Search results for: industrial work experience
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19542

Search results for: industrial work experience

222 Poly (3,4-Ethylenedioxythiophene) Prepared by Vapor Phase Polymerization for Stimuli-Responsive Ion-Exchange Drug Delivery

Authors: M. Naveed Yasin, Robert Brooke, Andrew Chan, Geoffrey I. N. Waterhouse, Drew Evans, Darren Svirskis, Ilva D. Rupenthal

Abstract:

Poly(3,4-ethylenedioxythiophene) (PEDOT) is a robust conducting polymer (CP) exhibiting high conductivity and environmental stability. It can be synthesized by either chemical, electrochemical or vapour phase polymerization (VPP). Dexamethasone sodium phosphate (dexP) is an anionic drug molecule which has previously been loaded onto PEDOT as a dopant via electrochemical polymerisation; however this technique requires conductive surfaces from which polymerization is initiated. On the other hand, VPP produces highly organized biocompatible CP structures while polymerization can be achieved onto a range of surfaces with a relatively straight forward scale-up process. Following VPP of PEDOT, dexP can be loaded and subsequently released via ion-exchange. This study aimed at preparing and characterising both non-porous and porous VPP PEDOT structures including examining drug loading and release via ion-exchange. Porous PEDOT structures were prepared by first depositing a sacrificial polystyrene (PS) colloidal template on a substrate, heat curing this deposition and then spin coating it with the oxidant solution (iron tosylate) at 1500 rpm for 20 sec. VPP of both porous and non-porous PEDOT was achieved by exposing to monomer vapours in a vacuum oven at 40 mbar and 40 °C for 3 hrs. Non-porous structures were prepared similarly on the same substrate but without any sacrificial template. Surface morphology, compositions and behaviour were then characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) respectively. Drug loading was achieved by 50 CV cycles in a 0.1 M dexP aqueous solution. For drug release, each sample was exposed to 20 mL of phosphate buffer saline (PBS) placed in a water bath operating at 37 °C and 100 rpm. Film was stimulated (continuous pulse of ± 1 V at 0.5 Hz for 17 mins) while immersed into PBS. Samples were collected at 1, 2, 6, 23, 24, 26 and 27 hrs and were analysed for dexP by high performance liquid chromatography (HPLC Agilent 1200 series). AFM and SEM revealed the honey comb nature of prepared porous structures. XPS data showed the elemental composition of the dexP loaded film surface, which related well with that of PEDOT and also showed that one dexP molecule was present per almost three EDOT monomer units. The reproducible electroactive nature was shown by several cycles of reduction and oxidation via CV. Drug release revealed success in drug loading via ion-exchange, with stimulated porous and non-porous structures exhibiting a proof of concept burst release upon application of an electrical stimulus. A similar drug release pattern was observed for porous and non-porous structures without any significant statistical difference, possibly due to the thin nature of these structures. To our knowledge, this is the first report to explore the potential of VPP prepared PEDOT for stimuli-responsive drug delivery via ion-exchange. The produced porous structures were ordered and highly porous as indicated by AFM and SEM. These porous structures exhibited good electroactivity as shown by CV. Future work will investigate porous structures as nano-reservoirs to increase drug loading while sealing these structures to minimize spontaneous drug leakage.

Keywords: PEDOT for ion-exchange drug delivery, stimuli-responsive drug delivery, template based porous PEDOT structures, vapour phase polymerization of PEDOT

Procedia PDF Downloads 218
221 Study on Aerosol Behavior in Piping Assembly under Varying Flow Conditions

Authors: Anubhav Kumar Dwivedi, Arshad Khan, S. N. Tripathi, Manish Joshi, Gaurav Mishra, Dinesh Nath, Naveen Tiwari, B. K. Sapra

Abstract:

In a nuclear reactor accident scenario, a large number of fission products may release to the piping system of the primary heat transport. The released fission products, mostly in the form of the aerosol, get deposited on the inner surface of the piping system mainly due to gravitational settling and thermophoretic deposition. The removal processes in the complex piping system are controlled to a large extent by the thermal-hydraulic conditions like temperature, pressure, and flow rates. These parameters generally vary with time and therefore must be carefully monitored to predict the aerosol behavior in the piping system. The removal process of aerosol depends on the size of particles that determines how many particles get deposit or travel across the bends and reach to the other end of the piping system. The released aerosol gets deposited onto the inner surface of the piping system by various mechanisms like gravitational settling, Brownian diffusion, thermophoretic deposition, and by other deposition mechanisms. To quantify the correct estimate of deposition, the identification and understanding of the aforementioned deposition mechanisms are of great importance. These mechanisms are significantly affected by different flow and thermodynamic conditions. Thermophoresis also plays a significant role in particle deposition. In the present study, a series of experiments were performed in the piping system of the National Aerosol Test Facility (NATF), BARC using metal aerosols (zinc) in dry environments to study the spatial distribution of particles mass and number concentration, and their depletion due to various removal mechanisms in the piping system. The experiments were performed at two different carrier gas flow rates. The commercial CFD software FLUENT is used to determine the distribution of temperature, velocity, pressure, and turbulence quantities in the piping system. In addition to the in-built models for turbulence, heat transfer and flow in the commercial CFD code (FLUENT), a new sub-model PBM (population balance model) is used to describe the coagulation process and to compute the number concentration along with the size distribution at different sections of the piping. In the sub-model coagulation kernels are incorporated through user-defined function (UDF). The experimental results are compared with the CFD modeled results. It is found that most of the Zn particles (more than 35 %) deposit near the inlet of the plenum chamber and a low deposition is obtained in piping sections. The MMAD decreases along the length of the test assembly, which shows that large particles get deposited or removed in the course of flow, and only fine particles travel to the end of the piping system. The effect of a bend is also observed, and it is found that the relative loss in mass concentration at bends is more in case of a high flow rate. The simulation results show that the thermophoresis and depositional effects are more dominating for the small and larger sizes as compared to the intermediate particles size. Both SEM and XRD analysis of the collected samples show the samples are highly agglomerated non-spherical and composed mainly of ZnO. The coupled model framed in this work could be used as an important tool for predicting size distribution and concentration of some other aerosol released during a reactor accident scenario.

Keywords: aerosol, CFD, deposition, coagulation

Procedia PDF Downloads 131
220 Evaluation of Forensic Pathology Practice Outside Germany – Experiences From 20 Years of Second Look Autopsies in Cooperation with the Institute of Legal Medicine Munich

Authors: Michael Josef Schwerer, Oliver Peschel

Abstract:

Background: The sense and purpose of forensic postmortem examinations are undoubtedly the same in Institutes of Legal Medicine all over the world. Cause and manner of death must be determined, persons responsible for unnatural death must be brought to justice, and accidents demand changes in the respective scenarios to avoid future mishaps. The latter particularly concerns aircraft accidents, not only regarding consequences from criminal or civil law but also in pursuance of the International Civil Aviation Authority’s regulations, which demand lessons from mishap investigations to improve flight safety. Irrespective of the distinct circumstances of a given casualty or the respective questions in subsequent death investigations, a forensic autopsy is the basis for all further casework, the clue to otherwise hidden solutions, and the crucial limitation for final success when not all possible findings have been properly collected. This also implies that the targeted work of police forces and expert witnesses strongly depends on the quality of forensic pathology practice. Deadly events in foreign countries, which lead to investigations not only abroad but also in Germany, can be challenging in this context. Frequently, second-look autopsies after the repatriation of the deceased to Germany are requested by the legal authorities to ensure proper and profound documentation of all relevant findings. Aims and Methods: To validate forensic postmortem practice abroad, a retrospective study using the findings in the corresponding second-look autopsies in the Institute of Legal Medicine Munich over the last 20 years was carried out. New findings unreported in the previous autopsy were recorded and judged for their relevance to solving the respective case. Further, the condition of the corpse at the time of the second autopsy was rated to discuss artifacts mimicking evidence or the possibility of lost findings resulting from, e.g., decomposition. Recommendations for future handling of death cases abroad and efficient autopsy practice were pursued. Results and Discussion: Our re-evaluation confirmed a high quality of autopsy practice abroad in the vast majority of cases. However, in some casework, incomplete documentation of pathology findings was revealed along with either insufficient or misconducted dissection of organs. Further, some of the bodies showed missing parts of some organs, most probably resulting from sampling for histology studies during the first postmortem. For the aeromedical evaluation of a decedent’s health status prior to an aviation mishap, particularly lost or obscured findings in the heart, lungs, and brain impeded expert testimony. Moreover, incomplete fixation of the body or body parts for repatriation was seen in several cases. This particularly involved previously dissected organs deposited back into the body cavities at the end of the first autopsy. Conclusions and Recommendations: Detailed preparation in the first forensic autopsy avoids the necessity of a second-look postmortem in the majority of cases. To limit decomposition changes during repatriation from abroad, special care must be taken to include pre-dissected organs in the chemical fixation process, particularly when they are separated from the blood vessels and just deposited back into the body cavities.

Keywords: autopsy practice, second-look autopsy, retrospective study, quality standards, decomposition changes, repatriation

Procedia PDF Downloads 37
219 Optical Imaging Based Detection of Solder Paste in Printed Circuit Board Jet-Printing Inspection

Authors: D. Heinemann, S. Schramm, S. Knabner, D. Baumgarten

Abstract:

Purpose: Applying solder paste to printed circuit boards (PCB) with stencils has been the method of choice over the past years. A new method uses a jet printer to deposit tiny droplets of solder paste through an ejector mechanism onto the board. This allows for more flexible PCB layouts with smaller components. Due to the viscosity of the solder paste, air blisters can be trapped in the cartridge. This can lead to missing solder joints or deviations in the applied solder volume. Therefore, a built-in and real-time inspection of the printing process is needed to minimize uncertainties and increase the efficiency of the process by immediate correction. The objective of the current study is the design of an optimal imaging system and the development of an automatic algorithm for the detection of applied solder joints from optical from the captured images. Methods: In a first approach, a camera module connected to a microcomputer and LED strips are employed to capture images of the printed circuit board under four different illuminations (white, red, green and blue). Subsequently, an improved system including a ring light, an objective lens, and a monochromatic camera was set up to acquire higher quality images. The obtained images can be divided into three main components: the PCB itself (i.e., the background), the reflections induced by unsoldered positions or screw holes and the solder joints. Non-uniform illumination is corrected by estimating the background using a morphological opening and subtraction from the input image. Image sharpening is applied in order to prevent error pixels in the subsequent segmentation. The intensity thresholds which divide the main components are obtained from the multimodal histogram using three probability density functions. Determining the intersections delivers proper thresholds for the segmentation. Remaining edge gradients produces small error areas which are removed by another morphological opening. For quantitative analysis of the segmentation results, the dice coefficient is used. Results: The obtained PCB images show a significant gradient in all RGB channels, resulting from ambient light. Using different lightings and color channels 12 images of a single PCB are available. A visual inspection and the investigation of 27 specific points show the best differentiation between those points using a red lighting and a green color channel. Estimating two thresholds from analyzing the multimodal histogram of the corrected images and using them for segmentation precisely extracts the solder joints. The comparison of the results to manually segmented images yield high sensitivity and specificity values. Analyzing the overall result delivers a Dice coefficient of 0.89 which varies for single object segmentations between 0.96 for a good segmented solder joints and 0.25 for single negative outliers. Conclusion: Our results demonstrate that the presented optical imaging system and the developed algorithm can robustly detect solder joints on printed circuit boards. Future work will comprise a modified lighting system which allows for more precise segmentation results using structure analysis.

