Search results for: real time stress detection
24042 Engineering the Topological Insulator Structures for Terahertz Detectors
Authors: M. Marchewka
Abstract:
The article is devoted to the possible optical transitions in double quantum wells system based on HgTe/HgCd(Mn)Te heterostructures. Such structures can find applications as detectors and sources of radiation in the terahertz range. The Double Quantum Wells (DQW) systems consist of two QWs separated by the transparent for electrons barrier. Such systems look promising from the point of view of the additional degrees of freedom. In the case of the topological insulator in about 6.4nm wide HgTe QW or strained 3D HgTe films at the interfaces, the topologically protected surface states appear at the interfaces/surfaces. Electrons in those edge states move along the interfaces/surfaces without backscattering due to time-reversal symmetry. Combination of the topological properties, which was already verified by the experimental way, together with the very well know properties of the DQWs, can be very interesting from the applications point of view, especially in the THz area. It is important that at the present stage, the technology makes it possible to create high-quality structures of this type, and intensive experimental and theoretical studies of their properties are already underway. The idea presented in this paper is based on the eight-band KP model, including the additional terms related to the structural inversion asymmetry, interfaces inversion asymmetry, the influence of the magnetically content, and the uniaxial strain describe the full pictures of the possible real structure. All of this term, together with the external electric field, can be sources of breaking symmetry in investigated materials. Using the 8 band KP model, we investigated the electronic shape structure with and without magnetic field from the application point of view as a THz detector in a small magnetic field (below 2T). We believe that such structures are the way to get the tunable topological insulators and the multilayer topological insulator. Using the one-dimensional electrons at the topologically protected interface states as fast and collision-free signal carriers as charge and signal carriers, the detection of the optical signal should be fast, which is very important in the high-resolution detection of signals in the THz range. The proposed engineering of the investigated structures is now one of the important steps on the way to get the proper structures with predicted properties.Keywords: topological insulator, THz spectroscopy, KP model, II-VI compounds
Procedia PDF Downloads 12224041 Advanced Concrete Crack Detection Using Light-Weight MobileNetV2 Neural Network
Authors: Li Hui, Riyadh Hindi
Abstract:
Concrete structures frequently suffer from crack formation, a critical issue that can significantly reduce their lifespan by allowing damaging agents to enter. Traditional methods of crack detection depend on manual visual inspections, which heavily relies on the experience and expertise of inspectors using tools. In this study, a more efficient, computer vision-based approach is introduced by using the lightweight MobileNetV2 neural network. A dataset of 40,000 images was used to develop a specialized crack evaluation algorithm. The analysis indicates that MobileNetV2 matches the accuracy of traditional CNN methods but is more efficient due to its smaller size, making it well-suited for mobile device applications. The effectiveness and reliability of this new method were validated through experimental testing, highlighting its potential as an automated solution for crack detection in concrete structures.Keywords: Concrete crack, computer vision, deep learning, MobileNetV2 neural network
Procedia PDF Downloads 6624040 Advanced Techniques in Semiconductor Defect Detection: An Overview of Current Technologies and Future Trends
Authors: Zheng Yuxun
Abstract:
This review critically assesses the advancements and prospective developments in defect detection methodologies within the semiconductor industry, an essential domain that significantly affects the operational efficiency and reliability of electronic components. As semiconductor devices continue to decrease in size and increase in complexity, the precision and efficacy of defect detection strategies become increasingly critical. Tracing the evolution from traditional manual inspections to the adoption of advanced technologies employing automated vision systems, artificial intelligence (AI), and machine learning (ML), the paper highlights the significance of precise defect detection in semiconductor manufacturing by discussing various defect types, such as crystallographic errors, surface anomalies, and chemical impurities, which profoundly influence the functionality and durability of semiconductor devices, underscoring the necessity for their precise identification. The narrative transitions to the technological evolution in defect detection, depicting a shift from rudimentary methods like optical microscopy and basic electronic tests to more sophisticated techniques including electron microscopy, X-ray imaging, and infrared spectroscopy. The incorporation of AI and ML marks a pivotal advancement towards more adaptive, accurate, and expedited defect detection mechanisms. The paper addresses current challenges, particularly the constraints imposed by the diminutive scale of contemporary semiconductor devices, the elevated costs associated with advanced imaging technologies, and the demand for rapid processing that aligns with mass production standards. A critical gap is identified between the capabilities of existing technologies and the industry's requirements, especially concerning scalability and processing velocities. Future research directions are proposed to bridge these gaps, suggesting enhancements in the computational efficiency of AI algorithms, the development of novel materials to improve imaging contrast in defect detection, and the seamless integration of these systems into semiconductor production lines. By offering a synthesis of existing technologies and forecasting upcoming trends, this review aims to foster the dialogue and development of more effective defect detection methods, thereby facilitating the production of more dependable and robust semiconductor devices. This thorough analysis not only elucidates the current technological landscape but also paves the way for forthcoming innovations in semiconductor defect detection.Keywords: semiconductor defect detection, artificial intelligence in semiconductor manufacturing, machine learning applications, technological evolution in defect analysis
