Search results for: model based clustering
36141 Ion Thruster Grid Lifetime Assessment Based on Its Structural Failure
Authors: Juan Li, Jiawen Qiu, Yuchuan Chu, Tianping Zhang, Wei Meng, Yanhui Jia, Xiaohui Liu
Abstract:
This article developed an ion thruster optic system sputter erosion depth numerical 3D model by IFE-PIC (Immersed Finite Element-Particle-in-Cell) and Mont Carlo method, and calculated the downstream surface sputter erosion rate of accelerator grid; Compared with LIPS-200 life test data, the results of the numerical model are in reasonable agreement with the measured data. Finally, we predict the lifetime of the 20cm diameter ion thruster via the erosion data obtained with the model. The ultimate result demonstrates that under normal operating condition, the erosion rate of the grooves wears on the downstream surface of the accelerator grid is 34.6μm⁄1000h, which means the conservative lifetime until structural failure occurring on the accelerator grid is 11500 hours.Keywords: ion thruster, accelerator gird, sputter erosion, lifetime assessment
Procedia PDF Downloads 56436140 Site Selection and Construction Mechanism of the Island Settlements in China Based on CFD-GIS Technology
Authors: Weng Jiantao, Wu Yiqun
Abstract:
The efficiency of natural ventilation, wind pressure distribution on building surface, wind comfort for pedestrians and buildings’ wind tolerance in traditional settlements are closely related to the pattern of terrain. On the basis of field research on the typical island terrain in China, the physical and mathematical models are established by using CFD software, and then the simulation results of the wind field are exported. We discuss the relationship between wind direction and wind field results. Furthermore simulation results are imported into ArcGIS platform. The evaluation model of island site selection is established with considering slope factor. We realize the visual model of site selection on complex island terrain. The multi-plans of certain residential are discussed based on wind simulation; at last the optimal project is selected. Results can provide the theory guidance for settlement planning and construction in China's traditional island.Keywords: CFD, island terrain, site selection, construction mechanism
Procedia PDF Downloads 50936139 Target and Biomarker Identification Platform to Design New Drugs against Aging and Age-Related Diseases
Authors: Peter Fedichev
Abstract:
We studied fundamental aspects of aging to develop a mathematical model of gene regulatory network. We show that aging manifests itself as an inherent instability of gene network leading to exponential accumulation of regulatory errors with age. To validate our approach we studied age-dependent omic data such as transcriptomes, metabolomes etc. of different model organisms and humans. We build a computational platform based on our model to identify the targets and biomarkers of aging to design new drugs against aging and age-related diseases. As biomarkers of aging, we choose the rate of aging and the biological age since they completely determine the state of the organism. Since rate of aging rapidly changes in response to an external stress, this kind of biomarker can be useful as a tool for quantitative efficacy assessment of drugs, their combinations, dose optimization, chronic toxicity estimate, personalized therapies selection, clinical endpoints achievement (within clinical research), and death risk assessments. According to our model, we propose a method for targets identification for further interventions against aging and age-related diseases. Being a biotech company, we offer a complete pipeline to develop an anti-aging drug-candidate.Keywords: aging, longevity, biomarkers, senescence
Procedia PDF Downloads 27436138 Study of Mobile Game Addiction Using Electroencephalography Data Analysis
Authors: Arsalan Ansari, Muhammad Dawood Idrees, Maria Hafeez
Abstract:
Use of mobile phones has been increasing considerably over the past decade. Currently, it is one of the main sources of communication and information. Initially, mobile phones were limited to calls and messages, but with the advent of new technology smart phones were being used for many other purposes including video games. Despite of positive outcomes, addiction to video games on mobile phone has become a leading cause of psychological and physiological problems among many people. Several researchers examined the different aspects of behavior addiction with the use of different scales. Objective of this study is to examine any distinction between mobile game addicted and non-addicted players with the use of electroencephalography (EEG), based upon psycho-physiological indicators. The mobile players were asked to play a mobile game and EEG signals were recorded by BIOPAC equipment with AcqKnowledge as data acquisition software. Electrodes were places, following the 10-20 system. EEG was recorded at sampling rate of 200 samples/sec (12,000samples/min). EEG recordings were obtained from the frontal (Fp1, Fp2), parietal (P3, P4), and occipital (O1, O2) lobes of the brain. The frontal lobe is associated with behavioral control, personality, and emotions. The parietal lobe is involved in perception, understanding logic, and arithmetic. The occipital lobe plays a role in visual tasks. For this study, a 60 second time window was chosen for analysis. Preliminary analysis of the signals was carried out with Acqknowledge software of BIOPAC Systems. From the survey based on CGS manual study 2010, it was concluded that five participants out of fifteen were in addictive category. This was used as prior information to group the addicted and non-addicted by physiological analysis. Statistical analysis showed that by applying clustering analysis technique authors were able to categorize the addicted and non-addicted players specifically on theta frequency range of occipital area.Keywords: mobile game, addiction, psycho-physiology, EEG analysis
