Application developers have recognized the potential to transform a smart device into a medical device, by using a mobile medical application i.e. a mobile phone or a tablet. When initially conceived these mobile medical applications performed basic functions e.g. BMI calculator, accessing reference material etc.; however, increasing complexity offers clinicians and patients a range of functionality. As this complexity and functionality increases, so too does the potential risk associated with using such an application. Examples include any applications that provide the ability to inflate and deflate blood pressure cuffs, as well as applications that use patient-specific parameters and calculate dosage or create a dosage plan for radiation therapy. If an unapproved mobile medical application is marketed by a medical device organization, then they face significant penalties such as receiving an FDA warning letter to cease the prohibited activity, fines and possibility of facing a criminal conviction. Regulatory bodies have finalized guidance intended for mobile application developers to establish if their applications are subject to regulatory scrutiny. However, regulatory controls appear contradictory with the approaches taken by mobile application developers who generally work with short development cycles and very little documentation and as such, there is the potential to stifle further improvements due to these regulations. The research presented as part of this paper details how by adopting development techniques, such as agile software development, mobile medical application developers can meet regulatory requirements whilst still fostering innovation.

Keywords: agile, applications, FDA, medical, mobile, regulations, software engineering, standards

Procedia PDF Downloads 364
437 Probabilistic Fracture Evaluation of Reactor Pressure Vessel Subjected to Pressurized Thermal Shock

Authors: Jianguo Chen, Fenggang Zang, Yu Yang, Liangang Zheng

Abstract:

Reactor Pressure Vessel (RPV) is an important security barrier in nuclear power plant. Crack like defects may be produced on RPV during the whole operation lifetime due to the harsh operation condition and irradiation embrittlement. During the severe loss of coolant accident, thermal shock happened as the injection of emergency cooling water into RPV, which results in re-pressurization of the vessel and very high tension stress on the vessel wall, this event called Pressurized Thermal Shock (PTS). Crack on the vessel wall may propagate even penetrate the vessel, so the safety of the RPV would undergo great challenge. Many assumptions in structure integrity evaluation make the result of deterministic fracture mechanics very conservative, which affect the operation lifetime of the plant. Actually, many parameters in the evaluation process, such as fracture toughness and nil-ductility transition temperature, have statistical distribution characteristics. So it is necessary to assess the structural integrity of RPV subjected to PTS event by means of Probabilistic Fracture Mechanics (PFM). Structure integrity evaluation methods of RPV subjected to PTS event are summarized firstly, then evaluation method based on probabilistic fracture mechanics are presented by considering the probabilistic characteristics of material and structure parameters. A comprehensive analysis example is carried out at last. The results show that the probability of crack penetrates through wall increases gradually with the growth of fast neutron irradiation flux. The results give advice for reactor life extension.

Keywords: fracture toughness, integrity evaluation, pressurized thermal shock, probabilistic fracture mechanics, reactor pressure vessel

Procedia PDF Downloads 255
436 The Impact of Surface Roughness and PTFE/TiF3/FeF3 Additives in Plain ZDDP Oil on the Friction and Wear Behavior Using Thermal and Tribological Analysis under Extreme Pressure Condition

Authors: Gabi N. Nehme, Saeed Ghalambor

Abstract:

The use of titanium fluoride and iron fluoride (TiF3/FeF3) catalysts in combination with polutetrafluoroethylene (PTFE) in plain zinc dialkyldithiophosphate (ZDDP) oil is important for the study of engine tribocomponents and is increasingly a strategy to improve the formation of tribofilm and to provide low friction and excellent wear protection in reduced phosphorus plain ZDDP oil. The influence of surface roughness and the concentration of TiF3/FeF3/PTFE were investigated using bearing steel samples dipped in lubricant solution @100°C for two different heating time durations. This paper addresses the effects of water drop contact angle using different surface finishes after treating them with different lubricant combination. The calculated water drop contact angles were analyzed using Design of Experiment software (DOE) and it was determined that a 0.05 μm Ra surface roughness would provide an excellent TiF3/FeF3/PTFE coating for antiwear resistance as reflected in the scanning electron microscopy (SEM) images and the tribological testing under extreme pressure conditions. Both friction and wear performance depend greatly on the PTFE/and catalysts in plain ZDDP oil with 0.05% phosphorous and on the surface finish of bearing steel. The friction and wear reducing effects, which was observed in the tribological tests, indicated a better micro lubrication effect of the 0.05 μm Ra surface roughness treated at 100°C for 24 hours when compared to the 0.1 μm Ra surface roughness with the same treatment.