Keywords: printed circuit board jet-printing, inspection, segmentation, solder paste detection

Procedia PDF Downloads 321
218 Mineralized Nanoparticles as a Contrast Agent for Ultrasound and Magnetic Resonance Imaging

Authors: Jae Won Lee, Kyung Hyun Min, Hong Jae Lee, Sang Cheon Lee

Abstract:

To date, imaging techniques have attracted much attention in medicine because the detection of diseases at an early stage provides greater opportunities for successful treatment. Consequently, over the past few decades, diverse imaging modalities including magnetic resonance (MR), positron emission tomography, computed tomography, and ultrasound (US) have been developed and applied widely in the field of clinical diagnosis. However, each of the above-mentioned imaging modalities possesses unique strengths and intrinsic weaknesses, which limit their abilities to provide accurate information. Therefore, multimodal imaging systems may be a solution that can provide improved diagnostic performance. Among the current medical imaging modalities, US is a widely available real-time imaging modality. It has many advantages including safety, low cost and easy access for patients. However, its low spatial resolution precludes accurate discrimination of diseased region such as cancer sites. In contrast, MR has no tissue-penetrating limit and can provide images possessing exquisite soft tissue contrast and high spatial resolution. However, it cannot offer real-time images and needs a comparatively long imaging time. The characteristics of these imaging modalities may be considered complementary, and the modalities have been frequently combined for the clinical diagnostic process. Biominerals such as calcium carbonate (CaCO3) and calcium phosphate (CaP) exhibit pH-dependent dissolution behavior. They demonstrate pH-controlled drug release due to the dissolution of minerals in acidic pH conditions. In particular, the application of this mineralization technique to a US contrast agent has been reported recently. The CaCO3 mineral reacts with acids and decomposes to generate calcium dioxide (CO2) gas in an acidic environment. These gas-generating mineralized nanoparticles generated CO2 bubbles in the acidic environment of the tumor, thereby allowing for strong echogenic US imaging of tumor tissues. On the basis of this previous work, it was hypothesized that the loading of MR contrast agents into the CaCO3 mineralized nanoparticles may be a novel strategy in designing a contrast agent for dual imaging. Herein, CaCO3 mineralized nanoparticles that were capable of generating CO2 bubbles to trigger the release of entrapped MR contrast agents in response to tumoral acidic pH were developed for the purposes of US and MR dual-modality imaging of tumors. Gd2O3 nanoparticles were selected as an MR contrast agent. A key strategy employed in this study was to prepare Gd2O3 nanoparticle-loaded mineralized nanoparticles (Gd2O3-MNPs) using block copolymer-templated CaCO3 mineralization in the presence of calcium cations (Ca2+), carbonate anions (CO32-) and positively charged Gd2O3 nanoparticles. The CaCO3 core was considered suitable because it may effectively shield Gd2O3 nanoparticles from water molecules in the blood (pH 7.4) before decomposing to generate CO2 gas, triggering the release of Gd2O3 nanoparticles in tumor tissues (pH 6.4~7.4). The kinetics of CaCO3 dissolution and CO2 generation from the Gd2O3-MNPs were examined as a function of pH and pH-dependent in vitro magnetic relaxation; additionally, the echogenic properties were estimated to demonstrate the potential of the particles for the tumor-specific US and MR imaging.

Keywords: calcium carbonate, mineralization, ultrasound imaging, magnetic resonance imaging

Procedia PDF Downloads 219
217 Multifunctional Epoxy/Carbon Laminates Containing Carbon Nanotubes-Confined Paraffin for Thermal Energy Storage

Authors: Giulia Fredi, Andrea Dorigato, Luca Fambri, Alessandro Pegoretti

Abstract:

Thermal energy storage (TES) is the storage of heat for later use, thus filling the gap between energy request and supply. The most widely used materials for TES are the organic solid-liquid phase change materials (PCMs), such as paraffin. These materials store/release a high amount of latent heat thanks to their high specific melting enthalpy, operate in a narrow temperature range and have a tunable working temperature. However, they suffer from a low thermal conductivity and need to be confined to prevent leakage. These two issues can be tackled by confining PCMs with carbon nanotubes (CNTs). TES applications include the buildings industry, solar thermal energy collection and thermal management of electronics. In most cases, TES systems are an additional component to be added to the main structure, but if weight and volume savings are key issues, it would be advantageous to embed the TES functionality directly in the structure. Such multifunctional materials could be employed in the automotive industry, where the diffusion of lightweight structures could complicate the thermal management of the cockpit environment or of other temperature sensitive components. This work aims to produce epoxy/carbon structural laminates containing CNT-stabilized paraffin. CNTs were added to molten paraffin in a fraction of 10 wt%, as this was the minimum amount at which no leakage was detected above the melting temperature (45°C). The paraffin/CNT blend was cryogenically milled to obtain particles with an average size of 50 µm. They were added in various percentages (20, 30 and 40 wt%) to an epoxy/hardener formulation, which was used as a matrix to produce laminates through a wet layup technique, by stacking five plies of a plain carbon fiber fabric. The samples were characterized microstructurally, thermally and mechanically. Differential scanning calorimetry (DSC) tests showed that the paraffin kept its ability to melt and crystallize also in the laminates, and the melting enthalpy was almost proportional to the paraffin weight fraction. These thermal properties were retained after fifty heating/cooling cycles. Laser flash analysis showed that the thermal conductivity through the thickness increased with an increase of the PCM, due to the presence of CNTs. The ability of the developed laminates to contribute to the thermal management was also assessed by monitoring their cooling rates through a thermal camera. Three-point bending tests showed that the flexural modulus was only slightly impaired by the presence of the paraffin/CNT particles, while a more sensible decrease of the stress and strain at break and the interlaminar shear strength was detected. Optical and scanning electron microscope images revealed that these could be attributed to the preferential location of the PCM in the interlaminar region. These results demonstrated the feasibility of multifunctional structural TES composites and highlighted that the PCM size and distribution affect the mechanical properties. In this perspective, this group is working on the encapsulation of paraffin in a sol-gel derived organosilica shell. Submicron spheres have been produced, and the current activity focuses on the optimization of the synthesis parameters to increase the emulsion efficiency.

Keywords: carbon fibers, carbon nanotubes, lightweight materials, multifunctional composites, thermal energy storage

Procedia PDF Downloads 150
216 Learning Curve Effect on Materials Procurement Schedule of Multiple Sister Ships

Authors: Vijaya Dixit Aasheesh Dixit

Abstract:

Shipbuilding industry operates in Engineer Procure Construct (EPC) context. Product mix of a shipyard comprises of various types of ships like bulk carriers, tankers, barges, coast guard vessels, sub-marines etc. Each order is unique based on the type of ship and customized requirements, which are engineered into the product right from design stage. Thus, to execute every new project, a shipyard needs to upgrade its production expertise. As a result, over the long run, holistic learning occurs across different types of projects which contributes to the knowledge base of the shipyard. Simultaneously, in the short term, during execution of a project comprising of multiple sister ships, repetition of similar tasks leads to learning at activity level. This research aims to capture above learnings of a shipyard and incorporate learning curve effect in project scheduling and materials procurement to improve project performance. Extant literature provides support for the existence of such learnings in an organization. In shipbuilding, there are sequences of similar activities which are expected to exhibit learning curve behavior. For example, the nearly identical structural sub-blocks which are successively fabricated, erected, and outfitted with piping and electrical systems. Learning curve representation can model not only a decrease in mean completion time of an activity, but also a decrease in uncertainty of activity duration. Sister ships have similar material requirements. The same supplier base supplies materials for all the sister ships within a project. On one hand, this provides an opportunity to reduce transportation cost by batching the order quantities of multiple ships. On the other hand, it increases the inventory holding cost at shipyard and the risk of obsolescence. Further, due to learning curve effect the production scheduled of each consequent ship gets compressed. Thus, the material requirement schedule of every next ship differs from its previous ship. As more and more ships get constructed, compressed production schedules increase the possibility of batching the orders of sister ships. This work aims at integrating materials management with project scheduling of long duration projects for manufacturing of multiple sister ships. It incorporates the learning curve effect on progressively compressing material requirement schedules and addresses the above trade-off of transportation cost and inventory holding and shortage costs while satisfying budget constraints of various stages of the project. The activity durations and lead time of items are not crisp and are available in the form of probabilistic distribution. A Stochastic Mixed Integer Programming (SMIP) model is formulated which is solved using evolutionary algorithm. Its output provides ordering dates of items and degree of order batching for all types of items. Sensitivity analysis determines the threshold number of sister ships required in a project to leverage the advantage of learning curve effect in materials management decisions. This analysis will help materials managers to gain insights about the scenarios: when and to what degree is it beneficial to treat a multiple ship project as an integrated one by batching the order quantities and when and to what degree to practice distinctive procurement for individual ship.