Procedia PDF Downloads 5124039 Post-Earthquake Damage Detection Using System Identification with a Pair of Seismic Recordings
Authors: Lotfi O. Gargab, Ruichong R. Zhang
Abstract:
A wave-based framework is presented for modeling seismic motion in multistory buildings and using measured response for system identification which can be utilized to extract important information regarding structure integrity. With one pair of building response at two locations, a generalized model response is formulated based on wave propagation features and expressed as frequency and time response functions denoted, respectively, as GFRF and GIRF. In particular, GIRF is fundamental in tracking arrival times of impulsive wave motion initiated at response level which is dependent on local model properties. Matching model and measured-structure responses can help in identifying model parameters and infer building properties. To show the effectiveness of this approach, the Millikan Library in Pasadena, California is identified with recordings of the Yorba Linda earthquake of September 3, 2002.Keywords: system identification, continuous-discrete mass modeling, damage detection, post-earthquake
Procedia PDF Downloads 36924038 A Closed-Form Solution and Comparison for a One-Dimensional Orthorhombic Quasicrystal and Crystal Plate
Authors: Arpit Bhardwaj, Koushik Roy
Abstract:
The work includes derivation of the exact-closed form solution for simply supported quasicrystal and crystal plates by using propagator matrix method under surface loading and free vibration. As a numerical example a quasicrystal and a crystal plate are considered, and after investigation, the variation of displacement and stress fields along the thickness of these two plates are presented. Further, it includes analyzing the displacement and stress fields for two plates having two different stacking arrangement, i.e., QuasiCrystal/Crystal/QuasiCrystal and Crystal/QuasiCrystal/Crystal and comparing their results. This will not only tell us the change in the behavior of displacement and stress fields in two different materials but also how these get changed after trying their different combinations. For the free vibration case, Crystal and Quasicrystal plates along with their different stacking arrangements are considered, and displacements are plotted in all directions for different Mode Shapes.Keywords: free vibration, multilayered plates, surface loading, quasicrystals
Procedia PDF Downloads 14724037 Diagnosis of Induction Machine Faults by DWT
Authors: Hamidreza Akbari
Abstract:
In this paper, for detection of inclined eccentricity in an induction motor, time–frequency analysis of the stator startup current is carried out. For this purpose, the discrete wavelet transform is used. Data are obtained from simulations, using winding function approach. The results show the validity of the approach for detecting the fault and discriminating with respect to other faults.Keywords: induction machine, fault, DWT, electric
Procedia PDF Downloads 35024036 Detection and Identification of Chlamydophila psittaci in Asymptomatic and Symptomatic Parrots in Isfahan
Authors: Mehdi Moradi Sarmeidani, Peyman Keyhani, Hasan Momtaz
Abstract:
Chlamydophila psittaci is a avian pathogen that may cause respiratory disorders in humans. Conjunctival and cloacal swabs from 54 captive psittacine birds presented at veterinary clinics were collected to determine the prevalence of C. psittaci in domestic birds in Isfahan. Samples were collected during 2014 from a total of 10 different species of parrots, with African gray(33), Cockatiel lutino(3), Cockatiel gray(2), Cockatiel cinnamon(1), Pearl cockatiel(6), Timneh African grey(1), Ringneck parakeet(2), Melopsittacus undulatus(1), Alexander parakeet(2), Green Parakeet(3) being the most representative species sampled. C. psittaci was detected in 27 (50%) birds using molecular detection (PCR) method. The detection of this bacterium in captive psittacine birds shows that there is a potential risk for human whom has a direct contact and there is a possibility of infecting other birds.Keywords: chlamydophila psittaci, psittacine birds, PCR, Isfahan
Procedia PDF Downloads 37124035 Investigating Undrained Behavior of Noor Sand Using Triaxial Compression Test
Authors: Hossein Motaghedi, Siavash Salamatpoor, Abbas Mokhtari
Abstract:
Noor costal city which is located in Mazandaran province, Iran, regularly visited by many tourists. Accordingly, many tall building and heavy structures are going to be constructed over this coastal area. This region is overlaid by poorly graded clean sand and because of high water level, is susceptible to liquefaction. In this study, undrained triaxial tests under isotropic consolidation were conducted on the reconstituted samples of Noor sand, which underlies a densely populated, seismic region of southern bank of Caspian Sea. When the strain level is large enough, soil samples under shearing tend to be in a state of continuous deformation under constant shear and normal stresses. There exists a correlation between the void ratio and mean effective principal stress, which is referred to as the ultimate steady state line (USSL). Soil behavior can be achieved by expressing the state of effective confining stress and defining the location of this point relative to the steady state line. Therefore, one can say that sand behavior not only is dependent to relative density but also a description of stress state has to be defined. The current study tries to investigate behavior of this sand under different conditions such as confining effective stress and relative density using undrained monotonic triaxial compression tests. As expected, the analyzed results show that the sand behavior varies from dilative to contractive state while initial isotropic effective stress increases. Therefore, confining effective stress level will directly affect the overall behavior of sand. The observed behavior obtained from the conducted tests is then compared with some previously tested sands including Yamuna, Ganga, and Toyoura.Keywords: noor sand, liquefaction, undrained test, steady state
Procedia PDF Downloads 42924034 Failure Detection in an Edge Cracked Tapered Pipe Conveying Fluid Using Finite Element Method
Authors: Mohamed Gaith, Zaid Haddadin, Abdulah Wahbe, Mahmoud Hamam, Mahmoud Qunees, Mohammad Al Khatib, Mohammad Bsaileh, Abd Al-Aziz Jaber, Ahmad Aqra’a