Keywords: scanning electron microscopy, ZDDP, catalysts, PTFE, friction, wear

Procedia PDF Downloads 354
435 Modeling Flow and Deposition Characteristics of Solid CO2 during Choked Flow of CO2 Pipeline in CCS

Authors: Teng lin, Li Yuxing, Han Hui, Zhao Pengfei, Zhang Datong

Abstract:

With the development of carbon capture and storage (CCS), the flow assurance of CO2 transportation becomes more important, particularly for supercritical CO2 pipelines. The relieving system using the choke valve is applied to control the pressure in CO2 pipeline. However, the temperature of fluid would drop rapidly because of Joule-Thomson cooling (JTC), which may cause solid CO2 form and block the pipe. In this paper, a Computational Fluid Dynamic (CFD) model, using the modified Lagrangian method, Reynold's Stress Transport model (RSM) for turbulence and stochastic tracking model (STM) for particle trajectory, was developed to predict the deposition characteristic of solid carbon dioxide. The model predictions were in good agreement with the experiment data published in the literature. It can be observed that the particle distribution affected the deposition behavior. In the region of the sudden expansion, the smaller particles accumulated tightly on the wall were dominant for pipe blockage. On the contrary, the size of solid CO2 particles deposited near the outlet usually was bigger and the stacked structure was looser. According to the calculation results, the movement of the particles can be regarded as the main four types: turbulent motion close to the sudden expansion structure, balanced motion at sudden expansion-middle region, inertial motion near the outlet and the escape. Furthermore the particle deposits accumulated primarily in the sudden expansion region, reattachment region and outlet region because of the four type of motion. Also the Stokes number had an effect on the deposition ratio and it is recommended for Stokes number to avoid 3-8St.

Keywords: carbon capture and storage, carbon dioxide pipeline, gas-particle flow, deposition

Procedia PDF Downloads 372
434 A Mixed 3D Finite Element for Highly Deformable Thermoviscoplastic Materials Under Ductile Damage

Authors: João Paulo Pascon

Abstract:

In this work, a mixed 3D finite element formulation is proposed in order to analyze thermoviscoplastic materials under large strain levels and ductile damage. To this end, a tetrahedral element of linear order is employed, considering a thermoviscoplastic constitutive law together with the neo-Hookean hyperelastic relationship and a nonlocal Gurson`s porous plasticity theory The material model is capable of reproducing finite deformations, elastoplastic behavior, void growth, nucleation and coalescence, thermal effects such as plastic work heating and conductivity, strain hardening and strain-rate dependence. The nonlocal character is introduced by means of a nonlocal parameter applied to the Laplacian of the porosity field. The element degrees of freedom are the nodal values of the deformed position, the temperature and the nonlocal porosity field. The internal variables are updated at the Gauss points according to the yield criterion and the evolution laws, including the yield stress of matrix, the equivalent plastic strain, the local porosity and the plastic components of the Cauchy-Green stretch tensor. Two problems involving 3D specimens and ductile damage are numerically analyzed with the developed computational code: the necking problem and a notched sample. The effect of the nonlocal parameter and the mesh refinement is investigated in detail. Results indicate the need of a proper nonlocal parameter. In addition, the numerical formulation can predict ductile fracture, based on the evolution of the fully damaged zone.

Keywords: mixed finite element, large strains, ductile damage, thermoviscoplasticity

Procedia PDF Downloads 100
433 High-Frequency Monitoring Results of a Piled Raft Foundation under Wind Loading

Authors: Laurent Pitteloud, Jörg Meier

Abstract:

Piled raft foundations represent an efficient and reliable technique for transferring high vertical and horizontal loads to the subsoil. Piled raft foundations were success­fully implemented for several high-rise buildings world­wide over the last decades. For the structural design of this foundation type the stiffnesses of both the piles and the raft have to be deter­mined for the static (e.g. dead load, live load) and the dynamic load cases (e.g. earthquake). In this context the question often arises, to which proportion wind loads are to be considered as dynamic loads. Usually a piled raft foundation has to be monitored in order to verify the design hypotheses. As an additional benefit, the analysis of this monitoring data may lead to a better under­standing of the behaviour of this foundation type for future projects in similar subsoil conditions. In case the measurement frequency is high enough, one may also draw conclusions on the effect of wind loading on the piled raft foundation. For a 41-storey office building in Basel, Switzerland, the preliminary design showed that a piled raft foundation was the best solution to satisfy both design requirements, as well as economic aspects. A high-frequency monitoring of the foundation including pile loads, vertical stresses under the raft, as well as pore water pressures was performed over 5 years. In windy situations the analysis of the measure­ments shows that the pile load increment due to wind consists of a static and a cyclic load term. As piles and raft react with different stiffnesses under static and dynamic loading, these measure­ments are useful for the correct definition of stiffnesses of future piled raft foundations. This paper outlines the design strategy and the numerical modelling of the aforementioned piled raft foundation. The measurement results are presented and analysed. Based on the findings, comments and conclusions on the definition of pile and raft stiffnesses for vertical and wind loading are proposed.

Keywords: design, dynamic, foundation, monitoring, pile, raft, wind load

Procedia PDF Downloads 200
432 Mg and MgN₃ Cluster in Diamond: Quantum Mechanical Studies

Authors: T. S. Almutairi, Paul May, Neil Allan

Abstract:

The geometrical, electronic and magnetic properties of the neutral Mg center and MgN₃ cluster in diamond have been studied theoretically in detail by means of an HSE06 Hamiltonian that includes a fraction of the exact exchange term; this is important for a satisfactory picture of the electronic states of open-shell systems. Another batch of the calculations by GGA functionals have also been included for comparison, and these support the results from HSE06. The local perturbations in the lattice by introduced Mg defect are restricted in the first and second shell of atoms before eliminated. The formation energy calculated with HSE06 and GGA of single Mg agrees with the previous result. We found the triplet state with C₃ᵥ is the ground state of Mg center with energy lower than the singlet with C₂ᵥ by ~ 0.1 eV. The recent experimental ZPL (557.4 nm) of Mg center in diamond has been discussed in the view of present work. The analysis of the band-structure of the MgN₃ cluster confirms that the MgN₃ defect introduces a shallow donor level in the gap lying within the conduction band edge. This observation is supported by the EMM that produces n-type levels shallower than the P donor level. The formation energy of MgN₂ calculated from a 2NV defect (~ 3.6 eV) is a promising value from which to engineer MgN₃ defects inside the diamond. Ion-implantation followed by heating to about 1200-1600°C might induce migration of N related defects to the localized Mg center. Temperature control is needed for this process to restore the damage and ensure the mobilities of V and N, which demands a more precise experimental study.