Procedia PDF Downloads 16436137 Modelling the Physicochemical Properties of Papaya Based-Cookies Using Response Surface Methodology
Authors: Mayowa Saheed Sanusi A, Musiliu Olushola Sunmonua, Abdulquadri Alakab Owolabi Raheema, Adeyemi Ikimot Adejokea
Abstract:
The development of healthy cookies for health-conscious consumers cannot be overemphasized in the present global health crisis. This study was aimed to evaluate and model the influence of ripeness levels of papaya puree (unripe, ripe and overripe), oven temperature (130°C, 150°C and 170°C) and oven rack speed (stationary, 10 and 20 rpm) on physicochemical properties of papaya-based cookies using Response Surface Methodology (RSM). The physicochemical properties (baking time, cookies mass, cookies thickness, spread ratio, proximate composition, Calcium, Vitamin C and Total Phenolic Content) were determined using standard procedures. The data obtained were statistically analysed at p≤0.05 using ANOVA. The polynomial regression model of response surface methodology was used to model the physicochemical properties. The adequacy of the models was determined using the coefficient of determination (R²) and the response optimizer of RSM was used to determine the optimum physicochemical properties for the papaya-based cookies. Cookies produced from overripe papaya puree were observed to have the shortest baking time; ripe papaya puree favors cookies spread ratio, while the unripe papaya puree gives cookies with the highest mass and thickness. The highest crude protein content, fiber content, calcium content, Vitamin C and Total Phenolic Content (TPC) were observed in papaya based-cookies produced from overripe puree. The models for baking time, cookies mass, cookies thickness, spread ratio, moisture content, crude protein and TPC were significant, with R2 ranging from 0.73 – 0.95. The optimum condition for producing papaya based-cookies with desirable physicochemical properties was obtained at 149°C oven temperature, 17 rpm oven rack speed and with the use of overripe papaya puree. The Information on the use of puree from unripe, ripe and overripe papaya can help to increase the use of underutilized unripe or overripe papaya and also serve as a strategic means of obtaining a fat substitute to produce new products with lower production cost and health benefit.Keywords: papaya based-cookies, modeling, response surface methodology, physicochemical properties
Procedia PDF Downloads 16736136 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm
Authors: Sukhleen Kaur
Abstract:
In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper
Procedia PDF Downloads 41436135 COVID_ICU_BERT: A Fine-Tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes
Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo
Abstract:
Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as vital physiological signs, images, and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision-making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful in influencing the judgement of clinical sentiment in ICU clinical notes. This paper introduces two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of clinical transformer models that can reliably predict clinical sentiment for notes of COVID patients in the ICU. We train the model on clinical notes for COVID-19 patients, a type of notes that were not previously seen by clinicalBERT, and Bio_Discharge_Summary_BERT. The model, which was based on clinicalBERT achieves higher predictive accuracy (Acc 93.33%, AUC 0.98, and precision 0.96 ). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and precision 0.92 ).Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation
Procedia PDF Downloads 20636134 Risk of Fatal and Non-Fatal Coronary Heart Disease and Stroke Events among Adult Patients with Hypertension: Basic Markov Model Inputs for Evaluating Cost-Effectiveness of Hypertension Treatment: Systematic Review of Cohort Studies
Authors: Mende Mensa Sorato, Majid Davari, Abbas Kebriaeezadeh, Nizal Sarrafzadegan, Tamiru Shibru, Behzad Fatemi
Abstract:
Markov model, like cardiovascular disease (CVD) policy model based simulation, is being used for evaluating the cost-effectiveness of hypertension treatment. Stroke, angina, myocardial infarction (MI), cardiac arrest, and all-cause mortality were included in this model. Hypertension is a risk factor for a number of vascular and cardiac complications and CVD outcomes. Objective: This systematic review was conducted to evaluate the comprehensiveness of this model across different regions globally. Methods: We searched articles written in the English language from PubMed/Medline, Ovid/Medline, Embase, Scopus, Web of Science, and Google scholar with a systematic search query. Results: Thirteen cohort studies involving a total of 2,165,770 (1,666,554 hypertensive adult population and 499,226 adults with treatment-resistant hypertension) were included in this scoping review. Hypertension is clearly associated with coronary heart disease (CHD) and stroke mortality, unstable angina, stable angina, MI, heart failure (HF), sudden cardiac death, transient ischemic attack, ischemic stroke, subarachnoid hemorrhage, intracranial hemorrhage, peripheral arterial disease (PAD), and abdominal aortic aneurism (AAA). Association between HF and hypertension is variable across regions. Treatment resistant hypertension is associated with a higher relative risk of developing major cardiovascular events and all-cause mortality when compared with non-resistant hypertension. However, it is not included in the previous CVD policy model. Conclusion: The CVD policy model used can be used in most regions for the evaluation of the cost-effectiveness of hypertension treatment. However, hypertension is highly associated with HF in Latin America, the Caribbean, Eastern Europe, and Sub-Saharan Africa. Therefore, it is important to consider HF in the CVD policy model for evaluating the cost-effectiveness of hypertension treatment in these regions. We do not suggest the inclusion of PAD and AAA in the CVD policy model for evaluating the cost-effectiveness of hypertension treatment due to a lack of sufficient evidence. Researchers should consider the effect of treatment-resistant hypertension either by including it in the basic model or during setting the model assumptions.Keywords: cardiovascular disease policy model, cost-effectiveness analysis, hypertension, systematic review, twelve major cardiovascular events
Procedia PDF Downloads 7136133 Implementation of an Image Processing System Using Artificial Intelligence for the Diagnosis of Malaria Disease
Authors: Mohammed Bnebaghdad, Feriel Betouche, Malika Semmani
Abstract:
Image processing become more sophisticated over time due to technological advances, especially artificial intelligence (AI) technology. Currently, AI image processing is used in many areas, including surveillance, industry, science, and medicine. AI in medical image processing can help doctors diagnose diseases faster, with minimal mistakes, and with less effort. Among these diseases is malaria, which remains a major public health challenge in many parts of the world. It affects millions of people every year, particularly in tropical and subtropical regions. Early detection of malaria is essential to prevent serious complications and reduce the burden of the disease. In this paper, we propose and implement a scheme based on AI image processing to enhance malaria disease diagnosis through automated analysis of blood smear images. The scheme is based on the convolutional neural network (CNN) method. So, we have developed a model that classifies infected and uninfected single red cells using images available on Kaggle, as well as real blood smear images obtained from the Central Laboratory of Medical Biology EHS Laadi Flici (formerly El Kettar) in Algeria. The real images were segmented into individual cells using the watershed algorithm in order to match the images from the Kaagle dataset. The model was trained and tested, achieving an accuracy of 99% and 97% accuracy for new real images. This validates that the model performs well with new real images, although with slightly lower accuracy. Additionally, the model has been embedded in a Raspberry Pi4, and a graphical user interface (GUI) was developed to visualize the malaria diagnostic results and facilitate user interaction.Keywords: medical image processing, malaria parasite, classification, CNN, artificial intelligence
Procedia PDF Downloads 1936132 Application of Seasonal Autoregressive Integrated Moving Average Model for Forecasting Monthly Flows in Waterval River, South Africa
Authors: Kassahun Birhanu Tadesse, Megersa Olumana Dinka
Abstract:
Reliable future river flow information is basic for planning and management of any river systems. For data scarce river system having only a river flow records like the Waterval River, a univariate time series models are appropriate for river flow forecasting. In this study, a univariate Seasonal Autoregressive Integrated Moving Average (SARIMA) model was applied for forecasting Waterval River flow using GRETL statistical software. Mean monthly river flows from 1960 to 2016 were used for modeling. Different unit root tests and Mann-Kendall trend analysis were performed to test the stationarity of the observed flow time series. The time series was differenced to remove the seasonality. Using the correlogram of seasonally differenced time series, different SARIMA models were identified, their parameters were estimated, and diagnostic check-up of model forecasts was performed using white noise and heteroscedasticity tests. Finally, based on minimum Akaike Information (AIc) and Hannan-Quinn (HQc) criteria, SARIMA (3, 0, 2) x (3, 1, 3)12 was selected as the best model for Waterval River flow forecasting. Therefore, this model can be used to generate future river information for water resources development and management in Waterval River system. SARIMA model can also be used for forecasting other similar univariate time series with seasonality characteristics.Keywords: heteroscedasticity, stationarity test, trend analysis, validation, white noise
Procedia PDF Downloads 20536131 Computational Fluid Dynamics (CFD) Simulation of Transient Flow in a Rectangular Bubble Column Using a Coupled Discrete Phase Model (DPM) and Volume of Fluid (VOF) Model
Authors: Sonia Besbes, Mahmoud El Hajem, Habib Ben Aissia, Jean Yves Champagne, Jacques Jay
Abstract:
In this work, we present a computational study for the characterization of the flow in a rectangular bubble column. To simulate the dynamic characteristics of the flow, a three-dimensional transient numerical simulations based on a coupled discrete phase model (DPM) and Volume of Fluid (VOF) model are performed. Modeling of bubble column reactor is often carried out under the assumption of a flat liquid surface with a degassing boundary condition. However, the dynamic behavior of the top surface surmounting the liquid phase will to some extent influence the meandering oscillations of the bubble plume. Therefore it is important to capture the surface behavior, and the assumption of a flat surface may not be applicable. So, the modeling approach needs to account for a dynamic liquid surface induced by the rising bubble plume. The volume of fluid (VOF) model was applied for the liquid and top gas which both interacts with bubbles implemented with a discrete phase model. This model treats the bubbles as Lagrangian particles and the liquid and the top gas as Eulerian phases with a sharp interface. Two-way coupling between Eulerian phases and Lagrangian bubbles are accounted for in a single set continuous phase momentum equation for the mixture of the two Eulerian phases. The effect of gas flow rate on the dynamic and time-averaged flow properties was studied. The time averaged liquid velocity field predicted from simulations and from our previous PIV measurements shows that the liquid is entrained up flow in the wake of the bubbles and down flow near the walls. The simulated and measured vertical velocity profiles exhibit a reasonable agreement looking at the minimum velocity values near the walls and the maximum values at the column center.Keywords: bubble column, computational fluid dynamics (CFD), coupled DPM and VOF model, hydrodynamics
Procedia PDF Downloads 38736130 Multinomial Dirichlet Gaussian Process Model for Classification of Multidimensional Data
Authors: Wanhyun Cho, Soonja Kang, Sanggoon Kim, Soonyoung Park
Abstract:
We present probabilistic multinomial Dirichlet classification model for multidimensional data and Gaussian process priors. Here, we have considered an efficient computational method that can be used to obtain the approximate posteriors for latent variables and parameters needed to define the multiclass Gaussian process classification model. We first investigated the process of inducing a posterior distribution for various parameters and latent function by using the variational Bayesian approximations and important sampling method, and next we derived a predictive distribution of latent function needed to classify new samples. The proposed model is applied to classify the synthetic multivariate dataset in order to verify the performance of our model. Experiment result shows that our model is more accurate than the other approximation methods.Keywords: multinomial dirichlet classification model, Gaussian process priors, variational Bayesian approximation, importance sampling, approximate posterior distribution, marginal likelihood evidence
Procedia PDF Downloads 44436129 A Structural Constitutive Model for Viscoelastic Rheological Behavior of Human Saphenous Vein Using Experimental Assays
Authors: Rassoli Aisa, Abrishami Movahhed Arezu, Faturaee Nasser, Seddighi Amir Saeed, Shafigh Mohammad
Abstract:
Cardiovascular diseases are one of the most common causes of mortality in developed countries. Coronary artery abnormalities and carotid artery stenosis, also known as silent death, are among these diseases. One of the treatment methods for these diseases is to create a deviatory pathway to conduct blood into the heart through a bypass surgery. The saphenous vein is usually used in this surgery to create the deviatory pathway. Unfortunately, a re-surgery will be necessary after some years due to ignoring the disagreement of mechanical properties of graft tissue and/or applied prostheses with those of host tissue. The objective of the present study is to clarify the viscoelastic behavior of human saphenous tissue. The stress relaxation tests in circumferential and longitudinal direction were done in this vein by exerting 20% and 50% strains. Considering the stress relaxation curves obtained from stress relaxation tests and the coefficients of the standard solid model, it was demonstrated that the saphenous vein has a non-linear viscoelastic behavior. Thereafter, the fitting with Fung’s quasilinear viscoelastic (QLV) model was performed based on stress relaxation time curves. Finally, the coefficients of Fung’s QLV model, which models the behavior of saphenous tissue very well, were presented.Keywords: Viscoelastic behavior, stress relaxation test, uniaxial tensile test, Fung’s quasilinear viscoelastic (QLV) model, strain rate
Procedia PDF Downloads 33536128 The Use of Haar Wavelet Mother Signal Tool for Performance Analysis Response of Distillation Column (Application to Moroccan Case Study)
Authors: Mahacine Amrani
Abstract:
This paper aims at reviewing some Moroccan industrial applications of wavelet especially in the dynamic identification of a process model using Haar wavelet mother response. Two recent Moroccan study cases are described using dynamic data originated by a distillation column and an industrial polyethylene process plant. The purpose of the wavelet scheme is to build on-line dynamic models. In both case studies, a comparison is carried out between the Haar wavelet mother response model and a linear difference equation model. Finally it concludes, on the base of the comparison of the process performances and the best responses, which may be useful to create an estimated on-line internal model control and its application towards model-predictive controllers (MPC). All calculations were implemented using AutoSignal Software.Keywords: process performance, model, wavelets, Haar, Moroccan