Abstract:
The crack is one of the most common types of failure in pipelines that convey fluid, and early detection of the crack may assist to avoid the piping system from experiencing catastrophic damage, which would otherwise be fatal. The influence of flow velocity and the presence of a crack on the performance of a tapered simply supported pipe containing moving fluid is explored using the finite element approach in this study. ANSYS software is used to simulate the pipe as Bernoulli's beam theory. In this paper, the fluctuation of natural frequencies and matching mode shapes for various scenarios owing to changes in fluid speed and the presence of damage is discussed in detail.Keywords: damage detection, finite element, tapered pipe, vibration characteristics
Procedia PDF Downloads 17024033 Analysis of Detection Concealed Objects Based on Multispectral and Hyperspectral Signatures
Authors: M. Kastek, M. Kowalski, M. Szustakowski, H. Polakowski, T. Sosnowski
Abstract:
Development of highly efficient security systems is one of the most urgent topics for science and engineering. There are many kinds of threats and many methods of prevention. It is very important to detect a threat as early as possible in order to neutralize it. One of the very challenging problems is detection of dangerous objects hidden under human’s clothing. This problem is particularly important for safety of airport passengers. In order to develop methods and algorithms to detect hidden objects it is necessary to determine the thermal signatures of such objects of interest. The laboratory measurements were conducted to determine the thermal signatures of dangerous tools hidden under various clothes in different ambient conditions. Cameras used for measurements were working in spectral range 0.6-12.5 μm An infrared imaging Fourier transform spectroradiometer was also used, working in spectral range 7.7-11.7 μm. Analysis of registered thermograms and hyperspectral datacubes has yielded the thermal signatures for two types of guns, two types of knives and home-made explosive bombs. The determined thermal signatures will be used in the development of method and algorithms of image analysis implemented in proposed monitoring systems.Keywords: hyperspectral detection, nultispectral detection, image processing, monitoring systems
Procedia PDF Downloads 34824032 Effect of Supplementation of Rough Lemon Juice, Amla Juice and Aloe Vera Gel on Physio-biochemical and Hematological Parameters of Broiler Chicken During Summer Season
Authors: Suraj Amrutkar, R. Gowri, Asma Khan, Nazam Khan, Vikas Mahajan, Manpreet Kour And Bharti Deshmukh
Abstract:
Herbal additives are rich in vitamin C, A and other biological active compounds and may act as surrogate source to subdue heat stress in chicken. Among various herbal additives such as rough lemon (Citrus Jambhiri Lush) juice, amla (Emblica officinalis) juice and aloe vera (Aloe barbadensis miller) gel are easily available during summer (stress period) and also cost less as comparison to synthetic feed additives in market. In order to analyze the performance by supplementation of rough lemon juice, amla juice and aloe vera gel in broiler under heat stress conditions. Study was carried out with a random distribution of day old straight run chicks (240 No.) in to four treatment group (n=60) was done. All the groups were given basal diet (Maize-Soya based; T0) was same for all the groups with supplementation of rough lemon juice (T1), amla juice (T2) and aloe vera (T3) @ 2% in drinking water. Experiment trial lasted for 42 days during heat stress period (June-July) with minimum THI (78.2) and Maximum THI (88.02). Feed and water were offered ad-libitum throughout the trial. Results revealed significantly higher (P<0.05) body weight in T3 and T2, followed by T1 and least in T0 at 42 days of age. The overall mean of Feed conversion ratio of various treatment T0, T1, T2 andT3 were 2.16, 1.98, 1.89 and 1.82, respectively. The mortality percentage in various treatment, T0, T1, T2 and T3, were 6.67, 3.33, 0.0 and 1.67, respectively. pH value, PCV (%), Sodium (mmol/L) and Potassium (mmol/L) was higher in T3 than rest of the groups. HL ratio is significantly lower (P<0.05) in T3, T2 followed by T1 than T0 at 42 days of age. It may be inferred that amongst these phyto-additives, aloe vera leads in alleviating heat stress in broiler in an economical way, followed by amla and rough lemon.Keywords: rough lemon, amla, aloe vera, heat stress, broiler
Procedia PDF Downloads 9324031 Adaptive Decision Feedback Equalizer Utilizing Fixed-Step Error Signal for Multi-Gbps Serial Links
Authors: Alaa Abdullah Altaee
Abstract:
This paper presents an adaptive decision feedback equalizer (ADFE) for multi-Gbps serial links utilizing a fix-step error signal extracted from cross-points of received data symbols. The extracted signal is generated based on violation of received data symbols with minimum detection requirements at the clock and data recovery (CDR) stage. The iterations of the adaptation process search for the optimum feedback tap coefficients to maximize the data eye-opening and minimize the adaptation convergence time. The effectiveness of the proposed architecture is validated using the simulation results of a serial link designed in an IBM 130 nm 1.2V CMOS technology. The data link with variable channel lengths is analyzed using Spectre from Cadence Design Systems with BSIM4 device models.Keywords: adaptive DFE, CMOS equalizer, error detection, serial links, timing jitter, wire-line communication
Procedia PDF Downloads 12024030 Psychological Contract Breach and Violation Relationships with Stress and Wellbeing
Authors: Fazeelat Duran, Darren Bishopp, Jessica Woodhams
Abstract:
Negative emotions resulting from the breach of perceived obligations by an employer is called the psychological contract violation. Employees perceiving breach and feelings of negative emotions result in adverse outcomes for both the employee and employer. This paper aims to identify the relationships between contract breach, violation, stress and wellbeing and investigate whether fairness and self-efficacy mediate the relationships. A mixed method approach was used to analyze the online-surveys and semi-structured interviews with the police officers. It was identified that the psychological contract violation predicts stress and job-related well-being. Fairness and self-efficacy were identified as significant mediators to understand the underlying mechanisms of association. Whilst, in the interviews social support was identified as a popular mediator. Practical implications for employers are discussed.Keywords: psychological contract violation and breach, stressors, depression, anxiety