Keywords: empirical marker method, generalised gradient approximation, Heyd–Scuseria–Ernzerhof screened hybrid functional, zero phono line

Procedia PDF Downloads 119
431 Solubility of Carbon Dioxide in Methoxy and Nitrile-Functionalized Ionic Liquids

Authors: D. A. Bruzon, G. Tapang, I. S. Martinez

Abstract:

Global warming and climate change are significant environmental concerns, which require immediate global action in carbon emission mitigation. The capture, sequestration, and conversion of carbon dioxide to other products such as methane or ethanol are ways to control excessive emissions. Ionic liquids have shown great potential among the materials studied as carbon capture solvents and catalysts in the reduction of CO2. In this study, ionic liquids comprising of a methoxy (-OCH3) and cyano (-CN) functionalized imidazolium cation, [MOBMIM] and [CNBMIM] respectively, paired with tris(pentafluoroethyl)trifluorophosphate [FAP] anion were evaluated as effective capture solvents, and organocatalysts in the reduction of CO2. An in-situ electrochemical set-up, which can measure controlled amounts of CO2 both in the gas and in the ionic liquid phase, was used. Initially, reduction potentials of CO2 in the CO2-saturated ionic liquids containing the internal standard cobaltocene were determined using cyclic voltammetry. Chronoamperometric transients were obtained at potentials slightly less negative than the reduction potentials of CO2 in each ionic liquid. The time-dependent current response was measured under a controlled atmosphere. Reduction potentials of CO2 in methoxy and cyano-functionalized [FAP] ionic liquids were observed to occur at ca. -1.0 V (vs. Cc+/Cc), which was significantly lower compared to the non-functionalized analog [PMIM][FAP], with an observed reduction potential of CO2 at -1.6 V (vs. Cc+/Cc). This decrease in the potential required for CO2 reduction in the functionalized ionic liquids shows that the functional groups methoxy and cyano effectively decreased the free energy of formation of the radical anion CO2●⁻, suggesting that these electrolytes may be used as organocatalysts in the reduction of the greenhouse gas. However, upon analyzing the solubility of the gas in each ionic liquid, [PMIM][FAP] showed the highest absorption capacity, at 4.81 mM under saturated conditions, compared to [MOBMIM][FAP] at 1.86 mM, and [CNBMIM][FAP] at 0.76 mM. Also, calculated Henry’s constant determined from the concentration-pressure graph of each functionalized ionic liquid shows that the groups -OCH3 and -CN attached terminal to a C4 alkyl chain do not significantly improve CO2 solubility.

Keywords: carbon capture, CO2 reduction, electrochemistry, ionic liquids

Procedia PDF Downloads 406
430 Preservation of Sensitive Biological Products: An Insight into Conventional and Upcoming Drying Techniques

Authors: Jannika Dombrowski, Sabine Ambros, Ulrich Kulozik

Abstract:

Several drying techniques are used to preserve sensitive substances such as probiotic lactic acid bacteria. With the aim to better understand differences between these processes, this work gives new insights into structural variations resulting from different preservation methods and their impact on product quality and storage stability. Industrially established methods (freeze drying, spray drying) were compared to upcoming vacuum, microwave-freeze, and microwave-vacuum drying. For freeze and microwave-freeze dried samples, survival and activity maintained 100%, whereas vacuum and microwave-vacuum dried cultures achieved 30-40% survival. Spray drying yielded in lowest viability. The results are directly related to temperature and oxygen content during drying. Interestingly, most storage stable products resulted from vacuum and microwave-vacuum drying due to denser product structures as determined by helium pycnometry and SEM images. Further, lower water adsorption velocities were responsible for lower inactivation rates. Concluding, resulting product structures as well as survival rates and storage stability mainly depend on the type of water removal instead of energy input. Microwave energy compared to conductive heating did not lead to significant differences regarding the examined factors. Correlations could be proven for three investigated microbial strains. The presentation will be completed by an overview on the energy efficiency of the presented methods.