Procedia PDF Downloads 31736127 Statistical Comparison of Ensemble Based Storm Surge Forecasting Models
Authors: Amin Salighehdar, Ziwen Ye, Mingzhe Liu, Ionut Florescu, Alan F. Blumberg
Abstract:
Storm surge is an abnormal water level caused by a storm. Accurate prediction of a storm surge is a challenging problem. Researchers developed various ensemble modeling techniques to combine several individual forecasts to produce an overall presumably better forecast. There exist some simple ensemble modeling techniques in literature. For instance, Model Output Statistics (MOS), and running mean-bias removal are widely used techniques in storm surge prediction domain. However, these methods have some drawbacks. For instance, MOS is based on multiple linear regression and it needs a long period of training data. To overcome the shortcomings of these simple methods, researchers propose some advanced methods. For instance, ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast. This application creates a better forecast of sea level using a combination of several instances of the Bayesian Model Averaging (BMA). An ensemble dressing method is based on identifying best member forecast and using it for prediction. Our contribution in this paper can be summarized as follows. First, we investigate whether the ensemble models perform better than any single forecast. Therefore, we need to identify the single best forecast. We present a methodology based on a simple Bayesian selection method to select the best single forecast. Second, we present several new and simple ways to construct ensemble models. We use correlation and standard deviation as weights in combining different forecast models. Third, we use these ensembles and compare with several existing models in literature to forecast storm surge level. We then investigate whether developing a complex ensemble model is indeed needed. To achieve this goal, we use a simple average (one of the simplest and widely used ensemble model) as benchmark. Predicting the peak level of Surge during a storm as well as the precise time at which this peak level takes place is crucial, thus we develop a statistical platform to compare the performance of various ensemble methods. This statistical analysis is based on root mean square error of the ensemble forecast during the testing period and on the magnitude and timing of the forecasted peak surge compared to the actual time and peak. In this work, we analyze four hurricanes: hurricanes Irene and Lee in 2011, hurricane Sandy in 2012, and hurricane Joaquin in 2015. Since hurricane Irene developed at the end of August 2011 and hurricane Lee started just after Irene at the beginning of September 2011, in this study we consider them as a single contiguous hurricane event. The data set used for this study is generated by the New York Harbor Observing and Prediction System (NYHOPS). We find that even the simplest possible way of creating an ensemble produces results superior to any single forecast. We also show that the ensemble models we propose generally have better performance compared to the simple average ensemble technique.Keywords: Bayesian learning, ensemble model, statistical analysis, storm surge prediction
Procedia PDF Downloads 30936126 Cost-Based Analysis of Cloud and Traditional ERP Systems in Small and Medium Enterprises
Authors: Indu Saini, Ashu Khanna, S. K. Peddoju
Abstract:
Cloud computing is the new buzz word today attracting high interest among various domains like business enterprises, Particularly in Small and Medium Enterprises. As it is a pay-per-use model, SMEs have high expectations that adapting this model will not only make them flexible, hassle-free but also economic. In view of such expectations, this paper analyses the possibility of adapting cloud computing technologies in SMEs in light of economic concerns. In this paper, two hypotheses are developed to compare the average annual per-user costs of using Enterprise Resource Planning systems in two ways, The traditional approach and the cloud approach. A web based survey is conducted apart from the Interviews with the peers to collect the data across the selected SMEs and t-test is performed to compare both the technologies on the proposed hypothesis. Results achieved are produced and discussed.Keywords: cloud computing, small and medium enterprises, enterprise resource solutions, interviews
Procedia PDF Downloads 33636125 Detection and Quantification of Active Pharmaceutical Ingredients as Adulterants in Garcinia cambogia Slimming Preparations Using NIR Spectroscopy Combined with Chemometrics
Authors: Dina Ahmed Selim, Eman Shawky Anwar, Rasha Mohamed Abu El-Khair
Abstract:
A rapid, simple and efficient method with minimal sample treatment was developed for authentication of Garcinia cambogia fruit peel powder, along with determining undeclared active pharmaceutical ingredients (APIs) in its herbal slimming dietary supplements using near infrared spectroscopy combined with chemometrics. Five featured adulterants, including sibutramine, metformin, orlistat, ephedrine, and theophylline are selected as target compounds. The Near infrared spectral data matrix of authentic Garcinia cambogia fruit peel and specimens degraded by intentional contamination with the five selected APIs was subjected to hierarchical clustering analysis to investigate their bundling figure. SIMCA models were established to ensure the genuiness of Garcinia cambogia fruit peel which resulted in perfect classification of all tested specimens. Adulterated samples were utilized for construction of PLSR models based on different APIs contents at minute levels of fraud practices (LOQ < 0.2% w/w).The suggested approach can be applied to enhance and guarantee the safety and quality of Garcinia fruit peel powder as raw material and in dietary supplements.Keywords: Garcinia cambogia, Quality control, NIR spectroscopy, Chemometrics
Procedia PDF Downloads 7736124 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques
Authors: Gizem Eser Erdek
Abstract:
This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet
Procedia PDF Downloads 7736123 Reliability-Based Life-Cycle Cost Model for Engineering Systems
Authors: Reza Lotfalian, Sudarshan Martins, Peter Radziszewski
Abstract:
The effect of reliability on life-cycle cost, including initial and maintenance cost of a system is studied. The failure probability of a component is used to calculate the average maintenance cost during the operation cycle of the component. The standard deviation of the life-cycle cost is also calculated as an error measure for the average life-cycle cost. As a numerical example, the model is used to study the average life cycle cost of an electric motor.Keywords: initial cost, life-cycle cost, maintenance cost, reliability
Procedia PDF Downloads 60536122 Model Estimation and Error Level for Okike’s Merged Irregular Transposition Cipher
Authors: Okike Benjamin, Garba E. J. D.
Abstract:
The researcher has developed a new encryption technique known as Merged Irregular Transposition Cipher. In this cipher method of encryption, a message to be encrypted is split into parts and each part encrypted separately. Before the encrypted message is transmitted to the recipient(s), the positions of the split in the encrypted messages could be swapped to ensure more security. This work seeks to develop a model by considering the split number, S and the average number of characters per split, L as the message under consideration is split from 2 through 10. Again, after developing the model, the error level in the model would be determined.Keywords: merged irregular transposition, error level, model estimation, message splitting
Procedia PDF Downloads 31436121 3D Multimedia Model for Educational Design Engineering
Authors: Mohanaad Talal Shakir
Abstract:
This paper tries to propose educational design by using multimedia technology for Engineering of computer Technology, Alma'ref University College in Iraq. This paper evaluates the acceptance, cognition, and interactiveness of the proposed model by students by using the statistical relationship to determine the stage of the model. Objectives of proposed education design are to develop a user-friendly software for education purposes using multimedia technology and to develop animation for 3D model to simulate assembling and disassembling process of high-speed flow.Keywords: CAL, multimedia, shock tunnel, interactivity, engineering education
Procedia PDF Downloads 62336120 Modelling Mode Choice Behaviour Using Cloud Theory
Authors: Leah Wright, Trevor Townsend
Abstract:
Mode choice models are crucial instruments in the analysis of travel behaviour. These models show the relationship between an individual’s choice of transportation mode for a given O-D pair and the individual’s socioeconomic characteristics such as household size and income level, age and/or gender, and the features of the transportation system. The most popular functional forms of these models are based on Utility-Based Choice Theory, which addresses the uncertainty in the decision-making process with the use of an error term. However, with the development of artificial intelligence, many researchers have started to take a different approach to travel demand modelling. In recent times, researchers have looked at using neural networks, fuzzy logic and rough set theory to develop improved mode choice formulas. The concept of cloud theory has recently been introduced to model decision-making under uncertainty. Unlike the previously mentioned theories, cloud theory recognises a relationship between randomness and fuzziness, two of the most common types of uncertainty. This research aims to investigate the use of cloud theory in mode choice models. This paper highlights the conceptual framework of the mode choice model using cloud theory. Merging decision-making under uncertainty and mode choice models is state of the art. The cloud theory model is expected to address the issues and concerns with the nested logit and improve the design of mode choice models and their use in travel demand.Keywords: Cloud theory, decision-making, mode choice models, travel behaviour, uncertainty
Procedia PDF Downloads 38836119 Investigating the Effectiveness of Multilingual NLP Models for Sentiment Analysis
Authors: Othmane Touri, Sanaa El Filali, El Habib Benlahmar
Abstract:
Natural Language Processing (NLP) has gained significant attention lately. It has proved its ability to analyze and extract insights from unstructured text data in various languages. It is found that one of the most popular NLP applications is sentiment analysis which aims to identify the sentiment expressed in a piece of text, such as positive, negative, or neutral, in multiple languages. While there are several multilingual NLP models available for sentiment analysis, there is a need to investigate their effectiveness in different contexts and applications. In this study, we aim to investigate the effectiveness of different multilingual NLP models for sentiment analysis on a dataset of online product reviews in multiple languages. The performance of several NLP models, including Google Cloud Natural Language API, Microsoft Azure Cognitive Services, Amazon Comprehend, Stanford CoreNLP, spaCy, and Hugging Face Transformers are being compared. The models based on several metrics, including accuracy, precision, recall, and F1 score, are being evaluated and compared to their performance across different categories of product reviews. In order to run the study, preprocessing of the dataset has been performed by cleaning and tokenizing the text data in multiple languages. Then training and testing each model has been applied using a cross-validation approach where randomly dividing the dataset into training and testing sets and repeating the process multiple times has been used. A grid search approach to optimize the hyperparameters of each model and select the best-performing model for each category of product reviews and language has been applied. The findings of this study provide insights into the effectiveness of different multilingual NLP models for Multilingual Sentiment Analysis and their suitability for different languages and applications. The strengths and limitations of each model were identified, and recommendations for selecting the most performant model based on the specific requirements of a project were provided. This study contributes to the advancement of research methods in multilingual NLP and provides a practical guide for researchers and practitioners in the field.Keywords: NLP, multilingual, sentiment analysis, texts
Procedia PDF Downloads 10336118 Adaptive Neuro Fuzzy Inference System Model Based on Support Vector Regression for Stock Time Series Forecasting
Authors: Anita Setianingrum, Oki S. Jaya, Zuherman Rustam
Abstract:
Forecasting stock price is a challenging task due to the complex time series of the data. The complexity arises from many variables that affect the stock market. Many time series models have been proposed before, but those previous models still have some problems: 1) put the subjectivity of choosing the technical indicators, and 2) rely upon some assumptions about the variables, so it is limited to be applied to all datasets. Therefore, this paper studied a novel Adaptive Neuro-Fuzzy Inference System (ANFIS) time series model based on Support Vector Regression (SVR) for forecasting the stock market. In order to evaluate the performance of proposed models, stock market transaction data of TAIEX and HIS from January to December 2015 is collected as experimental datasets. As a result, the method has outperformed its counterparts in terms of accuracy.Keywords: ANFIS, fuzzy time series, stock forecasting, SVR
Procedia PDF Downloads 24636117 Grating Scale Thermal Expansion Error Compensation for Large Machine Tools Based on Multiple Temperature Detection
Authors: Wenlong Feng, Zhenchun Du, Jianguo Yang
Abstract:
To decrease the grating scale thermal expansion error, a novel method which based on multiple temperature detections is proposed. Several temperature sensors are installed on the grating scale and the temperatures of these sensors are recorded. The temperatures of every point on the grating scale are calculated by interpolating between adjacent sensors. According to the thermal expansion principle, the grating scale thermal expansion error model can be established by doing the integral for the variations of position and temperature. A novel compensation method is proposed in this paper. By applying the established error model, the grating scale thermal expansion error is decreased by 90% compared with no compensation. The residual positioning error of the grating scale is less than 15um/10m and the accuracy of the machine tool is significant improved.Keywords: thermal expansion error of grating scale, error compensation, machine tools, integral method
Procedia PDF Downloads 36536116 Study of ANFIS and ARIMA Model for Weather Forecasting
Authors: Bandreddy Anand Babu, Srinivasa Rao Mandadi, C. Pradeep Reddy, N. Ramesh Babu
Abstract:
In this paper quickly illustrate the correlation investigation of Auto-Regressive Integrated Moving and Average (ARIMA) and daptive Network Based Fuzzy Inference System (ANFIS) models done by climate estimating. The climate determining is taken from University of Waterloo. The information is taken as Relative Humidity, Ambient Air Temperature, Barometric Pressure and Wind Direction utilized within this paper. The paper is carried out by analyzing the exhibitions are seen by demonstrating of ARIMA and ANIFIS model like with Sum of average of errors. Versatile Network Based Fuzzy Inference System (ANFIS) demonstrating is carried out by Mat lab programming and Auto-Regressive Integrated Moving and Average (ARIMA) displaying is produced by utilizing XLSTAT programming. ANFIS is carried out in Fuzzy Logic Toolbox in Mat Lab programming.Keywords: ARIMA, ANFIS, fuzzy surmising tool stash, weather forecasting, MATLAB
Procedia PDF Downloads 41936115 Improving Research by the Integration of a Collaborative Dimension in an Information Retrieval (IR) System