Keywords: learning curve, materials management, shipbuilding, sister ships

Procedia PDF Downloads 488
215 Genome-Scale Analysis of Streptomyces Caatingaensis CMAA 1322 Metabolism, a New Abiotic Stress-Tolerant Actinomycete

Authors: Suikinai Nobre Santos, Ranko Gacesa, Paul F. Long, Itamar Soares de Melo

Abstract:

Extremophilic microorganism are adapted to biotopes combining several stress factors (temperature, pressure, radiation, salinity and pH), which indicate the richness valuable resource for the exploitation of novel biotechnological processes and constitute unique models for investigations their biomolecules (1, 2). The above information encourages us investigate bioprospecting synthesized compounds by a noval actinomycete, designated thermotolerant Streptomyces caatingaensis CMAA 1322, isolated from sample soil tropical dry forest (Caatinga) in the Brazilian semiarid region (3-17°S and 35-45°W). This set of constrating physical and climatic factores provide the unique conditions and a diversity of well adapted species, interesting site for biotechnological purposes. Preliminary studies have shown the great potential in the production of cytotoxic, pesticidal and antimicrobial molecules (3). Thus, to extend knowledge of the genes clusters responsible for producing biosynthetic pathways of natural products in strain CMAA1322, whole-genome shotgun (WGS) DNA sequencing was performed using paired-end long sequencing with PacBio RS (Pacific Biosciences). Genomic DNA was extracted from a pure culture grown overnight on LB medium using the PureLink genomic DNA kit (Life Technologies). An approximately 3- to 20-kb-insert PacBio library was constructed and sequenced on an 8 single-molecule real-time (SMRT) cell, yielding 116,269 reads (average length, 7,446 bp), which were allocated into 18 contigs, with 142.11x coverage and N50 value of 20.548 bp (BioProject number PRJNA288757). The assembled data were analyzed by Rapid Annotations using Subsystems Technology (RAST) (4) the genome size was found to be 7.055.077 bp, comprising 6167 open reading frames (ORFs) and 413 subsystems. The G+C content was estimated to be 72 mol%. The closest-neighbors tool, available in RAST through functional comparison of the genome, revealed that strain CMAA1322 is more closely related to Streptomyces hygroscopicus ATCC 53653 (similarity score value, 537), S. violaceusniger Tu 4113 (score value, 483), S. avermitilis MA-4680 (score value, 475), S. albus J1074 (score value, 447). The Streptomyces sp. CMAA1322 genome contains 98 tRNA genes and 135 genes copies related to stress response, mainly osmotic stress (14), heat shock (16), oxidative stress (49). Functional annotation by antiSMASH version 3.0 (5) identified 41 clusters for secondary metabolites (including two clusters for lanthipeptides, ten clusters for nonribosomal peptide synthetases [NRPS], three clusters for siderophores, fourteen for polyketide synthetase [PKS], six clusters encoding a terpene, two clusters encoding a bacteriocin, and one cluster encoding a phenazine). Our work provide in comparative analyse of genome and extract produced (data no published) by lineage CMAA1322, revealing the potential of microorganisms accessed from extreme environments as Caatinga” to produce a wide range of biotechnological relevant compounds.

Keywords: caatinga, streptomyces, environmental stresses, biosynthetic pathways

Procedia PDF Downloads 226
214 Development of One-Pot Sequential Cyclizations and Photocatalyzed Decarboxylative Radical Cyclization: Application Towards Aspidospermatan Alkaloids

Authors: Guillaume Bélanger, Jean-Philippe Fontaine, Clémence Hauduc

Abstract:

There is an undeniable thirst from organic chemists and from the pharmaceutical industry to access complex alkaloids with short syntheses. While medicinal chemists are interested in the fascinating wide range of biological properties of alkaloids, synthetic chemists are rather interested in finding new routes to access these challenging natural products of often low availability from nature. To synthesize complex polycyclic cores of natural products, reaction cascades or sequences performed one-pot offer a neat advantage over classical methods for their rapid increase in molecular complexity in a single operation. In counterpart, reaction cascades need to be run on substrates bearing all the required functional groups necessary for the key cyclizations. Chemoselectivity is thus a major issue associated with such a strategy, in addition to diastereocontrol and regiocontrol for the overall transformation. In the pursuit of synthetic efficiency, our research group developed an innovative one-pot transformation of linear substrates into bi- and tricyclic adducts applied to the construction of Aspidospermatan-type alkaloids. The latter is a rich class of indole alkaloids bearing a unique bridged azatricyclic core. Despite many efforts toward the synthesis of members of this family, efficient and versatile synthetic routes are still coveted. Indeed, very short, non-racemic approaches are rather scarce: for example, in the cases of aspidospermidine and aspidospermine, syntheses are all fifteen steps and over. We envisaged a unified approach to access several members of the Aspidospermatan alkaloids family. The key sequence features a highly chemoselective formamide activation that triggers a Vilsmeier-Haack cyclization, followed by an azomethine ylide generation and intramolecular cycloaddition. Despite the high density and variety of functional groups on the substrates (electron-rich and electron-poor alkenes, nitrile, amide, ester, enol ether), the sequence generated three new carbon-carbon bonds and three rings in a single operation with good yield and high chemoselectivity. A detailed study of amide, nucleophile, and dipolarophile variations to finally get to the successful combination required for the key transformation will be presented. To complete the indoline fragment of the natural products, we developed an original approach. Indeed, all reported routes to Aspidospermatan alkaloids introduce the indoline or indole early in the synthesis. In our work, the indoline needs to be installed on the azatricyclic core after the key cyclization sequence. As a result, typical Fischer indolization is not suited since this reaction is known to fail on such substrates. We thus envisaged a unique photocatalyzed decarboxylative radical cyclization. The development of this reaction as well as the scope and limitations of the methodology, will also be presented. The original Vilsmeier-Haack and azomethine ylide cyclization sequence as well as the new photocatalyzed decarboxylative radical cyclization will undoubtedly open access to new routes toward polycyclic indole alkaloids and derivatives of pharmaceutical interest in general.

Keywords: Aspidospermatan alkaloids, azomethine ylide cycloaddition, decarboxylative radical cyclization, indole and indoline synthesis, one-pot sequential cyclizations, photocatalysis, Vilsmeier-Haack Cyclization

Procedia PDF Downloads 66
213 Distribution System Modelling: A Holistic Approach for Harmonic Studies

Authors: Stanislav Babaev, Vladimir Cuk, Sjef Cobben, Jan Desmet

Abstract:

The procedures for performing harmonic studies for medium-voltage distribution feeders have become relatively mature topics since the early 1980s. The efforts of various electric power engineers and researchers were mainly focused on handling large harmonic non-linear loads connected scarcely at several buses of medium-voltage feeders. In order to assess the impact of these loads on the voltage quality of the distribution system, specific modeling and simulation strategies were proposed. These methodologies could deliver a reasonable estimation accuracy given the requirements of least computational efforts and reduced complexity. To uphold these requirements, certain analysis assumptions have been made, which became de facto standards for establishing guidelines for harmonic analysis. Among others, typical assumptions include balanced conditions of the study and the negligible impact of impedance frequency characteristics of various power system components. In latter, skin and proximity effects are usually omitted, and resistance and reactance values are modeled based on the theoretical equations. Further, the simplifications of the modelling routine have led to the commonly accepted practice of neglecting phase angle diversity effects. This is mainly associated with developed load models, which only in a handful of cases are representing the complete harmonic behavior of a certain device as well as accounting on the harmonic interaction between grid harmonic voltages and harmonic currents. While these modelling practices were proven to be reasonably effective for medium-voltage levels, similar approaches have been adopted for low-voltage distribution systems. Given modern conditions and massive increase in usage of residential electronic devices, recent and ongoing boom of electric vehicles, and large-scale installing of distributed solar power, the harmonics in current low-voltage grids are characterized by high degree of variability and demonstrate sufficient diversity leading to a certain level of cancellation effects. It is obvious, that new modelling algorithms overcoming previously made assumptions have to be accepted. In this work, a simulation approach aimed to deal with some of the typical assumptions is proposed. A practical low-voltage feeder is modeled in PowerFactory. In order to demonstrate the importance of diversity effect and harmonic interaction, previously developed measurement-based models of photovoltaic inverter and battery charger are used as loads. The Python-based script aiming to supply varying voltage background distortion profile and the associated current harmonic response of loads is used as the core of unbalanced simulation. Furthermore, the impact of uncertainty of feeder frequency-impedance characteristics on total harmonic distortion levels is shown along with scenarios involving linear resistive loads, which further alter the impedance of the system. The comparative analysis demonstrates sufficient differences with cases when all the assumptions are in place, and results indicate that new modelling and simulation procedures need to be adopted for low-voltage distribution systems with high penetration of non-linear loads and renewable generation.

Keywords: electric power system, harmonic distortion, power quality, public low-voltage network, harmonic modelling

Procedia PDF Downloads 140
212 A Case Study on How Biomedical Engineering (BME) Outreach Programmes Serve as An Alternative Educational Approach to Form and Develop the BME Community in Hong Kong

Authors: Sum Lau, Wing Chung Cleo Lau, Wing Yan Chu, Long Ching Ip, Wan Yin Lo, Jo Long Sam Yau, Ka Ho Hui, Sze Yi Mak

Abstract:

Biomedical engineering (BME) is an interdisciplinary subject where knowledge about biology and medicine is applied to novel applications, solving clinical problems. This subject is crucial for cities such as Hong Kong, where the burden on the medical system is rising due to reasons like the ageing population. Hong Kong, who is actively boosting technological advancements in recent years, sets BME, or biotechnology, as a major category, as reflected in the 2018-19 Budget, where biotechnology was one of the four pillars for development. Over the years, while resources in terms of money and space have been provided, there has been a lack of talents expressed by both the academia and industry. While exogenous factors, such as COVID, may have hindered talents from outside Hong Kong to come, endogenous factors should also be considered. In particular, since there are already a few local universities offering BME programmes, their curriculum or style of education requires to be reviewed to intensify the network of the BME community and support post-academic career development. It was observed that while undergraduate (UG) studies focus on knowledge teaching with some technical training and postgraduate (PG) programmes concentrate on upstream research, the programmes are generally confined to the academic sector and lack connections to the industry. In light of that, a “Biomedical Innovation and Outreach Programme 2022” (“B.I.O.2022”) was held to connect students and professors from academia with clinicians and engineers from the industry, serving as a comparative approach to conventional education methods (UG and PG programmes from tertiary institutions). Over 100 participants, including undergraduates, postgraduates, secondary school students, researchers, engineers, and clinicians, took part in various outreach events such as conference and site visits, all held from June to July 2022. As a case study, this programme aimed to tackle the aforementioned problems with the theme of “4Cs” (connection, communication, collaboration, and commercialisation). The effectiveness of the programme is investigated by its ability to serve as an adult and continuing education and the effectiveness of causing social change to tackle current societal challenges, with the focus on tackling the lack of talents engaging in biomedical engineering. In this study, B.I.O.2022 is found to be able to complement the traditional educational methods, particularly in terms of knowledge exchange between the academia and the industry. With enhanced communications between participants from different career stages, there were students who followed up to visit or even work with the professionals after the programme. Furthermore, connections between the academia and industry could foster the generation of new knowledge, which ultimately pointed to commercialisation, adding value to the BME industry while filling the gap in terms of human resources. With the continuation of events like B.I.O.2022, it provides a promising starting point for the development and relationship strengthening of a BME community in Hong Kong, and shows potential as an alternative way of adult education or learning with societal benefits.