Keywords: drying techniques, energy efficiency, lactic acid bacteria, probiotics, survival rates, structure characterization

Procedia PDF Downloads 242
429 Detoxification and Recycling of the Harvested Microalgae using Eco-friendly Food Waste Recycling Technology with Salt-tolerant Mushroom Strains

Authors: J. M. Kim, Y. W. Jung, E. Lee, Y. K. Kwack, , S. K. Sim*

Abstract:

Cyanobacterial blooms in lakes, reservoirs, and rivers have been environmental and social issues due to its toxicity, odor, etc. Among the cyanotoxins, microcystins exist mostly within the cyanobacterial cells, and they are released from the cells. Therefore, an innovative technology is needed to detoxify the harvested microalgae for environment-friendly utilization of the harvested microalgae. This study develops detoxification method of microcystins in the harvested microalgae and recycling harvested microalgae with food waste using salt-tolerant mushroom strains and natural ecosystem decomposer. During this eco-friendly organic waste recycling process, diverse bacteria or various enzymes of the salt-tolerant mushroom strains decompose the microystins and cyclic peptides. Using PHLC/Mass analysis, it was verified that 99.8% of the microcystins of the harvested microalgae was detoxified in the harvested mushroom as well as in the recycled organic biomass. Further study is planned to verify the decomposition mechanisms of the microcystins by the bacteria or enzymes. In this study, the harvested microalgae is mixed with the food waste, and then the mixed toxic organic waste is used as mushroom compost by adjusting the water content of about 70% using cellulose such as sawdust cocopeats and cottonseeds. The mushroom compost is bottled, sterilized, and salt-tolerant mushroom spawn is inoculated. The mushroom is then cultured and growing in the temperature, humidity, and CO2 controlled environment. During the cultivation and growing process of the mushroom, microcystins are decomposed into non-toxic organic or inorganic compounds by diverse bacteria or various enzymes of the mushroom strains. Various enzymes of the mushroom strains decompose organics of the mixed organic waste and produce nutritious and antibiotic mushrooms. Cultured biomass compost after mushroom harvest can be used for organic fertilizer, functional bio-feed, and RE-100 biomass renewable energy source. In this eco-friendly organic waste recycling process, no toxic material, wastewater, nor sludge is generated; thus, sustainable with the circular economy.

Keywords: microalgae, microcystin, food waste, salt-tolerant mushroom strains, sustainability, circular economy

Procedia PDF Downloads 147
428 Comparative Ante-Mortem Studies through Electrochemical Impedance Spectroscopy, Differential Voltage Analysis and Incremental Capacity Analysis on Lithium Ion Batteries

Authors: Ana Maria Igual-Munoz, Juan Gilabert, Marta Garcia, Alfredo Quijano-Lopez

Abstract:

Nowadays, several lithium-ion battery technologies are being commercialized. These chemistries present different properties that make them more suitable for different purposes. However, comparative studies showing the advantages and disadvantages of different chemistries are incomplete or scarce. Different non-destructive techniques are currently being employed to detect how ageing affects the active materials of lithium-ion batteries (LIBs). For instance, electrochemical impedance spectroscopy (EIS) is one of the most employed ones. This technique allows the user to identify the variations on the different resistances present in LIBs. On the other hand, differential voltage analysis (DVA) has shown to be a powerful technique to detect the processes affecting the different capacities present in LIBs. This technique shows variations in the state of health (SOH) and the capacities for one or both electrodes depending on their chemistry. Finally, incremental capacity analysis (ICA) is a widely known technique for being capable of detecting phase equilibria. It reminds of the commonly used cyclic voltamperometry, as it allows detecting some reactions taking place in the electrodes. In these studies, a set of ageing procedures have been applied to commercial batteries of different chemistries (NCA, NMC, and LFP). Afterwards, results of EIS, DVA, and ICA have been used to correlate them with the processes affecting each cell. Ciclability, overpotential, and temperature cycling studies envisage how the charge-discharge rates, cut-off voltage, and operation temperatures affect each chemistry. These studies will serve battery pack manufacturers, as for common battery users, as they will determine the different conditions affecting cells for each of the chemistry. Taking this into account, each cell could be adjusted to the final purpose of the battery application. Last but not least, all the degradation parameters observed are focused to be integrated into degradation models in the future. This fact will allow the implementation of the widely known digital twins to the degradation in LIBs.

Keywords: lithium ion batteries, non-destructive analysis, different chemistries, ante-mortem studies, ICA, DVA, EIS

Procedia PDF Downloads 133
427 Effects of the Tomato Pomace Oil Extract on Physical and Antioxidant Properties of Gelatin Films

Authors: N. Jirukkakul, J. Sodtipinta

Abstract:

Tomatoes are widely consumed as fresh and processed products through the manufacturing industry. Therefore, tomato pomace is generated as a by-product accounting for about 5-13% of the whole tomato. Antioxidants still remain in tomato pomace and extraction of tomato oil may useful in edible film production. The edible film solution was prepared by mixing gelatin (2, 4 and 6%) with the distilled water and heating at 40oC for 30 min. Effect of tomato pomace oil was evaluated at 0, 0.5 and 1%. Film solution was poured in plate and dried overnight at 40oC before determining the physical properties, which are tensile strength, moisture content, color, solubility, and swelling power. The results showed that an increase gelatin concentration caused increasing of tensile strength, moisture content, solubility and swelling power. The edible film with tomato pomace oil extract appeared as the rough film with oil droplet dispersion. The addition of tomato pomace oil extract caused an increase in lightness, redness and yellowness, while tensile strength, moisture content, and solubility were decreased. Film with tomato pomace oil extract at 0.5 and 1% exhibited antioxidant properties but those properties were not significantly different (p<0.05) between film incorporated with tomato pomace oil extract 0.5 and 1%. The suitable condition for film production in this study, 4% of gelatin and 0.5% of tomato pomace oil extract, was selected for protecting oxidation of palm oil. At 15 days of the storage period, the palm oil which covered by gelatin film with tomato pomace oil extract had 22.45 milliequivalents/kg of peroxide value (PV), while, the palm oil which covered by polypropylene film and control had 24.79 and 26.67 milliequivalents/kg, respectively. Therefore, incorporation of tomato pomace oil extract in gelatin film was able to protect the oxidation of food products with high fat content.