Procedia PDF Downloads 24624029 An Approach for Pattern Recognition and Prediction of Information Diffusion Model on Twitter
Authors: Amartya Hatua, Trung Nguyen, Andrew Sung
Abstract:
In this paper, we study the information diffusion process on Twitter as a multivariate time series problem. Our model concerns three measures (volume, network influence, and sentiment of tweets) based on 10 features, and we collected 27 million tweets to build our information diffusion time series dataset for analysis. Then, different time series clustering techniques with Dynamic Time Warping (DTW) distance were used to identify different patterns of information diffusion. Finally, we built the information diffusion prediction models for new hashtags which comprise two phrases: The first phrase is recognizing the pattern using k-NN with DTW distance; the second phrase is building the forecasting model using the traditional Autoregressive Integrated Moving Average (ARIMA) model and the non-linear recurrent neural network of Long Short-Term Memory (LSTM). Preliminary results of performance evaluation between different forecasting models show that LSTM with clustering information notably outperforms other models. Therefore, our approach can be applied in real-world applications to analyze and predict the information diffusion characteristics of selected topics or memes (hashtags) in Twitter.Keywords: ARIMA, DTW, information diffusion, LSTM, RNN, time series clustering, time series forecasting, Twitter
Procedia PDF Downloads 39124028 An Autopilot System for Static Zone Detection
Authors: Yanchun Zuo, Yingao Liu, Wei Liu, Le Yu, Run Huang, Lixin Guo
Abstract:
Electric field detection is important in many application scenarios. The traditional strategy is measuring the electric field with a man walking around in the area under test. This strategy cannot provide a satisfactory measurement accuracy. To solve the mentioned problem, an autopilot measurement system is divided. A mini-car is produced, which can travel in the area under test according to respect to the program within the CPU. The electric field measurement platform (EFMP) carries a central computer, two horn antennas, and a vector network analyzer. The mini-car stop at the sampling points according to the preset. When the car stops, the EFMP probes the electric field and stores data on the hard disk. After all the sampling points are traversed, an electric field map can be plotted. The proposed system can give an accurate field distribution description of the chamber.Keywords: autopilot mini-car measurement system, electric field detection, field map, static zone measurement
Procedia PDF Downloads 10124027 Lexical Based Method for Opinion Detection on Tripadvisor Collection
Authors: Faiza Belbachir, Thibault Schienhinski
Abstract:
The massive development of online social networks allows users to post and share their opinions on various topics. With this huge volume of opinion, it is interesting to extract and interpret these information for different domains, e.g., product and service benchmarking, politic, system of recommendation. This is why opinion detection is one of the most important research tasks. It consists on differentiating between opinion data and factual data. The difficulty of this task is to determine an approach which returns opinionated document. Generally, there are two approaches used for opinion detection i.e. Lexical based approaches and Machine Learning based approaches. In Lexical based approaches, a dictionary of sentimental words is used, words are associated with weights. The opinion score of document is derived by the occurrence of words from this dictionary. In Machine learning approaches, usually a classifier is trained using a set of annotated document containing sentiment, and features such as n-grams of words, part-of-speech tags, and logical forms. Majority of these works are based on documents text to determine opinion score but dont take into account if these texts are really correct. Thus, it is interesting to exploit other information to improve opinion detection. In our work, we will develop a new way to consider the opinion score. We introduce the notion of trust score. We determine opinionated documents but also if these opinions are really trustable information in relation with topics. For that we use lexical SentiWordNet to calculate opinion and trust scores, we compute different features about users like (numbers of their comments, numbers of their useful comments, Average useful review). After that, we combine opinion score and trust score to obtain a final score. We applied our method to detect trust opinions in TRIPADVISOR collection. Our experimental results report that the combination between opinion score and trust score improves opinion detection.Keywords: Tripadvisor, opinion detection, SentiWordNet, trust score
Procedia PDF Downloads 19824026 Constrained RGBD SLAM with a Prior Knowledge of the Environment
Authors: Kathia Melbouci, Sylvie Naudet Collette, Vincent Gay-Bellile, Omar Ait-Aider, Michel Dhome
Abstract:
In this paper, we handle the problem of real time localization and mapping in indoor environment assisted by a partial prior 3D model, using an RGBD sensor. The proposed solution relies on a feature-based RGBD SLAM algorithm to localize the camera and update the 3D map of the scene. To improve the accuracy and the robustness of the localization, we propose to combine in a local bundle adjustment process, geometric information provided by a prior coarse 3D model of the scene (e.g. generated from the 2D floor plan of the building) along with RGBD data from a Kinect camera. The proposed approach is evaluated on a public benchmark dataset as well as on real scene acquired by a Kinect sensor.Keywords: SLAM, global localization, 3D sensor, bundle adjustment, 3D model
Procedia PDF Downloads 41424025 Microbial Diversity Assessment in Household Point-of-Use Water Sources Using Spectroscopic Approach
Authors: Syahidah N. Zulkifli, Herlina A. Rahim, Nurul A. M. Subha
Abstract:
Sustaining water quality is critical in order to avoid any harmful health consequences for end-user consumers. The detection of microbial impurities at the household level is the foundation of water security. Water quality is now monitored only at water utilities or infrastructure, such as water treatment facilities or reservoirs. This research provides a first-hand scientific understanding of microbial composition presence in Malaysia’s household point-of-use (POUs) water supply influenced by seasonal fluctuations, standstill periods, and flow dynamics by using the NIR-Raman spectroscopic technique. According to the findings, 20% of water samples were contaminated by pathogenic bacteria, which are Legionella and Salmonella cells. A comparison of the spectra reveals significant signature peaks (420 cm⁻¹ to 1800 cm⁻¹), including species-specific bands. This demonstrates the importance of regularly monitoring POUs water quality to provide a safe and clean water supply to homeowners. Conventional Raman spectroscopy, up-to-date, is no longer suited for real-time monitoring. Therefore, this study introduced an alternative micro-spectrometer to give a rapid and sustainable way of monitoring POUs water quality. Assessing microbiological threats in water supply becomes more reliable and efficient by leveraging IoT protocol.Keywords: microbial contaminants, water quality, water monitoring, Raman spectroscopy
Procedia PDF Downloads 11024024 Role of Osmoregulators for Enhancing Salinity Stress Tolerance in Chickpea
Authors: Mahmoud Ahmed Khater
Abstract:
This study aimed to improve the deleterious effects of salinity stress in chickpeas using both proline and glycine betaine as osmoregulants. The aim was achieved using foliar spraying with different concentrations of proline (5 mM and 10 mM) and glycinebetaine (10 mM and 20 mM) to chickpea plants grown in pots under salinity stress (3000 mg/l NaCl) at the greenhouse of the National Research Centre, Egypt, during two successive seasons 2021/2022 and 2022/2023. Results indicated that all applied treatments caused significant increases in most of the investigated parameters of chickpea plants irrigated with either tap water or saline solution relative to the corresponding control. It is worth mentioning that proline treatments were more effective than glycine betaine treatments in increasing the salinity tolerance of chickpea plants, reflected in their quality and quantity. Moreover, proline treatment at 5mM was the most pronounced treatment in alleviating the deleterious effect of salinity on chickpea plants.Keywords: cicer arietinum L., osmoprotectant, proline, glycinebetaine salinity tolerance
Procedia PDF Downloads 4824023 A Novel Method for Face Detection
Authors: H. Abas Nejad, A. R. Teymoori
Abstract:
Facial expression recognition is one of the open problems in computer vision. Robust neutral face recognition in real time is a major challenge for various supervised learning based facial expression recognition methods. This is due to the fact that supervised methods cannot accommodate all appearance variability across the faces with respect to race, pose, lighting, facial biases, etc. in the limited amount of training data. Moreover, processing each and every frame to classify emotions is not required, as the user stays neutral for the majority of the time in usual applications like video chat or photo album/web browsing. Detecting neutral state at an early stage, thereby bypassing those frames from emotion classification would save the computational power. In this work, we propose a light-weight neutral vs. emotion classification engine, which acts as a preprocessor to the traditional supervised emotion classification approaches. It dynamically learns neutral appearance at Key Emotion (KE) points using a textural statistical model, constructed by a set of reference neutral frames for each user. The proposed method is made robust to various types of user head motions by accounting for affine distortions based on a textural statistical model. Robustness to dynamic shift of KE points is achieved by evaluating the similarities on a subset of neighborhood patches around each KE point using the prior information regarding the directionality of specific facial action units acting on the respective KE point. The proposed method, as a result, improves ER accuracy and simultaneously reduces the computational complexity of ER system, as validated on multiple databases.Keywords: neutral vs. emotion classification, Constrained Local Model, procrustes analysis, Local Binary Pattern Histogram, statistical model
Procedia PDF Downloads 33824022 Diversified Farming and Agronomic Interventions Improve Soil Productivity, Soybean Yield and Biomass under Soil Acidity Stress
Authors: Imran, Murad Ali Rahat
Abstract:
One of the factors affecting crop production and nutrient availability is acidic stress. The most important element decreasing under acidic stress conditions is phosphorus deficiency, which results in stunted growth and yield because of inefficient nutrient cycling. At the Agriculture Research Institute Mingora Swat, Pakistan, tests were carried out for the first time throughout the course of two consecutive summer seasons in 2016 (year 1) and 2017 (year 2) with the goal of increasing crop productivity and nutrient availability under acidic stress. Three organic supplies (peach nano-black carbon, compost, and dry-based peach wastes), three phosphorus rates, and two advantageous microorganisms (Trichoderma and PSB) were incorporated in the experimental treatments. The findings showed that, in conditions of acid stress, peach organic sources had a significant impact on yield and yield components. The application of nano-black carbon produced the greatest thousand seed weight of 164.6 g among organic sources, however the use of phosphorus solubilizing bacteria (PSB) for seed inoculation increased the thousand seed weight of beneficial microbes when compared to Trichoderma soil application. The thousand seed weight was significantly impacted by the quantities of phosphorus. The treatment of 100 kg P ha-1 produced the highest thousand seed weight (167.3 g), which was followed by 75 kg P ha-1 (162.5 g). Compost amendments provided the highest seed yield (2,140 kg ha-1) and were comparable to the application of nano-black carbon (2,120 kg ha-1). With peach residues, the lowest seed output (1,808 kg ha-1) was observed.Compared to seed inoculation with PSB (1,913 kg ha-1), soil treatment with Trichoderma resulted in the maximum seed production (2,132 kg ha-1). Applying phosphorus to the soybean crop greatly increased its output. The highest seed yield (2,364 kg ha-1) was obtained with 100 kg P ha-1, which