Keywords: biomedical engineering, adult education for social change, comparative methods and principles, lifelong learning, faced problems, promises, challenges and pitfalls

Procedia PDF Downloads 105
211 Predicting and Obtaining New Solvates of Curcumin, Demethoxycurcumin and Bisdemethoxycurcumin Based on the Ccdc Statistical Tools and Hansen Solubility Parameters

Authors: J. Ticona Chambi, E. A. De Almeida, C. A. Andrade Raymundo Gaiotto, A. M. Do Espírito Santo, L. Infantes, S. L. Cuffini

Abstract:

The solubility of active pharmaceutical ingredients (APIs) is challenging for the pharmaceutical industry. The new multicomponent crystalline forms as cocrystal and solvates present an opportunity to improve the solubility of APIs. Commonly, the procedure to obtain multicomponent crystalline forms of a drug starts by screening the drug molecule with the different coformers/solvents. However, it is necessary to develop methods to obtain multicomponent forms in an efficient way and with the least possible environmental impact. The Hansen Solubility Parameters (HSPs) is considered a tool to obtain theoretical knowledge of the solubility of the target compound in the chosen solvent. H-Bond Propensity (HBP), Molecular Complementarity (MC), Coordination Values (CV) are tools used for statistical prediction of cocrystals developed by the Cambridge Crystallographic Data Center (CCDC). The HSPs and the CCDC tools are based on inter- and intra-molecular interactions. The curcumin (Cur), target molecule, is commonly used as an anti‐inflammatory. The demethoxycurcumin (Demcur) and bisdemethoxycurcumin (Bisdcur) are natural analogues of Cur from turmeric. Those target molecules have differences in their solubilities. In this way, the work aimed to analyze and compare different tools for multicomponent forms prediction (solvates) of Cur, Demcur and Biscur. The HSP values were calculated for Cur, Demcur, and Biscur using the chemical group contribution methods and the statistical optimization from experimental data. The HSPmol software was used. From the HSPs of the target molecules and fifty solvents (listed in the HSP books), the relative energy difference (RED) was determined. The probability of the target molecules would be interacting with the solvent molecule was determined using the CCDC tools. A dataset of fifty molecules of different organic solvents was ranked for each prediction method and by a consensus ranking of different combinations: HSP, CV, HBP and MC values. Based on the prediction, 15 solvents were selected as Dimethyl Sulfoxide (DMSO), Tetrahydrofuran (THF), Acetonitrile (ACN), 1,4-Dioxane (DOX) and others. In a starting analysis, the slow evaporation technique from 50°C at room temperature and 4°C was used to obtain solvates. The single crystals were collected by using a Bruker D8 Venture diffractometer, detector Photon100. The data processing and crystal structure determination were performed using APEX3 and Olex2-1.5 software. According to the results, the HSPs (theoretical and optimized) and the Hansen solubility sphere for Cur, Demcur and Biscur were obtained. With respect to prediction analyses, a way to evaluate the predicting method was through the ranking and the consensus ranking position of solvates already reported in the literature. It was observed that the combination of HSP-CV obtained the best results when compared to the other methods. Furthermore, as a result of solvent selected, six new solvates, Cur-DOX, Cur-DMSO, Bicur-DOX, Bircur-THF, Demcur-DOX, Demcur-ACN and a new Biscur hydrate, were obtained. Crystal structures were determined for Cur-DOX, Biscur-DOX, Demcur-DOX and Bicur-Water. Moreover, the unit-cell parameter information for Cur-DMSO, Biscur-THF and Demcur-ACN were obtained. The preliminary results showed that the prediction method is showing a promising strategy to evaluate the possibility of forming multicomponent. It is currently working on obtaining multicomponent single crystals.

Keywords: curcumin, HSPs, prediction, solvates, solubility

Procedia PDF Downloads 45
210 Absorptive Capabilities in the Development of Biopharmaceutical Industry: The Case of Bioprocess Development and Research Unit, National Polytechnic Institute

Authors: Ana L. Sánchez Regla, Igor A. Rivera González, María del Pilar Monserrat Pérez Hernández

Abstract:

The ability of an organization to identify and get useful information from external sources, assimilate it, transform and apply to generate products or services with added value is called absorptive capacity. Absorptive capabilities contribute to have market opportunities to firms and get a leader position with respect to others competitors. The Bioprocess Development and Research Unit (UDIBI) is a Research and Development (R&D) laboratory that belongs to the National Polytechnic Institute (IPN), which is a higher education institute in Mexico. The UDIBI was created with the purpose of carrying out R and D activities for the Transferon®, a biopharmaceutical product developed and patented by IPN. The evolution of competence and scientific and technological platform made UDIBI expand its scope by providing technological services (preclínical studies and bio-compatibility evaluation) to the national pharmaceutical industry and biopharmaceutical industry. The relevance of this study is that those industries are classified as high scientific and technological intensity, and yet, after a review of the state of the art, there is only one study of absorption capabilities in biopharmaceutical industry with a similar scope to this research; in the case of Mexico, there is none. In addition to this, UDIBI belongs to a public university and its operation does not depend on the federal budget, but on the income generated by its external technological services. This fact represents a highly remarkable case in Mexico's public higher education context. This current doctoral research (2015-2019) is contextualized within a case study, its main objective is to identify and analyze the absorptive capabilities that characterise the UDIBI that allows it had become in a one of two third authorized laboratory by the sanitary authority in Mexico for developed bio-comparability studies to bio-pharmaceutical products. The development of this work in the field is divided into two phases. In a first phase, 15 interviews were conducted with the UDIBI personnel, covering management levels, heads of services, project leaders and laboratory personnel. These interviews were structured under a questionnaire, which was designed to integrate open questions and to a lesser extent, others, whose answers would be answered on a Likert-type rating scale. From the information obtained in this phase, a scientific article was made (in review and a proposal of presentation was submitted in different academic forums. A second stage will be made from the conduct of an ethnographic study within this organization under study that will last about 3 months. On the other hand, it is intended to carry out interviews with external actors around the UDIBI (suppliers, advisors, IPN officials, including contact with an academic specialized in absorption capacities to express their comments on this thesis. The inicial findings had shown two lines: i) exist institutional, technological and organizational management elements that encourage and/or limit the creation of absorption capacities in this scientific and technological laboratory and, ii) UDIBI has had created a set of multiple transfer technology of knowledge mechanisms which have had permitted to build a huge base of prior knowledge.

Keywords: absorptive capabilities, biopharmaceutical industry, high research and development intensity industries, knowledge management, transfer of knowledge

Procedia PDF Downloads 205
209 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network

Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman

Abstract:

We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.

Keywords: autonomous surveillance, Bayesian reasoning, decision support, interventions, patterns of life, predictive analytics, predictive insights

Procedia PDF Downloads 105
208 Female Subjectivity in William Faulkner's Light in August

Authors: Azza Zagouani

Abstract:

Introduction: In the work of William Faulkner, characters often evade the boundaries and categories of patriarchal standards of order. Female characters like Lena Grove and Joanna Burden cross thresholds in attempts to gain liberation, while others fail to do so. They stand as non-conformists and refuse established patterns of feminine behavior, such as marriage and motherhood after. They refute submissiveness, domesticity and abstinence to reshape their own identities. The presence of independent and creative women represents new, unconventional images of female subjectivity. This paper will examine the structures of submission and oppression faced by Lena and Joanna, and will show how, in the end, they reshape themselves and their identities, and disrupt or even destroy patriarchal structures. Objectives: Participants will understand through the examples of Lena Grove and Joanna Burden that female subjectivities are constructions, and are constantly subject to change. Approaches: Two approaches will be used in the analysis of the subjectivity formation of Lena Grove and Joanna Burden. Following the arguments propounded by Judith Butler, We explore the ways in which Lena Grove maneuvers around the restrictions and the limitations imposed on her without any physical or psychological violence. She does this by properly performing the roles prescribed to her gendered body. Her repetitious performances of these roles are both the ones that are constructed to confine women and the vehicle for her travel. Her performance parodies the prescriptive roles and thereby reveals that they are cultural constructions. Second, We will explore the argument propounded by Kristeva that subjectivity is always in a state of development because we are always changing in context with changing circumstances. For example, in Light in August, Lena Grove changes the way she defines herself in light of the events of the novel. Also, Kristeva talks about stages of development: the semiotic stage and the symbolic stage. In Light in August, Joanna shows different levels of subjectivity as time passes. Early in the novel, Joanna is very connected to her upbringing. This suggests Kristeva’s concept of the semiotic, in which the daughter identifies closely to her parents. Kristeva relates the semiotic to a strong daughter/mother connection, but in the novel it is strong daughter/father/grandfather identification instead. Then as Joanna becomes sexually involved with Joe, she breaks off, and seems to go into an identity crisis. To me, this represents Kristeva’s move from the semiotic to the symbolic. When Joanna returns to a religious fanaticism, she is returning to a semiotic state. Detailed outline: At the outset of this paper, We will investigate the subjugation of women: social constraints, and the formation of the feminine identity in Light in August. Then, through the examples of Lena Grove’s attempt to cross the boundaries of community moralities and Joanna Burden’s refusal to submit to the standards of submissiveness, domesticity, and obstinance, We will reveal the tension between progressive conceptions of individual freedom and social constraints that limit this freedom. In the second part of the paper, We will underscore the rhetoric of femininity in Light in August: subjugation through naming. The implications of both female’s names offer a powerful contrast between the two different forms of subjectivity. Conclusion: Through Faulkner’s novel, We demonstrate that female subjectivity is an open-ended issue. The spiral shaping of its form maintains its characteristics as a process changing according to different circumstances.

Keywords: female subjectivity, Faulkner’s light August, gender, sexuality, diversity

Procedia PDF Downloads 373
207 Social Licence to Operate Methodology to Secure Commercial, Community and Regulatory Approval for Small and Large Scale Fisheries

Authors: Kelly S. Parkinson, Katherine Y. Teh-White

Abstract:

Futureye has a bespoke social licence to operate methodology which has successfully secured community approval and commercial return for fisheries which have faced regulatory and financial risk. This unique approach to fisheries management focuses on delivering improved social and environmental outcomes to support the fishing industry make steps towards achieving the United Nations SDGs. An SLO is the community’s implicit consent for a business or project to exist. An SLO must be earned and maintained alongside regulatory licences. In current and new operations, it helps you to anticipate and measure community concerns around your operations – leading to more predictable and sensible policy outcomes that will not jeopardise your commercial returns. Rising societal expectations and increasing activist sophistication mean the international fishing industry needs to resolve community concerns at each stage their supply chain. Futureye applied our tested social licence to operate (SLO) methodology to help Austral Fisheries who was being attacked by activists concerned about the sustainability of Patagonian Toothfish. Austral was Marine Stewardship Council certified, but pirates were making the overall catch unsustainable. Austral wanted to be carbon neutral. SLO provides a lens on the risk that helps industries and companies act before regulatory and political risk escalates. To do this assessment, we have a methodology that assesses the risk that we can then translate into a process to create a strategy. 1) Audience: we understand the drivers of change and the transmission of those drivers across all audience segments. 2) Expectation: we understand the level of social norming of changing expectations. 3) Outrage: we understand the technical and perceptual aspects of risk and the opportunities to mitigate these. 4) Inter-relationships: we understand the political, regulatory, and reputation system so that we can understand the levers of change. 5) Strategy: we understand whether the strategy will achieve a social licence through bringing the internal and external stakeholders on the journey. Futureye’s SLO methodologies helped Austral to understand risks and opportunities to enhance its resilience. Futureye reviewed the issues, assessed outrage and materiality and mapped SLO threats to the company. Austral was introduced to a new way that it could manage activism, climate action, and responsible consumption. As a result of Futureye’s work, Austral worked closely with Sea Shepherd who was campaigning against pirates illegally fishing Patagonian Toothfish as well as international governments. In 2016 Austral launched the world’s first carbon neutral fish which won Austral a thirteen percent premium for tender on the open market. In 2017, Austral received the prestigious Banksia Foundation Sustainability Leadership Award for seafood that is sustainable, healthy and carbon neutral. Austral’s position as a leader in sustainable development has opened doors for retailers all over the world. Futureye’s SLO methodology can identify the societal, political and regulatory risks facing fisheries and position them to proactively address the issues and become an industry leader in sustainability.