Keywords: antioxidant, gelatin films, physical properties, tomato oil extract

Procedia PDF Downloads 283
426 Quantifying the UK’s Future Thermal Electricity Generation Water Use: Regional Analysis

Authors: Daniel Murrant, Andrew Quinn, Lee Chapman

Abstract:

A growing population has led to increasing global water and energy demand. This demand, combined with the effects of climate change and an increasing need to maintain and protect the natural environment, represents a potentially severe threat to many national infrastructure systems. This has resulted in a considerable quantity of published material on the interdependencies that exist between the supply of water and the thermal generation of electricity, often known as the water-energy nexus. Focusing specifically on the UK, there is a growing concern that the future availability of water may at times constrain thermal electricity generation, and therefore hinder the UK in meeting its increasing demand for a secure, and affordable supply of low carbon electricity. To provide further information on the threat the water-energy nexus may pose to the UK’s energy system, this paper models the regional water demand of UK thermal electricity generation in 2030 and 2050. It uses the strategically important Energy Systems Modelling Environment model developed by the Energy Technologies Institute. Unlike previous research, this paper was able to use abstraction and consumption factors specific to UK power stations. It finds that by 2050 the South East, Yorkshire and Humber, the West Midlands and North West regions are those with the greatest freshwater demand and therefore most likely to suffer from a lack of resource. However, it finds that by 2050 it is the East, South West and East Midlands regions with the greatest total water (fresh, estuarine and seawater) demand and the most likely to be constrained by environmental standards.

Keywords: climate change, power station cooling, UK water-energy nexus, water abstraction, water resources

Procedia PDF Downloads 297
425 Environmental Protection by Optimum Utilization of Car Air Conditioners

Authors: Sanchita Abrol, Kunal Rana, Ankit Dhir, S. K. Gupta

Abstract:

According to N.R.E.L.’s findings, 700 crore gallons of petrol is used annually to run the air conditioners of passenger vehicles (nearly 6% of total fuel consumption in the USA). Beyond fuel use, the Environmental Protection Agency reported that refrigerant leaks from auto air conditioning units add an additional 5 crore metric tons of carbon emissions to the atmosphere each year. The objective of our project is to deal with this vital issue by carefully modifying the interiors of a car thereby increasing its mileage and the efficiency of its engine. This would consequently result in a decrease in tail emission and generated pollution along with improved car performance. An automatic mechanism, deployed between the front and the rear seats, consisting of transparent thermal insulating sheet/curtain, would roll down as per the requirement of the driver in order to optimize the volume for effective air conditioning, when travelling alone or with a person. The reduction in effective volume will yield favourable results. Even on a mild sunny day, the temperature inside a parked car can quickly spike to life-threatening levels. For a stationary parked car, insulation would be provided beneath its metal body so as to reduce the rate of heat transfer and increase the transmissivity. As a result, the car would not require a large amount of air conditioning for maintaining lower temperature, which would provide us similar benefits. Authors established the feasibility studies, system engineering and primarily theoretical and experimental results confirming the idea and motivation to fabricate and test the actual product.

Keywords: automation, car, cooling insulating curtains, heat optimization, insulation, reduction in tail emission, mileage

Procedia PDF Downloads 282
424 The Electric Car Wheel Hub Motor Work Analysis with the Use of 2D FEM Electromagnetic Method and 3D CFD Thermal Simulations

Authors: Piotr Dukalski, Bartlomiej Bedkowski, Tomasz Jarek, Tomasz Wolnik

Abstract:

The article is concerned with the design of an electric in wheel hub motor installed in an electric car with two-wheel drive. It presents the construction of the motor on the 3D cross-section model. Work simulation of the motor (applicated to Fiat Panda car) and selected driving parameters such as driving on the road with a slope of 20%, driving at maximum speed, maximum acceleration of the car from 0 to 100 km/h are considered by the authors in the article. The demand for the drive power taking into account the resistance to movement was determined for selected driving conditions. The parameters of the motor operation and the power losses in its individual elements, calculated using the FEM 2D method, are presented for the selected car driving parameters. The calculated power losses are used in 3D models for thermal calculations using the CFD method. Detailed construction of thermal models with materials data, boundary conditions and losses calculated using the FEM 2D method are presented in the article. The article presents and describes calculated temperature distributions in individual motor components such as winding, permanent magnets, magnetic core, body, cooling system components. Generated losses in individual motor components and their impact on the limitation of its operating parameters are described by authors. Attention is paid to the losses generated in permanent magnets, which are a source of heat as the removal of which from inside the motor is difficult. Presented results of calculations show how individual motor power losses, generated in different load conditions while driving, affect its thermal state.

