Search results for: computer- supported collaborative learning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11288

Search results for: computer- supported collaborative learning

9398 University Students' Perceptions of Effective Teaching

Authors: Christine K. Ormsbee, Jeremy S. Robinson

Abstract:

Teacher quality is important for United States universities. It impacts student achievement, program and degree progress, and even retention. While course instructors are still the primary designers and deliverers of instruction in U.S. higher education classrooms, students have become better and more vocal consumers of instruction. They are capable of identifying what instructors do that facilitates their learning or, conversely, what instructors do that makes learning more difficult. Instructors can use students as resources as they design and implement their courses. Students have become more aware of their own learning preferences and processes and can articulate those. While it is not necessarily possible or likely that an instructor can address the widely varying differences in learning preferences represented by a large class of students, it is possible for them to employ general instructional supports that help students understand clearly the instructor's study expectations, identify critical content, efficiently commit content to memory, and develop new skills. Those learning supports include reading guides, test study guides, and other instructor-developed tasks that organize learning for students, hold them accountable for the content, and prepare them to use that material in simulated and real situations. When U.S. university teaching and learning support staff work with instructors to help them identify areas of their teaching to improve, a key part of that assistance includes talking to the instructor member's students. Students are asked to explain what the instructor does that helps them learn, what the instructor does that impedes their learning, and what they wish the instructor would do. Not surprisingly, students are very specific in what they see as helpful learning supports for them. Moreover, they also identify impediments to their success, viewing those as the instructor creating unnecessary barriers to learning. A qualitative survey was developed to provide undergraduate students the opportunity to identify instructor behaviors and/or practices that they thought helped students learn and those behaviors and practices that were perceived as hindrances to student success. That information is used to help instructors implement more student-focused learning supports that facilitate student achievement. In this session, data shared from the survey will focus on supportive instructor behaviors identified by undergraduate students in an institution located in the southwest United States and those behaviors that students perceive as creating unnecessary barriers to their academic success.

Keywords: effective teaching, pedagogy, student engagement, instructional design

Procedia PDF Downloads 89
9397 Learning outside the Box by Using Memory Techniques Skill: Case Study in Indonesia Memory Sports Council

Authors: Muhammad Fajar Suardi, Fathimatufzzahra, Dela Isnaini Sendra

Abstract:

Learning is an activity that has been used to do, especially for a student or academics. But a handful of people have not been using and maximizing their brains work and some also do not know a good brain work time in capturing the lessons, so that knowledge is absorbed is also less than the maximum. Indonesia Memory Sports Council (IMSC) is an institution which is engaged in the performance of the brain and the development of effective learning methods by using several techniques that can be used in considering the lessons and knowledge to grasp well, including: loci method, substitution method, and chain method. This study aims to determine the techniques and benefits of using the method given in learning and memorization by applying memory techniques taught by Indonesia Memory Sports Council (IMSC) to students and the difference if not using this method. This research uses quantitative research with survey method addressed to students of Indonesian Memory Sports Council (IMSC). The results of this study indicate that learn, understand and remember the lesson using the techniques of memory which is taught in Indonesia Memory Sport Council is very effective and faster to absorb the lesson than learning without using the techniques of memory, and this affects the academic achievement of students in each educational institution.

Keywords: chain method, Indonesia memory sports council, loci method, substitution method

Procedia PDF Downloads 293
9396 Project-Based Learning Application: Applying Systems Thinking Concepts to Assure Continuous Improvement

Authors: Kimberley Kennedy

Abstract:

The major findings of this study discuss the importance of understanding and applying Systems thinking concepts to ensure an effective Project-Based Learning environment. A pilot project study of a major pedagogical change was conducted over a five year period with the goal to give students real world, hands-on learning experiences and the opportunity to apply what they had learned over the past two years of their business program. The first two weeks of the fifteen week semester utilized teaching methods of lectures, guest speakers and design thinking workshops to prepare students for the project work. For the remaining thirteen weeks of the semester, the students worked with actual business owners and clients on projects and challenges. The first three years of the five year study focused on student feedback to ensure a quality learning experience and continuous improvement process was developed. The final two years of the study, examined the conceptual understanding and perception of learning and teaching by faculty using Project-Based Learning pedagogy as compared to lectures and more traditional teaching methods was performed. Relevant literature was reviewed and data collected from program faculty participants who completed pre-and post-semester interviews and surveys over a two year period. Systems thinking concepts were applied to better understand the challenges for faculty using Project-Based Learning pedagogy as compared to more traditional teaching methods. Factors such as instructor and student fatigue, motivation, quality of work and enthusiasm were explored to better understand how to provide faculty with effective support and resources when using Project-Based Learning pedagogy as the main teaching method. This study provides value by presenting generalizable, foundational knowledge by offering suggestions for practical solutions to assure student and teacher engagement in Project-Based Learning courses.