Keywords: carbon neutral, fisheries management, risk communication, social licence to operate, sustainable development

Procedia PDF Downloads 108
206 Illness-Related PTSD Among Type 1 Diabetes Patients

Authors: Omer Zvi Shaked, Amir Tirosh

Abstract:

Type 1 Diabetes (T1DM) is an incurable chronic illness with no known preventive measures. Excess to insulin therapy can lead to hypoglycemia with neuro-glycogenic symptoms such as shakiness, nausea, sweating, irritability, fatigue, excessive thirst or hunger, weakness, seizure, and coma. Severe Hypoglycemia (SH) is also considered a most aversive event since it may put patients at risk for injury and death, which matches the criteria of a traumatic event. SH has a ranging prevalence of 20%, which makes it a primary medical Issue. One of the results of SH is an intense emotional fear reaction resembling the form of post-traumatic stress symptoms (PTS), causing many patients to avoid insulin therapy and social activities in order to avoid the possibility of hypoglycemia. As a result, they are at risk for irreversible health deterioration and medical complications. Fear of Hypoglycemia (FOH) is, therefore, a major disturbance for T1DM patients. FOH differs from prevalent post-traumatic stress reactions to other forms of traumatic events since the threat to life continuously exists in the patient's body. That is, it is highly probable that orthodox interventions may not be sufficient for helping patients after SH to regain healthy social function and proper medical treatment. Accordingly, the current presentation will demonstrate the results of a study conducted among T1DM patients after SH. The study was designed in two stages. First, a preliminary qualitative phenomenological study among ten patients after SH was conducted. Analysis revealed that after SH, patients confuse between stress symptoms and Hypoglycemia symptoms, divide life before and after the event, report a constant sense of fear, a loss of freedom, a significant decrease in social functioning, a catastrophic thinking pattern, a dichotomous split between the self and the body, and internalization of illness identity, a loss of internal locus of control, a damaged self-representation, and severe loneliness for never being understood by others. The second stage was a two steps study of intervention among five patients after SH. The first part of the intervention included three months of therapeutic 3rd wave CBT therapy. The contents of the therapeutic process were: acceptance of fear and tolerance to stress; cognitive de-fusion combined with emotional self-regulation; the adoption of an active position relying on personal values; and self-compassion. Then, the intervention included a one-week practical real-time 24/7 support by trained medical personnel, alongside a gradual exposure to increased insulin therapy in a protected environment. The results of the intervention are a decrease in stress symptoms, increased social functioning, increased well-being, and decreased avoidance of medical treatment. The presentation will discuss the unique emotional state of T1DM patients after SH. Then, the presentation will discuss the effectiveness of the intervention for patients with chronic conditions after a traumatic event. The presentation will make evident the unique situation of illness-related PTSD. The presentation will also demonstrate the requirement for multi-professional collaboration between social work and medical care for populations with chronic medical conditions. Limitations of the study and recommendations for further research will be discussed.

Keywords: type 1 diabetes, chronic illness, post-traumatic stress, illness-related PTSD

Procedia PDF Downloads 157
205 The Impact of Riparian Alien Plant Removal on Aquatic Invertebrate Communities in the Upper Reaches of Luvuvhu River Catchment, Limpopo Province

Authors: Rifilwe Victor Modiba, Stefan Hendric Foord

Abstract:

Alien invasive plants (IAP’s) have considerable negative impacts on freshwater habitats and South Africa has implemented an innovative Work for Water (WfW) programme for the systematic removal of these plants aimed at, amongst other objectives, restoring biodiversity and ecosystem services in these threatened habitats. These restoration processes are expensive and have to be evidence-based. In this study in-stream macroinvertebrate and adult Odonata assemblages were used as indicators of restoration success by quantifying the response of biodiversity metrics for these two groups to the removal of IAP’s in a strategic water resource of South Africa that is extensively invaded by invasive alien plants (IAP’s). The study consisted of a replicated design that included 45 sampling units, viz. 15 invaded, 15 uninvaded and 15 cleared sites stratified across the upper reaches of six sub-catchments of the Luvuvhu river catchment, Limpopo Province. Cleared sites were only considered if they received at least two WfW treatments in the last 3 years. The Benthic macroinvertebrate and adult Odonate assemblages in each of these sampling were surveyed from between November and March, 2013/2014 and 2014/2015 respectively. Generalized Linear Models (GLM) with a log link function and Poisson error distribution were done for metrics (invaded, cleared, and uninvaded) whose residuals were not normally distributed or had unequal variance and for abundance. RDA was done for EPTO genera (Ephemeroptera, Plecoptera, Trichoptera and Odonata) and adult Odonata species abundance. GLM was done to for the abundance of Genera and Odonates that had the association with the RDA environmental factors. Sixty four benthic macroinvertebrate families, 57 EPTO genera, and 45 adult Odonata species were recorded across all 45 sampling units. There was no significant difference between the SASS5 total score, ASPT, and family richness of the three invasion classes. Although clearing only had a weak positive effect on the adult Odonate species richness it had a positive impact on DBI scores. These differences were mainly the result of significantly larger DBI scores in the cleared sites as compared to the invaded sites. Results suggest that water quality is positively impacted by repeated clearing pointing to the importance of follow up procedures after initial clearing. Adult Odonate diversity as measured by richness, endemicity, threat and distribution respond positively to all forms of the clearing. The clearing had a significant impact on Odonate assemblage structure but did not affect EPTO structure. Variation partitioning showed that 21.8% of the variation in EPTO assemblage can be explained by spatial and environmental variables, 16% of the variation in Odonate structure was explained by spatial and environmental variables. The response of the diversity metrics to clearing increased in significance at finer taxonomic resolutions, particularly of adult Odonates whose metrics significantly improved with clearing and whose structure responded to both invasion and clearing. The study recommends the use of DBI for surveying river health when hydraulic biotopes are poor.

Keywords: DBI, evidence-based conservation, EPTO, macroinvetebrates

Procedia PDF Downloads 177
204 Synthesis and Luminescent Properties of Barium-Europium (III) Silicate Systems

Authors: A. Isahakyan, A. Terzyan, V. Stepanyan, N. Zulumyan, H. Beglaryan

Abstract:

The involvement of silica hydrogel derived from serpentine minerals (Mg(Fe))6[Si4O10](OH)8 as a source of silicon dioxide in SiO2–NaOH–BaCl2–H2O system results in precipitating via one-hour stirring of boiling suspension such intermediates that on heating up to 800 °C crystallize into the product composed of barium ortho- Ba2SiO4 and metasilicates BaSiO3. Based on the positive results, this approach has been decided to be adapted to inserting europium (III) ions into the structure of the synthesized compounds. Intermediates previously precipitated in silica hydrogel–NaOH–BaCl2–Eu(NO3)3 system via one-hour stirring at room temperature underwent one-hour heat-treatment at different temperatures (6001200 °C). Prior to calcination, the suspension produced in the mixer was heated on a boiling-water bath until a powder-like sample was obtained. When the silica hydrogel was metered, SiO2 content in the silica hydrogel that is 5.8 % was taken into consideration in order to guaranty the molar ratios of both SiO2 to BaO and SiO2 to Na2O equal to 1:2. BaCl2 and Eu(NO3)3 reagents were weighted so that the formation of appropriate compositions was guaranteed. Samples including various concentrations of Eu3+ ions (1.25, 2.5, 3.75, 5, 6.35, 8.65, 10, 17.5, 18.75 and 20 mol%) were synthesized by the described method. Luminescence excitation, emission spectra of the products were recorded on the Agilent Cary Eclipes fluorescence spectrophotometer using Agilent Xenon flash lamp (80 Hz) as the excitation source (scanning rate=30 nm/min, excitation and emission slits width=5 nm, excitation filter set to auto, emission filter set to auto and PMT detector Voltage=800 V). Prior to optical properties measurements, each of the powder samples was put in the solid sample-holder. X-ray powder diffraction (XRPD) measurements were made on the SmartLab SE diffractometer. Emission spectra recorded for all the samples at an excitation wavelength of 394 nm exhibit peaks centered at around 536, 555, 587, 614, 653, 690 and 702.5 nm. The most intensive emission peak is observed at 614nm due to 5D0→7F2 of europium (III) ions transition. Luminescence intensity achieves its maximum for Eu3+ 17.5 mol% and heat-treatment at 1200 °C. The XRPD patterns revealed that the diffraction peaks recorded for this sample are identical to NaBa6Nd(SiO4)4 reflections. As Nd-containing reagents were not involved into the synthesis, the maximum luminescent intensity is most likely to be conditioned by NaBa6Eu(SiO4)4 formation whose reflections are not available in the ICDD-JCPDS database of crystallographic 2024. Up to Eu3+ 2.5 mol% the samples demonstrate the phases corresponding to Ba2SiO4 and BaSiO3 standards. Subsequent increasing of europium (III) concentration in the system leads to NaBa6Eu(SiO4)4 formation along with Ba2SiO4 and BaSiO3. NaBa6Eu(SiO4)4 share gradually increases and starting from 17.5 mol% and more NaBa6Eu(SiO4)4 phase is only registered. Thus, the variation of europium (III) concentration in silica hydrogel–NaOH–BaCl2–Eu(NO3)3 system allows producing by the precipitation method the products composed of europium (III)-doped Ba2SiO4 and BaSiO3 and/or NaBa6Eu(SiO4)4 distinguished by different luminescent properties. The work was supported by the Science Committee of RA, in the frames of the research projects № 21T-1D131 and № 21SCG-1D013.