Keywords: electric car, electric drive, electric motor, thermal calculations, wheel hub motor

Procedia PDF Downloads 178
423 Serum Potassium Before, During and After Exercise at 70% Maximal Heart Rate: The Safe Exercise Dosage Across Different Parameters of Health and Fitness Level

Authors: Omar bin Mihat

Abstract:

The number of sudden deaths is increasing over the past years. These deaths occur not during physical activities but upon cessation. Post-mortem confirms these deaths as cardiac arrest non-specifically. Congenital heart disease is a condition undiagnosed whereby only surface upon physical exertion leading to sudden death is unavoidable. Channelopathy, a condition that refers to any disease from the defect in iron-channel function, particularly the sodium-potassium pump, during the cessation of the exercise can be controlled. The derivation of heart rate return (HRrtn) is a procedure of a control cooling down process according to the heart rate (HR). Empirically, potassium rises linearly with intensity and falls sharply upon abrupt cessation of exertion, resulting in fatal arrhythmia due to hypokalaemia. It is vital that the flux of potassium should be maintained within the normal range during physical activities. To achieve this, the dosage of physical exertion (exercise) should be identified. Various percentages of the intensity of maximum heart rate (MHR) will precipitate different adaptations and remodeling of various organs. 70% of MHR will surface physiological adaptations, including enhancement of endurance, fitness level, and general health, and there was no significant rise of serum potassium (K+) during the entire phase of the treadmill brisk walk at a different rate of perceived exertion (RPE) from the subject of various fitness background. There was also no significant rise in blood pressure (BP) during the entire phase of the treadmill brisk walk, substantiating 70% MHR is the safe dosage across different parameters of health and fitness level.

Keywords: potassium, maximal heart rate, exercise dosage, fitness level

Procedia PDF Downloads 72
422 Electrochemical Coordination Polymers of Copper(II) Synthesis by Using Rigid and Felexible Ligands

Authors: P. Mirahmadpour, M. H. Banitaba, D. Nematollahi

Abstract:

The chemistry of coordination polymers in recent years has grown exponentially not only because of their interesting architectures but also due to their various technical applications in many fields including ion exchange, chemical catalysis, small molecule separations, and drug release. The use of bridging ligands for the controlled self-assembly of one, two or three dimensional metallo-supramolecular species is the subject of serious study in last decade. Numerous different synthetic methods have been offered for the preparation of coordination polymers such as (a) diffusion from the gas phase, (b) slow diffusion of the reactants into a polymeric matrix, (c) evaporation of the solvent at ambient or reduced temperatures, (d) temperature controlled cooling, (e) precipitation or recrystallisation from a mixture of solvents and (f) hydrothermal synthesis. The electrosynthetic process suggested several advantages over conventional approaches. A general advantage of electrochemical synthesis is that it allows synthesis under milder conditions than typical solvothermal or microwave synthesis. In this work we have introduced a simple electrochemical method for growing metal coordination polymers based on copper with a flexible 2,2’-thiodiacetic acid (TDA) and rigid 1,2,4,5-benzenetetracarboxylate (BTC) ligands. The structure of coordination polymers were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), elemental analysis, thermal gravimetric (TG) and differential thermal analyses (DTA). The single-crystal X-ray diffraction analysis revealed that different conformations of the ligands and different coordination modes of the carboxylate group as well as different coordination geometries of the copper atoms. Electrochemical synthesis of coordination polymers has different advantages such as faster synthesis at lower temperature in compare with conventional chemical methods and crystallization of desired materials in a single synthetic step.

Keywords: 1, 2, 4, 5-benzenetetracarboxylate, coordination polymer, copper, 2, 2’-thiodiacetic acid

Procedia PDF Downloads 212
421 Development and Evaluation of a Nutraceutical Herbal Summer Drink

Authors: Munish Garg, Vinni Ahuja

Abstract:

In the past few years, the high consumption of soft drinks has attracted negative attention world-wide due to its possible adverse effects, leading the health conscious people to find alternative nutraceutical or herbal health drinks. In the present study, a nutraceutical soft drink was developed utilizing some easily available and well known traditional herbs having nutritional potential. The key ingredients were selected as bael, amla, lemon juice, ashwagandha and poppy seeds based on their household routine use in the summer with proven refreshing, cooling and energetic feeling since ages. After several trials made, the final composition of nutraceutical summer soft drink was selected as most suitable combination based on the taste, physicochemical, microbial and organoleptic point of view. The physicochemical analysis of the prepared drink found to contain optimum level of titratable acidity, total soluble solids and pH which were in accordance of the commercial recommendations. There were no bacterial colonies found in the product therefore found within limits. During the nine point’s hedonic scale sensory evaluation, the drink was strongly liked for colour, taste, flavour and texture. The formulation was found to contain flavonoids (80mg/100ml), phenolics (103mg/100ml), vitamin C (250mg/100ml) and has antioxidant potential (75.52%) apart from providing several other essential vitamins, minerals and healthy components. The developed nutraceutical drink provides an economical and feasible option for the consumers with very good taste combined with potential health benefits. The present drink is potentially capable to replace the synthetic soft drinks available in the market.