Authors: Amel Hannech, Mehdi Adda, Hamid Mcheick
Abstract:
In computer science, the purpose of finding useful information is still one of the most active and important research topics. The most popular application of information retrieval (IR) are Search Engines, they meet users' specific needs and aim to locate the effective information in the web. However, these search engines have some limitations related to the relevancy of the results and the ease to explore those results. In this context, we proposed in previous works a Multi-Space Search Engine model that is based on a multidimensional interpretation universe. In the present paper, we integrate an additional dimension that allows to offer users new research experiences. The added component is based on creating user profiles and calculating the similarity between them that then allow the use of collaborative filtering in retrieving search results. To evaluate the effectiveness of the proposed model, a prototype is developed. The experiments showed that the additional dimension has improved the relevancy of results by predicting the interesting items of users based on their experiences and the experiences of other similar users. The offered personalization service allows users to approve the pertinent items, which allows to enrich their profiles and further improve research.Keywords: information retrieval, v-facets, user behavior analysis, user profiles, topical ontology, association rules, data personalization
Procedia PDF Downloads 26236114 Application of the Bionic Wavelet Transform and Psycho-Acoustic Model for Speech Compression
Authors: Chafik Barnoussi, Mourad Talbi, Adnane Cherif
Abstract:
In this paper we propose a new speech compression system based on the application of the Bionic Wavelet Transform (BWT) combined with the psychoacoustic model. This compression system is a modified version of the compression system using a MDCT (Modified Discrete Cosine Transform) filter banks of 32 filters each and the psychoacoustic model. This modification consists in replacing the banks of the MDCT filter banks by the bionic wavelet coefficients which are obtained from the application of the BWT to the speech signal to be compressed. These two methods are evaluated and compared with each other by computing bits before and bits after compression. They are tested on different speech signals and the obtained simulation results show that the proposed technique outperforms the second technique and this in term of compressed file size. In term of SNR, PSNR and NRMSE, the outputs speech signals of the proposed compression system are with acceptable quality. In term of PESQ and speech signal intelligibility, the proposed speech compression technique permits to obtain reconstructed speech signals with good quality.Keywords: speech compression, bionic wavelet transform, filterbanks, psychoacoustic model
Procedia PDF Downloads 38436113 The Origins of Inflation in Tunisia
Authors: Narimen Rdhaounia Mohamed Kouni
Abstract:
Our aim in this paper is to identify the origins of inflation in Tunisia on the period from 1988 to 2018. In order to estimate the model, an ARDL methodology is used. We studied also the effect of informal economy on inflation. Indeed, we estimated the size of the informal economy in Tunisia based on Gutmann method. The results showed that there are three main origins of inflation. In fact, the first origin is the fiscal policy adopted by Tunisia, particularly after revolution. The second origin is the increase of monetary variables. Finally, informal economy played an important role in inflation.Keywords: inflation, consumer price index, informal, gutmann method, ARDL model
Procedia PDF Downloads 8236112 An Automated Procedure for Estimating the Glomerular Filtration Rate and Determining the Normality or Abnormality of the Kidney Stages Using an Artificial Neural Network
Authors: Hossain A., Chowdhury S. I.
Abstract:
Introduction: The use of a gamma camera is a standard procedure in nuclear medicine facilities or hospitals to diagnose chronic kidney disease (CKD), but the gamma camera does not precisely stage the disease. The authors sought to determine whether they could use an artificial neural network to determine whether CKD was in normal or abnormal stages based on GFR values (ANN). Method: The 250 kidney patients (Training 188, Testing 62) who underwent an ultrasonography test to diagnose a renal test in our nuclear medical center were scanned using a gamma camera. Before the scanning procedure, the patients received an injection of ⁹⁹ᵐTc-DTPA. The gamma camera computes the pre- and post-syringe radioactive counts after the injection has been pushed into the patient's vein. The artificial neural network uses the softmax function with cross-entropy loss to determine whether CKD is normal or abnormal based on the GFR value in the output layer. Results: The proposed ANN model had a 99.20 % accuracy according to K-fold cross-validation. The sensitivity and specificity were 99.10 and 99.20 %, respectively. AUC was 0.994. Conclusion: The proposed model can distinguish between normal and abnormal stages of CKD by using an artificial neural network. The gamma camera could be upgraded to diagnose normal or abnormal stages of CKD with an appropriate GFR value following the clinical application of the proposed model.Keywords: artificial neural network, glomerular filtration rate, stages of the kidney, gamma camera
Procedia PDF Downloads 103