Keywords: europium (III)-doped barium ortho- Ba2SiO4 and metasilicates BaSiO₃, NaBa₆Eu(SiO₄)₄, luminescence, precipitation method

Procedia PDF Downloads 13
203 Coil-Over Shock Absorbers Compared to Inherent Material Damping

Authors: Carina Emminger, Umut D. Cakmak, Evrim Burkut, Rene Preuer, Ingrid Graz, Zoltan Major

Abstract:

Damping accompanies us daily in everyday life and is used to protect (e.g., in shoes) and make our life more comfortable (damping of unwanted motion) and calm (noise reduction). In general, damping is the absorption of energy which is either stored in the material (vibration isolation systems) or changed into heat (vibration absorbers). In case of the last, the damping mechanism can be split in active, passive, as well as semi-active (a combination of active and passive). Active damping is required to enable an almost perfect damping over the whole application range and is used, for instance, in sport cars. In contrast, passive damping is a response of the material due to external loading. Consequently, the material composition has a huge influence on the damping behavior. For elastomers, the material behavior is inherent viscoelastic, temperature, and frequency dependent. However, passive damping is not adjustable during application. Therefore, it is of importance to understand the fundamental viscoelastic behavior and the dissipation capability due to external loading. The objective of this work is to assess the limitation and applicability of viscoelastic material damping for applications in which currently coil-over shock absorbers are utilized. Coil-over shock absorbers are usually made of various mechanical parts and incorporate fluids within the damper. These shock absorbers are well-known and studied in the industry, and when needed, they can be easily adjusted during their product lifetime. In contrary, dampers made of – ideally – a single material are more resource efficient, have an easier serviceability, and are easier manufactured. However, they lack of adaptability and adjustability in service. Therefore, a case study with a remote-controlled sport car was conducted. The original shock absorbers were redesigned, and the spring-dashpot system was replaced by both an elastomer and a thermoplastic-elastomer, respectively. Here, five different formulations of elastomers were used, including a pure and an iron-particle filled thermoplastic poly(urethan) (TPU) and blends of two different poly(dimethyl siloxane) (PDMS). In addition, the TPUs were investigated as full and hollow dampers to investigate the difference between solid and structured material. To get comparative results each material formulation was comprehensively characterized, by monotonic uniaxial compression tests, dynamic thermomechanical analysis (DTMA), and rebound resilience. Moreover, the new material-based shock absorbers were compared with spring-dashpot shock absorbers. The shock absorbers were analyzed under monotonic and cyclic loading. In addition, an impact loading was applied on the remote-controlled car to measure the damping properties in operation. A servo-hydraulic high-speed linear actuator was utilized to apply the loads. The acceleration of the car and the displacement of specific measurement points were recorded while testing by a sensor and high-speed camera, respectively. The results prove that elastomers are suitable in damping applications, but they are temperature and frequency dependent. This is a limitation in applicability of viscous material damper. Feasible fields of application may be in the case of micromobility, like bicycles, e-scooters, and e-skateboards. Furthermore, the viscous material damping could be used to increase the inherent damping of a whole structure, e.g., in bicycle-frames.

Keywords: damper structures, material damping, PDMS, TPU

Procedia PDF Downloads 104
202 Environmental Risk of Pharmaceuticals, Drugs of Abuse and Stimulant Caffeine in Marine Water: A Case Study in the North-Western of Spain

Authors: Raquel Dafouz Neus Cáceres, Javier Fernandez-Rubio, Belinda Huerta José Luis Rodríguez-Gil, Nicola Mastroianni, Miren López de Alda, Damià Barceló, Yolanda Valcárcel

Abstract:

The region of Galicia, found in north-western (NW) Spain, is a national and world leader in shellfish, especially mussel production, and recognized for its fishing industry. Few studies have evaluated the presence of emerging contaminants in NW Spain, with those published mainly concerning the continental aquatic environment. The objective of this study was to identify the environmental risk posed by the presence of pharmaceuticals and drugs of abuse in this important coastal region. The presence of sixteen pharmaceuticals (benzodiazepines, anxiolytics, and caffeine), and 19 drugs of abuse (cocainics, amphetamine-like compounds, opiates and opioids, lysergic compounds, and cannabinoids) was assessed in 23 sites located in the Rías (Coastal inlets) of Muros, Arousa, and Pontevedra (NW Spain). Twenty-two of these locations were affected by waste-water treatment plant (WWTP) effluents, and one represented the effluent of one of these WWTPs. Venlafaxine was the pharmaceutical compound detected at higher concentration in the three Rías, with a maximum value of 291 ng/L at the site Porto do Son (Ría de Muros). Total concentration in the three Rías was 819,26 ng/L. Next, citalopram and lorazepam were the most prevalent compounds detected. Metabolite of cocaine benzoylecgonine was the drug of abuse with the highest concentration, measured at 972 ng/L in the Ría of Noia WWTP (no dilution). This compound was also detected at 142 ng/L in the site La Isla de Aros, Ría of Pontevedra. Total concentration for the three Rías was 1210 ng/L. Ephedrine was also detected at high level in the three Rías, with a total concentration of 579,28 ng/L. The results obtained for caffeine show maximum and average concentrations of 857 ng/L Isla de Arosa, Ría de Pontevedra the highest measured in seawater in Spain. A preliminary hazard assessment was carried out by comparing these measured environmental concentrations (MEC) to predicted no-effect concentrations (PNECs) for aquatic organisms. Six out of the 22 seawater samples resulted in a Hazard Quotient (HQ) from chronic exposure higher than 1 with the highest being 17.14, indicating a high probability of adverse effects in the aquatic environment. In addition, the risk was assessed on the basis of persistence, bioaccumulation, and toxicity (PBT). This work was financially supported by the Spanish Ministry of Economy and Competitiveness through the Carlos III Health Institute and the program 'Proyectos de Investigacion en Salud 2015-2017' FIS (PI14/00516), the European Regional Development Fund (ERDF), the Catalan Government (Consolidated Research Groups '2014 SGR 418 - Water and Soil Quality Unit' and 2014 SGR 291 - ICRA), and the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 603437. The poster entitled 'Environmental Risk of Pharmaceuticals, Drugs of Abuse and Stimulant Caffeine in Marine Water: A Case Study in the North-Western of Spain'.

Keywords: drug of abuse, pharmaceuticals, caffeine, environmental risk, seawater

Procedia PDF Downloads 205
201 Optimized Processing of Neural Sensory Information with Unwanted Artifacts

Authors: John Lachapelle

Abstract:

Introduction: Neural stimulation is increasingly targeted toward treatment of back pain, PTSD, Parkinson’s disease, and for sensory perception. Sensory recording during stimulation is important in order to examine neural response to stimulation. Most neural amplifiers (headstages) focus on noise efficiency factor (NEF). Conversely, neural headstages need to handle artifacts from several sources including power lines, movement (EMG), and neural stimulation itself. In this work a layered approach to artifact rejection is used to reduce corruption of the neural ENG signal by 60dBv, resulting in recovery of sensory signals in rats and primates that would previously not be possible. Methods: The approach combines analog techniques to reduce and handle unwanted signal amplitudes. The methods include optimized (1) sensory electrode placement, (2) amplifier configuration, and (3) artifact blanking when necessary. The techniques together are like concentric moats protecting a castle; only the wanted neural signal can penetrate. There are two conditions in which the headstage operates: unwanted artifact < 50mV, linear operation, and artifact > 50mV, fast-settle gain reduction signal limiting (covered in more detail in a separate paper). Unwanted Signals at the headstage input: Consider: (a) EMG signals are by nature < 10mV. (b) 60 Hz power line signals may be > 50mV with poor electrode cable conditions; with careful routing much of the signal is common to both reference and active electrode and rejected in the differential amplifier with <50mV remaining. (c) An unwanted (to the neural recorder) stimulation signal is attenuated from stimulation to sensory electrode. The voltage seen at the sensory electrode can be modeled Φ_m=I_o/4πσr. For a 1 mA stimulation signal, with 1 cm spacing between electrodes, the signal is <20mV at the headstage. Headstage ASIC design: The front end ASIC design is designed to produce < 1% THD at 50mV input; 50 times higher than typical headstage ASICs, with no increase in noise floor. This requires careful balance of amplifier stages in the headstage ASIC, as well as consideration of the electrodes effect on noise. The ASIC is designed to allow extremely small signal extraction on low impedance (< 10kohm) electrodes with configuration of the headstage ASIC noise floor to < 700nV/rt-Hz. Smaller high impedance electrodes (> 100kohm) are typically located closer to neural sources and transduce higher amplitude signals (> 10uV); the ASIC low-power mode conserves power with 2uV/rt-Hz noise. Findings: The enhanced neural processing ASIC has been compared with a commercial neural recording amplifier IC. Chronically implanted primates at MGH demonstrated the presence of commercial neural amplifier saturation as a result of large environmental artifacts. The enhanced artifact suppression headstage ASIC, in the same setup, was able to recover and process the wanted neural signal separately from the suppressed unwanted artifacts. Separately, the enhanced artifact suppression headstage ASIC was able to separate sensory neural signals from unwanted artifacts in mouse-implanted peripheral intrafascicular electrodes. Conclusion: Optimizing headstage ASICs allow observation of neural signals in the presence of large artifacts that will be present in real-life implanted applications, and are targeted toward human implantation in the DARPA HAPTIX program.

Keywords: ASIC, biosensors, biomedical signal processing, biomedical sensors

Procedia PDF Downloads 313
200 Gas-Phase Noncovalent Functionalization of Pristine Single-Walled Carbon Nanotubes with 3D Metal(II) Phthalocyanines

Authors: Vladimir A. Basiuk, Laura J. Flores-Sanchez, Victor Meza-Laguna, Jose O. Flores-Flores, Lauro Bucio-Galindo, Elena V. Basiuk

Abstract:

Noncovalent nanohybrid materials combining carbon nanotubes (CNTs) with phthalocyanines (Pcs) is a subject of increasing research effort, with a particular emphasis on the design of new heterogeneous catalysts, efficient organic photovoltaic cells, lithium batteries, gas sensors, field effect transistors, among other possible applications. The possibility of using unsubstituted Pcs for CNT functionalization is very attractive due to their very moderate cost and easy commercial availability. However, unfortunately, the deposition of unsubstituted Pcs onto nanotube sidewalls through the traditional liquid-phase protocols turns to be very problematic due to extremely poor solubility of Pcs. On the other hand, unsubstituted free-base H₂Pc phthalocyanine ligand, as well as many of its transition metal complexes, exhibit very high thermal stability and considerable volatility under reduced pressure, which opens the possibility for their physical vapor deposition onto solid surfaces, including nanotube sidewalls. In the present work, we show the possibility of simple, fast and efficient noncovalent functionalization of single-walled carbon nanotubes (SWNTs) with a series of 3d metal(II) phthalocyanines Me(II)Pc, where Me= Co, Ni, Cu, and Zn. The functionalization can be performed in a temperature range of 400-500 °C under moderate vacuum and requires about 2-3 h only. The functionalized materials obtained were characterized by means of Fourier-transform infrared (FTIR), Raman, UV-visible and energy-dispersive X-ray spectroscopy (EDS), scanning and transmission electron microscopy (SEM and TEM, respectively) and thermogravimetric analysis (TGA). TGA suggested that Me(II)Pc weight content is 30%, 17% and 35% for NiPc, CuPc, and ZnPc, respectively (CoPc exhibited anomalous thermal decomposition behavior). The above values are consistent with those estimated from EDS spectra, namely, of 24-39%, 27-36% and 27-44% for CoPc, CuPc, and ZnPc, respectively. A strong increase in intensity of D band in the Raman spectra of SWNT‒Me(II)Pc hybrids, as compared to that of pristine nanotubes, implies very strong interactions between Pc molecules and SWNT sidewalls. Very high absolute values of binding energies of 32.46-37.12 kcal/mol and the highest occupied and lowest unoccupied molecular orbital (HOMO and LUMO, respectively) distribution patterns, calculated with density functional theory by using Perdew-Burke-Ernzerhof general gradient approximation correlation functional in combination with the Grimme’s empirical dispersion correction (PBE-D) and the double numerical basis set (DNP), also suggested that the interactions between Me(II) phthalocyanines and nanotube sidewalls are very strong. The authors thank the National Autonomous University of Mexico (grant DGAPA-IN200516) and the National Council of Science and Technology of Mexico (CONACYT, grant 250655) for financial support. The authors are also grateful to Dr. Natalia Alzate-Carvajal (CCADET of UNAM), Eréndira Martínez (IF of UNAM) and Iván Puente-Lee (Faculty of Chemistry of UNAM) for technical assistance with FTIR, TGA measurements, and TEM imaging, respectively.