Keywords: herbal drink, summer drink, nutraceuticals, soft drink

Procedia PDF Downloads 419
420 Microwave Synthesis and Molecular Docking Studies of Azetidinone Analogous Bearing Diphenyl Ether Nucleus as a Potent Antimycobacterial and Antiprotozoal Agent

Authors: Vatsal M. Patel, Navin B. Patel

Abstract:

The present studies deal with the developing a series bearing a diphenyl ethers nucleus using structure-based drug design concept. A newer series of diphenyl ether based azetidinone namely N-(3-chloro-2-oxo-4-(3-phenoxyphenyl)azetidin-1-yl)-2-(substituted amino)acetamide (2a-j) have been synthesized by condensation of m-phenoxybenzaldehyde with 2-(substituted-phenylamino)acetohydrazide followed by the cyclisation of resulting Schiff base (1a-j) by conventional method as well as microwave heating approach as a part of an environmentally benign synthetic protocol. All the synthesized compounds were characterized by spectral analysis and were screened for in vitro antimicrobial, antitubercular and antiprotozoal activity. The compound 2f was found to be most active M. tuberculosis (6.25 µM) MIC value in the primary screening as well as this same derivative has been found potency against L. mexicana and T. cruzi with MIC value 2.09 and 6.69 µM comparable to the reference drug Miltefosina and Nifurtimox. To provide understandable evidence to predict binding mode and approximate binding energy of a compound to a target in the terms of ligand-protein interaction, all synthesized compounds were docked against an enoyl-[acyl-carrier-protein] reductase of M. tuberculosis (PDB ID: 4u0j). The computational studies revealed that azetidinone derivatives have a high affinity for the active site of enzyme which provides a strong platform for new structure-based design efforts. The Lipinski’s parameters showed good drug-like properties and can be developed as an oral drug candidate.

Keywords: antimycobacterial, antiprotozoal, azetidinone, diphenylether, docking, microwave

Procedia PDF Downloads 163
419 Devulcanization of Waste Rubber Tyre Utilizing Deep Eutectic Solvents and Ultrasonic Energy

Authors: Ricky Saputra, Rashmi Walvekar, Mohammad Khalid, Kaveh Shahbaz, Suganti Ramarad

Abstract:

This particular study of interest aims to study the effect of coupling ultrasonic treatment with eutectic solvents in devulcanization process of waste rubber tyre. Specifically, three different types of Deep Eutectic Solvents (DES) were utilized, namely ChCl:Urea (1:2), ChCl:ZnCl₂ (1:2) and ZnCl₂:urea (2:7) in which their physicochemical properties were analysed and proven to have permissible water content that is less than 3.0 wt%, degradation temperature below 200ᵒC and freezing point below 60ᵒC. The mass ratio of rubber to DES was varied from 1:20-1:40, sonicated for 1 hour at 37 kHz and heated at variable time of 5-30 min at 180ᵒC. Energy dispersive x-rays (EDX) results revealed that the first two DESs give the highest degree of sulphur removal at 74.44 and 76.69% respectively with optimum heating time at 15 minutes whereby if prolonged, reformation of crosslink network would be experienced. Such is supported by the evidence shown by both FTIR and FESEM results where di-sulfide peak reappears at 30 minutes and morphological structures from 15 to 30 minutes change from smooth with high voidage to rigid with low voidage respectively. Furthermore, TGA curve reveals similar phenomena whereby at 15 minutes thermal decomposition temperature is at the lowest due to the decrease of molecular weight as a result of sulphur removal but increases back at 30 minutes. Type of bond change was also analysed whereby it was found that only di-sulphide bond was cleaved and which indicates partial-devulcanization. Overall, the results show that DES has a great potential to be used as devulcanizing solvent.

Keywords: crosslink network, devulcanization, eutectic solvents, reformation, ultrasonic

Procedia PDF Downloads 174
418 Heating of the Ions by Electromagnetic Ion Cyclotron (EMIC) Waves Using Magnetospheric Multiscale (MMS) Satellite Observation

Authors: A. A. Abid

Abstract:

The magnetospheric multiscale (MMS) satellite observations in the inner magnetosphere were used to detect the proton band of the electromagnetic ion cyclotron (EMIC) waves on December 14, 2015, which have been significantly contributing to the dynamics of the magnetosphere. It has been examined that the intensity of EMIC waves gradually increases by decreasing the L shell. The waves are triggered by hot proton thermal anisotropy. The low-energy cold protons (ions) can be activated by the EMIC waves when the EMIC wave intensity is high. As a result, these previously invisible protons are now visible. As a result, the EMC waves also excite the helium ions. The EMIC waves, whose frequency in the magnetosphere of the Earth ranges from 0.001 Hz to 5 Hz, have drawn a lot of attention for their ability to carry energy. Since these waves act as a mechanism for the loss of energetic electrons from the Van Allen radiation belt to the atmosphere, therefore, it is necessary to understand how and where they can be produced, as well as the direction of waves along the magnetic field lines. This work examines how the excitation of EMIC waves is affected by the energy of hot proton temperature anisotropy, and It has a minimum resonance energy of 6.9 keV and a range of 7 to 26 keV. On the hot protons, however, the reverse effect can be seen for energies below the minimum resonance energy. It is demonstrated that throughout the energy range of 1 eV to 100 eV, the number density and temperature anisotropy of the protons likewise rise as the intensity of the EMIC waves increases. Key Points: 1. The analysis of EMIC waves produced by hot proton temperature anisotropy using MMS data. 2. The number density and temperature anisotropy of the cold protons increases owing to high-intensity EMIC waves. 3. The cold protons with an energy range of 1-100eV are energized by EMIC waves using the Magnetospheric Multiscale (MMS) satellite not been discussed before

Keywords: EMIC waves, temperature anisotropy of hot protons, energization of the cold proton, magnetospheric multiscale (MMS) satellite observations