was comparable to 75 kg P ha-1 (2,335 kg ha-1), while the lowest seed yield (1,569 kg ha-1) was obtained with 50 kg P ha-1. The average values showed that compared to control plots (3.3 g kg-1), peach organic sources produced greatest SOC (10.0 g kg-1). Plots with treated soil had a maximum soil P of 19.7 mg kg-1, while plots under stress had a maximum soil P of 4.8 mg kg-1. While peach compost resulted in the lowest soil P levels, peach nano-black carbon yielded the highest soil P levels (21.6 mg kg-1). Comparing beneficial bacteria with PSB to Trichoderma (18.3 mg/kg-1), the former also shown an improvement in soil P (21.1 mg kg-1). Regarding P treatments, the application of 100 kg P per ha produced significantly higher soil P values (26.8 mg /kg-1), followed by 75 kg P per ha (18.3 mg /kg-1), and 50 kg P ha-1 produced the lowest soil P values (14.1 mg /kg-1). Comparing peach wastes and compost to peach nano-black carbon (13.7 g kg-1), SOC rose. In contrast to PSB (8.8 g kg-1), soil-treated Trichoderma was shown to have a greater SOC (11.1 g kg-1). Higher among the P levels.Keywords: acidic stress, trichoderma, beneficial microbes, nano-black carbon, compost, peach residues, phosphorus, soybean
Procedia PDF Downloads 7724021 The Effects of Inoculation and N Fertilization on Soybean (Glycine max (L.) Merr.) Seed Yield and Protein Concentration under Drought Stress
Authors: Oqba Basal, Andras Szabo
Abstract:
Using mineral fertilization is increasing worldwide, as it is claimed to be majorly responsible for achieving high yields; however, the negative impacts of mineral fertilization on soil and environment are becoming more obvious, with alternative methods being more necessary and applicable, especially with the current climatic changes which have imposed serious abiotic stresses, such as drought. An experiment was made during 2017 growing season in Debrecen, Hungary to investigate the effects of inoculation and N fertilization on the seed yield and protein concentration of the soybean (Glycine max (L.) Merr.) cultivar (Panonia Kincse) under three different irrigation regimes: severe drought stress (SD), moderate drought stress (MD) and control with no drought stress (ND). Three N fertilizer rates were applied: no N fertilizer (0 N), 35 kg ha⁻¹ of N fertilizer (35 N) and 105 kg ha⁻¹ of N fertilizer (105 N). Half of the seeds in each treatment was inoculated with Bradyrhizobium japonicum inoculant, and the other half was not inoculated. The results showed significant differences in the seed yield associated with inoculation, irrigation and the interaction between them, whereas there were no significant differences in the seed yield associated with fertilization alone or in interaction with inoculation or irrigation or both. When seeds were inoculated, yield was increased when (35 N) was applied compared to (0 N) but not significantly; however, the high rate of N fertilizer (105 N) reduced the yield to a level even less than (0 N). When seeds were not inoculated, the highest rate of N increased the yield the most compared to the other two N fertilizer rates whenever the drought was present (moderate or severe). Under severe drought stress, inoculation was positively and significantly correlated with yield; however, adding N fertilizer increased the yield of uninoculated plants compared to the inoculated ones, regardless of the rate of N fertilizer. Protein concentration in the seeds was significantly affected by irrigation and by fertilization, but not by inoculation. Protein concentration increased as the N fertilization rate increased, regardless of the inoculation or irrigation treatments; moreover, increasing the N rate reduced the correlation coefficient of protein concentration with the irrigation. It was concluded that adding N fertilizer is not always recommended, especially when seeds are inoculated before being sown; however, it is very important under severe drought stress to sustain yield. Enhanced protein concentrations could be achieved by applying N fertilization, whether the seeds were pre-inoculated or not.Keywords: drought stress, N fertilization, protein concentration, soybean
Procedia PDF Downloads 15424020 Hybrid Hierarchical Clustering Approach for Community Detection in Social Network
Authors: Radhia Toujani, Jalel Akaichi
Abstract:
Social Networks generally present a hierarchy of communities. To determine these communities and the relationship between them, detection algorithms should be applied. Most of the existing algorithms, proposed for hierarchical communities identification, are based on either agglomerative clustering or divisive clustering. In this paper, we present a hybrid hierarchical clustering approach for community detection based on both bottom-up and bottom-down clustering. Obviously, our approach provides more relevant community structure than hierarchical method which considers only divisive or agglomerative clustering to identify communities. Moreover, we performed some comparative experiments to enhance the quality of the clustering results and to show the effectiveness of our algorithm.Keywords: agglomerative hierarchical clustering, community structure, divisive hierarchical clustering, hybrid hierarchical clustering, opinion mining, social network, social network analysis
Procedia PDF Downloads 36524019 Modeling of Production Lines Systems with Layout Constraints
Authors: Sadegh Abebi
Abstract:
There are problems with estimating time of product process of products, especially when there is variable serving time, like control stage. These problems will cause overestimation of process time. Layout constraints, reworking constraints and inflexible product schedule in multi product lines, needs a precise planning to reduce volume in particular situation of line stock. In this article, by analyzing real queue systems with layout constraints and by using concepts and principles of Markov chain in queue theory, a hybrid model has been presented. This model can be a base to assess queue systems with probable parameters of service. Here by presenting a case study, the proposed model will be described. so, production lines of a home application manufacturer will be analyzed.Keywords: Queuing theory, Markov Chain, layout, line balance
Procedia PDF Downloads 62524018 Vascular Targeted Photodynamic Therapy Monitored by Real-Time Laser Speckle Imaging
Authors: Ruth Goldschmidt, Vyacheslav Kalchenko, Lilah Agemy, Rachel Elmoalem, Avigdor Scherz
Abstract:
Vascular Targeted Photodynamic therapy (VTP) is a new modality for selective cancer treatment that leads to the complete tumor ablation. A photosensitizer, a bacteriochlorophyll derivative in our case, is first administered to the patient and followed by the illumination of the tumor area, by a near-IR laser for its photoactivation. The photoactivated drug releases reactive oxygen species (ROS) in the circulation, which reacts with blood cells and the endothelium leading to the occlusion of the blood vasculature. If the blood vessels are only partially closed, the tumor may recover, and cancer cells could survive. On the other hand, excessive treatment may lead to toxicity of healthy tissues nearby. Simultaneous VTP monitoring and image processing independent of the photoexcitation laser has not yet been reported, to our knowledge. Here we present a method for blood flow monitoring, using a real-time laser speckle imaging (RTLSI) in the tumor during VTP. We have synthesized over the years a library of bacteriochlorophyll derivatives, among them WST11 and STL-6014. Both are water soluble derivatives that are retained in the blood vasculature through their partial binding to HSA. WST11 has been approved in Mexico for VTP treatment of prostate cancer at a certain drug dose, and time/intensity of illumination. Application to other bacteriochlorophyll derivatives or other cancers may require different treatment parameters (such as light/drug administration). VTP parameters for STL-6014 are still under study. This new derivative mainly differs from WST11 by its lack of the central Palladium, and its conjugation to an Arg-Gly-Asp (RGD) sequence. RGD is a tumor-specific ligand that is used for targeting the necrotic tumor domains through its affinity to αVβ3 integrin receptors. This enables the study of cell-targeted VTP. We developed a special RTLSI module, based on Labview software environment for data processing. The new module enables to acquire raw laser speckle images and calculate the values of the laser temporal statistics of time-integrated speckles in real time, without additional off-line processing. Using RTLSI, we could monitor the tumor’s blood flow following VTP in a CT26 colon carcinoma ear model. VTP with WST11 induced an immediate slow down of the blood flow within the tumor and a complete final flow arrest, after some sporadic reperfusions. If the irradiation continued further, the blood flow stopped also in the blood vessels of the surrounding healthy tissue. This emphasizes the significance of light dose control. Using our RTLSI system, we could prevent any additional healthy tissue damage by controlling the illumination time and restrict blood flow arrest within the tumor only. In addition, we found that VTP with STL-6014 was the most effective when the photoactivation was conducted 4h post-injection, in terms of tumor ablation success in-vivo and blood vessel flow arrest. In conclusion, RTSLI application should allow to optimize VTP efficacy vs. toxicity in both the preclinical and clinical arenas.Keywords: blood vessel occlusion, cancer treatment, photodynamic therapy, real time imaging
Procedia PDF Downloads 22324017 Plant Leaf Recognition Using Deep Learning
Authors: Aadhya Kaul, Gautam Manocha, Preeti Nagrath
Abstract:
Our environment comprises of a wide variety of plants that are similar to each other and sometimes the similarity between the plants makes the identification process tedious thus increasing the workload of the botanist all over the world. Now all the botanists cannot be accessible all the time for such laborious plant identification; therefore, there is an urge for a quick classification model. Also, along with the identification of the plants, it is also necessary to classify the plant as healthy or not as for a good lifestyle, humans require good food and this food comes from healthy plants. A large number of techniques have been applied to classify the plants as healthy or diseased in order to provide the solution. This paper proposes one such method known as anomaly detection using autoencoders using a set of collections of leaves. In this method, an autoencoder model is built using Keras and then the reconstruction of the original images of the leaves is done and the threshold loss is found in order to classify the plant leaves as healthy or diseased. A dataset of plant leaves is considered to judge the reconstructed performance by convolutional autoencoders and the average accuracy obtained is 71.55% for the purpose.Keywords: convolutional autoencoder, anomaly detection, web application, FLASK
Procedia PDF Downloads 16324016 The Investigation of Work Stress and Burnout in Nurse Anesthetists: A Cross-Sectional Study
Authors: Yen Ling Liu, Shu-Fen Wu, Chen-Fuh Lam, I-Ling Tsai, Chia-Yu Chen
Abstract:
Purpose: Nurse anesthetists are confronting extraordinarily high job stress in their daily practice, deriving from the fast-track anesthesia care, risk of perioperative complications, routine rotating shifts, teaching programs and interactions with the surgical team in the operating room. This study investigated the influence of work stress on the burnout and turnover intention of nurse anesthetists in a regional general hospital in Southern Taiwan. Methods: This was a descriptive correlational study carried out in 66 full-time nurse anesthetists. Data was collected from March 2017 to June 2017 by in-person interview, and a self-administered structured questionnaire was completed by the interviewee. Outcome measurements included the Practice Environment Scale of the Nursing Work Index (PES-NWI), Maslach Burnout Inventory (MBI) and nursing staff turnover intention. Numerical data were analyzed by descriptive statistics, independent t test, or one-way ANOVA. Categorical data were compared using the chi-square test (x²). Datasets were computed with Pearson product-moment correlation and linear regression. Data were analyzed by using SPSS 20.0 software. Results: The average score for job burnout was 68.7916.67 (out of 100). The three major components of burnout, including emotional depletion (mean score of 26.32), depersonalization (mean score of 13.65), and personal(mean score of 24.48). These average scores suggested that these nurse anesthetists were at high risk of burnout and inversely correlated with turnover intention (t = -4.048, P < 0.05). Using linear regression model, emotional exhaustion and depersonalization were the two independent factors that predicted turnover intention in the nurse anesthetists (19.1% in total variance). Conclusion/Implications for Practice: The study identifies that the high risk of job burnout in the nurse anesthetists is not simply derived from physical overload, but most likely resulted from the additional emotional and psychological stress. The occurrence of job burnout may affect the quality of nursing work, and also influence family harmony, in turn, may increase the turnover rate. Multimodal approach is warranted to reduce work stress and job burnout in nurse anesthetists to enhance their willingness to contribute in anesthesia care.Keywords: anesthesia nurses, burnout, job, turnover intention