Keywords: carbon nanotubes, functionalization, gas-phase, metal(II) phthalocyanines

Procedia PDF Downloads 110
199 Finite Element Analysis of Mini-Plate Stabilization of Mandible Fracture

Authors: Piotr Wadolowski, Grzegorz Krzesinski, Piotr Gutowski

Abstract:

The aim of the presented investigation is to recognize the possible mechanical issues of mini-plate connection used to treat mandible fractures and to check the impact of different factors for the stresses and displacements within the bone-stabilizer system. The mini-plate osteosynthesis technique is a common type of internal fixation using metal plates connected to the fractured bone parts by a set of screws. The selected two types of plate application methodology used by maxillofacial surgeons were investigated in the work. Those patterns differ in location and number of plates. The bone geometry was modeled on the base of computed tomography scans of hospitalized patient done just after mini-plate application. The solid volume geometry consisting of cortical and cancellous bone was created based on gained cloud of points. Temporomandibular joint and muscle system were simulated to imitate the real masticatory system behavior. Finite elements mesh and analysis were performed by ANSYS software. To simulate realistic connection behavior nonlinear contact conditions were used between the connecting elements and bones. The influence of the initial compression of the connected bone parts or the gap between them was analyzed. Nonlinear material properties of the bone tissues and elastic-plastic model of titanium alloy were used. The three cases of loading assuming the force of magnitude of 100N acting on the left molars, the right molars and the incisors were investigated. Stress distribution within connecting plate shows that the compression of the bone parts in the connection results in high stress concentration in the plate and the screws, however the maximum stress levels do not exceed material (titanium) yield limit. There are no significant differences between negative offset (gap) and no-offset conditions. The location of the external force influences the magnitude of stresses around both the plate and bone parts. Two-plate system gives generally lower von Misses stress under the same loading than the one-plating approach. Von Mises stress distribution within the cortical bone shows reduction of high stress field for the cases without the compression (neutral initial contact). For the initial prestressing there is a visible significant stress increase around the fixing holes at the bottom mini-plate due to the assembly stress. The local stress concentration may be the reason of bone destruction in those regions. The performed calculations prove that the bone-mini-plate system is able to properly stabilize the fractured mandible bone. There is visible strong dependency between the mini-plate location and stress distribution within the stabilizer structure and the surrounding bone tissue. The results (stresses within the bone tissues and within the devices, relative displacements of the bone parts at the interface) corresponding to different models of the connection provide a basis for the mechanical optimization of the mini-plate connections. The results of the performed numerical simulations were compared to clinical observation. They provide information helpful for better understanding of the load transfer in the mandible with the stabilizer and for improving stabilization techniques.

Keywords: finite element modeling, mandible fracture, mini-plate connection, osteosynthesis

Procedia PDF Downloads 233
198 Green Building Risks: Limits on Environmental and Health Quality Metrics for Contractors

Authors: Erica Cochran Hameen, Bobuchi Ken-Opurum, Mounica Guturu

Abstract:

The United Stated (U.S.) populous spends the majority of their time indoors in spaces where building codes and voluntary sustainability standards provide clear Indoor Environmental Quality (IEQ) metrics. The existing sustainable building standards and codes are aimed towards improving IEQ, health of occupants, and reducing the negative impacts of buildings on the environment. While they address the post-occupancy stage of buildings, there are fewer standards on the pre-occupancy stage thereby placing a large labor population in environments much less regulated. Construction personnel are often exposed to a variety of uncomfortable and unhealthy elements while on construction sites, primarily thermal, visual, acoustic, and air quality related. Construction site power generators, equipment, and machinery generate on average 9 decibels (dBA) above the U.S. OSHA regulations, creating uncomfortable noise levels. Research has shown that frequent exposure to high noise levels leads to chronic physiological issues and increases noise induced stress, yet beyond OSHA no other metric focuses directly on the impacts of noise on contractors’ well-being. Research has also associated natural light with higher productivity and attention span, and lower cases of fatigue in construction workers. However, daylight is not always available as construction workers often perform tasks in cramped spaces, dark areas, or at nighttime. In these instances, the use of artificial light is necessary, yet lighting standards for use during lengthy tasks and arduous activities is not specified. Additionally, ambient air, contaminants, and material off-gassing expelled at construction sites are one of the causes of serious health effects in construction workers. Coupled with extreme hot and cold temperatures for different climate zones, health and productivity can be seriously compromised. This research evaluates the impact of existing green building metrics on construction and risk management, by analyzing two codes and nine standards including LEED, WELL, and BREAM. These metrics were chosen based on the relevance to the U.S. construction industry. This research determined that less than 20% of the sustainability context within the standards and codes (texts) are related to the pre-occupancy building sector. The research also investigated the impact of construction personnel’s health and well-being on construction management through two surveys of project managers and on-site contractors’ perception of their work environment on productivity. To fully understand the risks of limited Environmental and Health Quality metrics for contractors (EHQ) this research evaluated the connection between EHQ factors such as inefficient lighting, on construction workers and investigated the correlation between various site coping strategies for comfort and productivity. Outcomes from this research are three-pronged. The first includes fostering a discussion about the existing conditions of EQH elements, i.e. thermal, lighting, ergonomic, acoustic, and air quality on the construction labor force. The second identifies gaps in sustainability standards and codes during the pre-occupancy stage of building construction from ground-breaking to substantial completion. The third identifies opportunities for improvements and mitigation strategies to improve EQH such as increased monitoring of effects on productivity and health of contractors and increased inclusion of the pre-occupancy stage in green building standards.

Keywords: construction contractors, health and well-being, environmental quality, risk management

Procedia PDF Downloads 119
197 An Investigation on the Suitability of Dual Ion Beam Sputtered GMZO Thin Films: For All Sputtered Buffer-Less Solar Cells

Authors: Vivek Garg, Brajendra S. Sengar, Gaurav Siddharth, Nisheka Anadkat, Amitesh Kumar, Shailendra Kumar, Shaibal Mukherjee

Abstract:

CuInGaSe (CIGSe) is the dominant thin film solar cell technology. The band alignment of Buffer/CIGSe interface is one of the most crucial parameters for solar cell performance. In this article, the valence band offset (VBOff) and conduction band offset (CBOff) values of Cu(In0.70Ga0.30)Se/ 1 at.% Ga: Mg0.25Zn0.75O (GMZO) heterojunction, grown by dual ion beam sputtering system (DIBS), are calculated to understand the carrier transport mechanism at the heterojunction for the realization of all sputtered buffer-less solar cells. To determine the valence band offset (VBOff), ∆E_V at GMZO/CIGSe heterojunction interface, the standard method based on core-level photoemission is utilized. The value of ∆E_V can be evaluated by considering common core-level peaks. In our study, the values of (Valence band onset)VBOn, obtained by linear extrapolation method for GMZO and CIGSe films are calculated to be 2.86 and 0.76 eV. In the UPS spectra peak positions of Se 3d is observed in UPS spectra at 54.82 and 54.7 eV for CIGSe film and GMZO/CIGSe interface respectively, while the peak position of Mg 2p is observed at 50.09 and 50.12 eV for GMZO and GMZO/CIGSe interface respectively. The optical band gap of CIGSe and GMZO are obtained from absorption spectra procured from spectroscopic ellipsometry are 1.26 and 3.84 eV respectively. The calculated average values of ∆E_v and ∆E_C are estimated to be 2.37 and 0.21 eV, respectively, at room temperature. The calculated positive conduction band offset termed as a spike at the absorber junction is the required criterion for the high-efficiency solar cells for the efficient charge extraction from the junction. So we can conclude that the above study confirms GMZO thin films grown by the dual ion beam sputtering system are the suitable candidate for the CIGSe thin films based ultra-thin buffer-less solar cells. We investigated the band-offset properties at the GMZO/CIGSe heterojunction to verify the suitability of the GMZO for the realization of the buffer-less solar cells. The calculated average values of ∆E_V and ∆E_C are estimated to be 2.37 and 0.21 eV, respectively, at room temperature. The calculated positive conduction band offset termed as a spike at the absorber junction is the required criterion for the high-efficiency solar cells for the efficient charge extraction from the junction. So we can conclude that the above study confirms GMZO thin films grown by the dual ion beam sputtering system are the suitable candidate for the CIGSe thin films based ultra-thin buffer-less solar cells. Acknowledgment: We are thankful to DIBS, EDX, and XRD facility equipped at Sophisticated Instrument Centre (SIC) at IIT Indore. The authors B.S.S and A.K acknowledge CSIR and V.G acknowledge UGC, India for their fellowships. B.S.S is thankful to DST and IUSSTF for BASE Internship Award. Prof. Shaibal Mukherjee is thankful to DST and IUSSTF for BASE Fellowship and MEITY YFRF award. This work is partially supported by DAE BRNS, DST CERI, and DST-RFBR Project under India-Russia Programme of Cooperation in Science and Technology. We are thankful to Mukul Gupta for SIMS facility equipped at UGC-DAE Indore.