Procedia PDF Downloads 130
417 Sex-Dependent Fitness Improvement of Hercules Beetle Larvae by Amendment of Thermophile-Fermented Compost to Humus

Authors: Futo Asano, Yusuke Yatsushiro, Hirokuni Miyamoto, Hiroaki Kodama

Abstract:

A thermophile-fermented compost is produced using small fishes, crabs, and shrimps under a high temperature (approximately 75℃) by fermentation-associated self-heating. This compost has been used as a feed additive for pigs and hens in Japan, and the fecundity of this livestock is enhanced. Firmicutes is a dominant phylum in the microbial composition of the compost. We first reported that improvement of female larval fitness of Hercules beetle can be achieved by amendment of this compost to the humus. When the 90-d-old larvae were reared for subsequent 72 days in the humus with this compost, the growth of female larvae was significantly enhanced when compared with the growth of female larvae in the humus without the compost. In contrast, the growth of male larvae in the compost-free humus was the same as the larvae grow in the compost-amended humus. The bacterial composition of the feces of larvae was determined at 0 days and 46 days after transfer to the humus with or without the compost. The most dominant bacterium in the feces was Xylanimonas. Interestingly, the growth improvement of female larvae was associated with an increased abundance of Mollicutes in the fecal samples. These results indicate that the compost act as a probiotic material for enhancing the female larvae growth by supporting Mollicutes. Here, we tried to isolate Mollicutes from the contents of the midgut and hindgut of the 3rd instar female larvae of the Hercules beetle. These gut contents were spread onto a selective agar medium for Mollicutes (PPLO agar broth, BD Difco, NJ, USA). Although we isolated none of the Mollicutes until now, several bacteria that are closely related to Xylanimonas and Luteimicrobium were isolated. These isolates have xylanase and glucanase (CMCase) activities. We show the gut bacterial profiles of larvae and discuss how the fitness of female larvae of the Hercules beetle is improved by the compost.

Keywords: compost, beetle, mollicutes, woody biomass

Procedia PDF Downloads 88
416 Porous Alumina-Carbon Nanotubes Nanocomposite Membranes Processed via Spark Plasma Sintering for Heavy Metal Removal from Contaminated Water

Authors: H. K. Shahzad, M. A. Hussein, F. Patel, N. Al-Aqeeli, T. Laoui

Abstract:

The purpose of the present study was to use the adsorption mechanism with microfiltration synergistically for efficient heavy metal removal from contaminated water. Alumina (Al2O3) is commonly used for ceramic membranes development while recently carbon nanotubes (CNTs) have been considered among the best adsorbent materials for heavy metals. In this work, we combined both of these materials to prepare porous Al2O3-CNTs nanocomposite membranes via Spark Plasma Sintering (SPS) technique. Alumina was used as a base matrix while CNTs were added as filler. The SPS process parameters i.e. applied pressure, temperature, heating rate, and holding time were varied to obtain the best combination of porosity (64%, measured according to ASTM c373-14a) and strength (3.2 MPa, measured by diametrical compression test) of the developed membranes. The prepared membranes were characterized using X-ray diffraction (XRD), field emission secondary electron microscopy (FE-SEM), contact angle and porosity measurements. The results showed that properties of the synthesized membranes were highly influenced by the SPS process parameters. FE-SEM images revealed that CNTs were reasonably dispersed in the alumina matrix. The porous membranes were evaluated for their water flux transport as well as their capacity to adsorb heavy metals ions. Selected membranes were able to remove about 97% cadmium from contaminated water. Further work is underway to enhance the removal efficiency of the developed membranes as well as to remove other heavy metals such as arsenic and mercury.

Keywords: heavy metal removal, inorganic membrane, nanocomposite, spark plasma sintering

Procedia PDF Downloads 264
415 Human Rights to Environment: The Constitutional and Judicial Perspective in India

Authors: Varinder Singh

Abstract:

The primitive man had not known anything like human rights. In the later centuries of human progress with the development of scientific and technological knowledge, the growth of population and the tremendous changes in the human environment, the laws of nature that maintained the Eco-balance crumbled. The race for better and comfortable life landed mankind in a vicious circle. It created environmental imbalance, unplanned and uneven development, breakdown of self-sustaining village economy, mushrooming of shanty towns and slums, widening the chasm between the rich and the poor, over-exploitation of natural resources, desertification of arable lands, pollution of different kinds, heating up of earth and depletion of ozone layer. Modem International Life has been deeply marked and transformed by current endeavors to meet the needs and fulfill the requirements of protection of human person and of the environment. Such endeavors have been encouraged by the widespread recognition that protection of human being and the environment reflects common superior values and constitutes a common concern of mankind. The parallel evolutions of human rights protection and environmental protection disclose some close affinities. There was the occurrence of process of internationalization of both human rights protection and environmental protection, the former beginning with the 1948 Universal Declaration of Human Rights, the latter with the 1972 Stockholm Declaration on the Human Environment.It is now well established that it is the basic human right of every individual to live in a pollution free environment with full human dignity. The judiciary has so far pronounced a number of judgments in this regard. The Supreme Court in view of various laws relating to environment protection and the constitutional provision has held that right to pollution free environment. Article-21 is the heart of the fundamental rights and has received expanded meanings from time to time.

Keywords: human rights, law, environment, polluter

Procedia PDF Downloads 226