Procedia PDF Downloads 29624015 Event Data Representation Based on Time Stamp for Pedestrian Detection
Authors: Yuta Nakano, Kozo Kajiwara, Atsushi Hori, Takeshi Fujita
Abstract:
In association with the wave of electric vehicles (EV), low energy consumption systems have become more and more important. One of the key technologies to realize low energy consumption is a dynamic vision sensor (DVS), or we can call it an event sensor, neuromorphic vision sensor and so on. This sensor has several features, such as high temporal resolution, which can achieve 1 Mframe/s, and a high dynamic range (120 DB). However, the point that can contribute to low energy consumption the most is its sparsity; to be more specific, this sensor only captures the pixels that have intensity change. In other words, there is no signal in the area that does not have any intensity change. That is to say, this sensor is more energy efficient than conventional sensors such as RGB cameras because we can remove redundant data. On the other side of the advantages, it is difficult to handle the data because the data format is completely different from RGB image; for example, acquired signals are asynchronous and sparse, and each signal is composed of x-y coordinate, polarity (two values: +1 or -1) and time stamp, it does not include intensity such as RGB values. Therefore, as we cannot use existing algorithms straightforwardly, we have to design a new processing algorithm to cope with DVS data. In order to solve difficulties caused by data format differences, most of the prior arts make a frame data and feed it to deep learning such as Convolutional Neural Networks (CNN) for object detection and recognition purposes. However, even though we can feed the data, it is still difficult to achieve good performance due to a lack of intensity information. Although polarity is often used as intensity instead of RGB pixel value, it is apparent that polarity information is not rich enough. Considering this context, we proposed to use the timestamp information as a data representation that is fed to deep learning. Concretely, at first, we also make frame data divided by a certain time period, then give intensity value in response to the timestamp in each frame; for example, a high value is given on a recent signal. We expected that this data representation could capture the features, especially of moving objects, because timestamp represents the movement direction and speed. By using this proposal method, we made our own dataset by DVS fixed on a parked car to develop an application for a surveillance system that can detect persons around the car. We think DVS is one of the ideal sensors for surveillance purposes because this sensor can run for a long time with low energy consumption in a NOT dynamic situation. For comparison purposes, we reproduced state of the art method as a benchmark, which makes frames the same as us and feeds polarity information to CNN. Then, we measured the object detection performances of the benchmark and ours on the same dataset. As a result, our method achieved a maximum of 7 points greater than the benchmark in the F1 score.Keywords: event camera, dynamic vision sensor, deep learning, data representation, object recognition, low energy consumption
Procedia PDF Downloads 9724014 DWT-SATS Based Detection of Image Region Cloning
Authors: Michael Zimba
Abstract:
A duplicated image region may be subjected to a number of attacks such as noise addition, compression, reflection, rotation, and scaling with the intention of either merely mating it to its targeted neighborhood or preventing its detection. In this paper, we present an effective and robust method of detecting duplicated regions inclusive of those affected by the various attacks. In order to reduce the dimension of the image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of a suspicious image. However, unlike most existing copy move image forgery (CMIF) detection algorithms operating in the DWT domain which extract only the low frequency sub-band of the DWT of the suspicious image thereby leaving valuable information in the other three sub-bands, the proposed algorithm simultaneously extracts features from all the four sub-bands. The extracted features are not only more accurate representation of image regions but also robust to additive noise, JPEG compression, and affine transformation. Furthermore, principal component analysis-eigenvalue decomposition, PCA-EVD, is applied to reduce the dimension of the features. The extracted features are then sorted using the more computationally efficient Radix Sort algorithm. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. The proposed algorithm is not only fast but also more robust to attacks compared to the related CMIF detection algorithms. The experimental results show high detection rates.Keywords: affine transformation, discrete wavelet transform, radix sort, SATS
Procedia PDF Downloads 23024013 Investigation of Heat Affected Zone of Steel P92 Using the Thermal Cycle Simulator
Authors: Petr Mohyla, Ivo Hlavatý, Jiří Hrubý, Lucie Krejčí
Abstract:
This work is focused on mechanical properties and microstructure of heat affected zone (HAZ) of steel P92. The thermal cycle simulator was used for modeling a fine grained zone of HAZ. Hardness and impact toughness were measured on simulated samples. Microstructural analysis using optical microscopy was performed on selected samples. Achieved results were compared with the values of a real welded joint. The thermal cycle simulator allows transferring the properties of very small HAZ to the sufficiently large sample where the tests of the mechanical properties can be performed. A satisfactory accordance was found when comparing the microstructure and mechanical properties of real welds and simulated samples.Keywords: heat affected zone, impact test, thermal cycle simulator, time of tempering
Procedia PDF Downloads 302