Keywords: CIGSe, DIBS, GMZO, solar cells, UPS

Procedia PDF Downloads 258
196 Climate Change Implications on Occupational Health and Productivity in Tropical Countries: Study Results from India

Authors: Vidhya Venugopal, Jeremiah Chinnadurai, Rebekah A. I. Lucas, Tord Kjellstrom, Bruno Lemke

Abstract:

Introduction: The effects of climate change (CC) are largely discussed across the globe in terms of impacts on the environment and the general population, but the impacts on workers remain largely unexplored. The predicted rise in temperatures and heat events in the CC scenario have health implications on millions of workers in physically exerting jobs. The current health and productivity risks associated with heat exposures are characterized, future risk estimates as temperature rises and recommendations towards developing protective and preventive occupational health and safety guidelines for India are discussed. Methodology: Cross-sectional studies were conducted in several occupational sectors with workers engaged in moderate to heavy labor (n=1580). Quantitative data on heat exposures (WBGT°C), physiological heat strain indicators viz., Core temperature (CBT), Urine specific gravity (USG), Sweat rate (SwR) and qualitative data on heat-related health symptoms and productivity losses were collected. Data were analyzed for associations between heat exposures, health and productivity outcomes related to heat stress. Findings: Heat conditions exceeded the Threshold Limit Value (TLV) for safe manual work in 66% of the workers across several sectors (Avg.WBGT of 28.7°C±3.1°C). Widespread concerns about heat-related health outcomes (86%) were prevalent among workers exposed to high TLVs, with excessive sweating, fatigue and tiredness being commonly reported by workers. The heat stress indicators, core temperature (14%), Sweat rate (8%) and USG (9%), were above normal levels in the study population. A significant association was found between rise in Core Temperatures and WBGT exposures (p=0.000179) Elevated USG and SwR in the worker population indicate moderate dehydration, with potential risks of developing heat-related illnesses. In a steel industry with high heat exposures, an alarming 9% prevalence of kidney/urogenital anomalies was observed in a young workforce. Heat exposures above TLVs were associated with significantly increased odds of various adverse health outcomes (OR=2.43, 95% CI 1.88 to 3.13, p-value = <0.0001) and productivity losses (OR=1.79, 95% CI 1.32 to 2.4, p-value = 0.0002). Rough estimates for the number of workers who would be subjected to higher than TLV levels in the various RCP scenarios are RCP2.6 =79%, RCP4.5 & RCP6 = 81% and at RCP 8.5 = 85%. Rising temperatures due to CC has the capacity to further reduce already compromised health and productivity by subjecting the workers to increased heat exposures in the RCP scenarios are of concern for the country’s occupational health and economy. Conclusion: The findings of this study clearly identify that health protection from hot weather will become increasingly necessary in the Indian subcontinent and understanding the various adaptation techniques needs urgent attention. Further research with a multi-targeted approach to develop strategies for implementing interventions to protect the millions of workers is imperative. Approaches to include health aspects of climate change within sectoral and climate change specific policies should be encouraged, via a number of mechanisms, such as the “Health in All Policies” approach to avert adverse health and productivity consequences as climate change proceeds.

Keywords: heat stress, occupational health, productivity loss, heat strain, adverse health outcomes

Procedia PDF Downloads 308
195 Socio-Economic Determinants of Physical Activity of Non-Manual Workers, Including the Early Senior Group, from the City of Wroclaw in Poland

Authors: Daniel Puciato, Piotr Oleśniewicz, Julita Markiewicz-Patkowska, Krzysztof Widawski, Michał Rozpara, Władysław Mynarski, Agnieszka Gawlik, Małgorzata Dębska, Soňa Jandová

Abstract:

Physical activity as a part of people’s everyday life reduces the risk of many diseases, including those induced by lifestyle, e.g. obesity, type 2 diabetes, osteoporosis, coronary heart disease, degenerative arthritis, and certain types of cancer. That refers particularly to professionally active people, including the early senior group working on non-manual positions. The aim of the study is to evaluate the relationship between physical activity and the socio-economic status of non-manual workers from Wroclaw—one of the biggest cities in Poland, a model setting for such investigations in this part of Europe. The crucial problem in the research is to find out the percentage of respondents who meet the health-related recommendations of the World Health Organization (WHO) concerning the volume, frequency, and intensity of physical activity, as well as to establish if the most important socio-economic factors, such as gender, age, education, marital status, per capita income, savings and debt, determine the compliance with the WHO physical activity recommendations. During the research, conducted in 2013, 1,170 people (611 women and 559 men) aged 21–60 years were examined. A diagnostic poll method was applied to collect the data. Physical activity was measured with the use of the short form of the International Physical Activity Questionnaire with extended socio-demographic questions, i.e. concerning gender, age, education, marital status, income, savings or debts. To evaluate the relationship between physical activity and selected socio-economic factors, logistic regression was used (odds ratio statistics). Statistical inference was conducted on the adopted ex ante probability level of p<0.05. The majority of respondents met the volume of physical effort recommended for health benefits. It was particularly noticeable in the case of the examined men. The probability of compliance with the WHO physical activity recommendations was highest for workers aged 21–30 years with secondary or higher education who were single, received highest incomes and had savings. The results indicate the relations between physical activity and socio-economic status in the examined women and men. People with lower socio-economic status (e.g. manual workers) are physically active primarily at work, whereas those better educated and wealthier implement physical effort primarily in their leisure time. Among the investigated subjects, the youngest group of non-manual workers have the best chances to meet the WHO standards of physical activity. The study also confirms that secondary education has a positive effect on the public awareness on the role of physical activity in human life. In general, the analysis of the research indicates that there is a relationship between physical activity and some socio-economic factors of the respondents, such as gender, age, education, marital status, income per capita, and the possession of savings. Although the obtained results cannot be applied for the general population, they show some important trends that will be verified in subsequent studies conducted by the authors of the paper.

Keywords: IPAQ, nonmanual workers, physical activity, socioeconomic factors, WHO

Procedia PDF Downloads 518
194 Delicate Balance between Cardiac Stress and Protection: Role of Mitochondrial Proteins

Authors: Zuzana Tatarkova, Ivana Pilchova, Michal Cibulka, Martin Kolisek, Peter Racay, Peter Kaplan

Abstract:

Introduction: Normal functioning of mitochondria is crucial for cardiac performance. Mitochondria undergo mitophagy and biogenesis, and mitochondrial proteins are subject to extensive post-translational modifications. The state of mitochondrial homeostasis reflects overall cellular fitness and longevity. Perturbed mitochondria produce less ATP, release greater amounts of reactive molecules, and are more prone to apoptosis. Therefore mitochondrial turnover is an integral aspect of quality control in which dysfunctional mitochondria are selectively eliminated through mitophagy. Currently, the progressive deterioration of physiological functions is seen as accumulation of modified/damaged proteins with limiting regenerative ability and disturbance of such affected protein-protein communication throughout aging in myocardial cells. Methodologies: For our study was used immunohistochemistry, biochemical methods: spectrophotometry, western blotting, immunodetection as well as more sophisticated 2D electrophoresis and mass spectrometry for evaluation protein-protein interactions and specific post-translational modification. Results and Discussion: Mitochondrial stress response to reactive species was evaluated as electron transport chain (ETC) complexes, redox-active molecules, and their possible communication. Protein-protein interactions revealed a strong linkage between age and ETC protein subunits. Redox state was strongly affected in senescent mitochondria with shift in favor of more pro-oxidizing condition within cardiomyocytes. Acute myocardial ischemia and ischemia-reperfusion (IR) injury affected ETC complexes I, II and IV with no change in complex III. Ischemia induced decrease in total antioxidant capacity, MnSOD, GSH and catalase activity with recovery in some extent during reperfusion. While MnSOD protein content was higher in IR group, activity returned to 95% of control. Nitric oxide is one of the biological molecules that can out compete MnSOD for superoxide and produce peroxynitrite. This process is faster than dismutation and led to the 10-fold higher production of nitrotyrosine after IR injury in adult with higher protection in senescent ones. 2D protein profiling revealed 140 mitochondrial proteins, 12 of them with significant changes after IR injury and 36 individual nitrotyrosine-modified proteins further identified by mass spectrometry. Linking these two groups, 5 proteins were altered after IR as well as nitrated, but only one showed massive nitration per lowering content of protein after IR injury in adult. Conclusions: Senescent cells have greater proportion of protein content, which might be modulated by several post-translational modifications. If these protein modifications are connected to functional consequences and protein-protein interactions are revealed, link may lead to the solution. Assume all together, dysfunctional proteostasis can play a causative role and restoration of protein homeostasis machinery is protective against aging and possibly age-related disorders. This work was supported by the project VEGA 1/0018/18 and by project 'Competence Center for Research and Development in the field of Diagnostics and Therapy of Oncological diseases', ITMS: 26220220153, co-financed from EU sources.

Keywords: aging heart, mitochondria, proteomics, redox state

Procedia PDF Downloads 157
193 Relationship between Illegal Wildlife Trade and Community Conservation: A Case Study of the Chepang Community in Nepal

Authors: Vasundhara H. Krishnani, Ajay Saini, Dibesh Karmacharya, Salit Kark

Abstract:

Illegal Wildlife Trade is one of the most pressing global conservation challenges. Unregulated wildlife trade can threaten biodiversity, contribute to habitat loss, limit sustainable development efforts, and expedite species declines and extinctions. In low-income and middle-income countries, such as Nepal and other countries in Asia and Africa, many of the people engaged in the early stages of illegal wildlife trade, which includes the hunting and transportation of wildlife, belong to Indigenous tribes and local communities.These countries primarily rely on punitive measures to prevent and suppress Illegal Wildlife Trade. For example, in Nepal, people involved in wildlife crimes can often be sentenced to incarceration and a hefty fine and serve up to 15 years in prison. Despite these harsh punitive measures, illegal wildlife trade remains a significant conservation challenge in many countries. The aim of this study was to examine factors affecting the participation of Indigenous communities in Illegal Wildlife Trade while recording the experiences of members of the Indigenous Chepang community, some of whom were imprisoned for their alleged involvement in rhino poaching. Chepangs, belonging to traditionally a hunter-gatherer community, are often considered an isolated and marginalized Indigenous community, some of whom live around the Chitwan National Park in Nepal. Established in 1973, Chitwan National Park is situated in the Chitwan Valley of Nepal and was one of the first regions that was declared as a protected area in Nepal, aiming to protect the one-horned rhinoceros as a flagship species. Conducted over a period of three years, this study used semi-structured interviews and focus group discussions to collect data from Illegal Wildlife Trade offenders, family members of offenders, community Elders, NGO personnel, community forest representatives, Chepang community representatives, and Government school teachers from the region surrounding Chitwan National Park. The study also examined the social, cultural, health, and financial impacts that the imprisonment of offenders had on the families of the community members, especially women and children. The results suggest that involvement of the members of the Chepang community living around Chitwan National Park in the poaching of the one-horned rhinoceros (Rhinoceros unicornis) can be attributed to a range of factors, some of which include: lack of livelihood opportunities, lack of awareness regarding wildlife rules and regulations and poverty.This work emphasises the need for raising awareness and building programs to enhance alternative livelihood training and empower indigenous and marginalised communities that provide sustainable alternatives. Furthermore, the issue needs to be addressed as a community solution which includes all community members. We suggest this multi-pronged approach can benefit wildlife conservation by reducing illegal poaching and wildlife trade, as well as community conservation in regions with similar challenges. By actively involving and empowering local communities, the communities become key stakeholders in the conservation process. This involvement contributes to protecting wildlife and natural ecosystems while simultaneously providing sustainable livelihood options for local communities.

Keywords: alternative livelihoods, chepang community, illegal wildlife trade, low-and middle-income countries, nepal, one-horned rhinoceros

Procedia PDF Downloads 91