Keywords: continuous improvement, project-based learning, systems thinking, teacher engagement

Procedia PDF Downloads 123
9395 Language Development and Learning about Violence

Authors: Karen V. Lee

Abstract:

The background and significance of this study involves research about a music teacher discovering how language development and learning can help her overcome harmful and lasting consequences from sexual violence. Education about intervention resources from language development that helps her cope with consequences influencing her career as teacher. Basic methodology involves the qualitative method of research as theoretical framework where the author is drawn into a deep storied reflection about political issues surrounding teachers who need to overcome social, psychological, and health risk behaviors from violence. Sub-themes involve available education from learning resources to ensure teachers receive social, emotional, physical, spiritual, and intervention resources that evoke visceral, emotional responses from the audience. Major findings share how language development and learning provide helpful resources to victims of violence. It is hoped the research dramatizes an episodic yet incomplete story that highlights the circumstances surrounding the protagonist’s life. In conclusion, the research has a reflexive storied framework that embraces harmful and lasting consequences from sexual violence. The reflexive story of the sensory experience critically seeks verisimilitude by evoking lifelike and believable feelings from others. Thus, the scholarly importance of using language development and learning for intervention resources can provide transformative aspects that contribute to social change. Overall, the circumstance surrounding the story about sexual violence is not uncommon in society. Language development and learning supports the moral mission to help teachers overcome sexual violence that socially impacts their professional lives as victims.

Keywords: intervention, language development and learning, sexual violence, story

Procedia PDF Downloads 334
9394 Machine Learning Model Applied for SCM Processes to Efficiently Determine Its Impacts on the Environment

Authors: Elena Puica

Abstract:

This paper aims to investigate the impact of Supply Chain Management (SCM) on the environment by applying a Machine Learning model while pointing out the efficiency of the technology used. The Machine Learning model was used to derive the efficiency and optimization of technology used in SCM and the environmental impact of SCM processes. The model applied is a predictive classification model and was trained firstly to determine which stage of the SCM has more outputs and secondly to demonstrate the efficiency of using advanced technology in SCM instead of recuring to traditional SCM. The outputs are the emissions generated in the environment, the consumption from different steps in the life cycle, the resulting pollutants/wastes emitted, and all the releases to air, land, and water. This manuscript presents an innovative approach to applying advanced technology in SCM and simultaneously studies the efficiency of technology and the SCM's impact on the environment. Identifying the conceptual relationships between SCM practices and their impact on the environment is a new contribution to the research. The authors can take a forward step in developing recent studies in SCM and its effects on the environment by applying technology.

Keywords: machine-learning model in SCM, SCM processes, SCM and the environmental impact, technology in SCM

Procedia PDF Downloads 118
9393 A Comparative Study of Malware Detection Techniques Using Machine Learning Methods

Authors: Cristina Vatamanu, Doina Cosovan, Dragos Gavrilut, Henri Luchian

Abstract:

In the past few years, the amount of malicious software increased exponentially and, therefore, machine learning algorithms became instrumental in identifying clean and malware files through semi-automated classification. When working with very large datasets, the major challenge is to reach both a very high malware detection rate and a very low false positive rate. Another challenge is to minimize the time needed for the machine learning algorithm to do so. This paper presents a comparative study between different machine learning techniques such as linear classifiers, ensembles, decision trees or various hybrids thereof. The training dataset consists of approximately 2 million clean files and 200.000 infected files, which is a realistic quantitative mixture. The paper investigates the above mentioned methods with respect to both their performance (detection rate and false positive rate) and their practicability.

Keywords: ensembles, false positives, feature selection, one side class algorithm

Procedia PDF Downloads 293
9392 Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry

Authors: Dhanuj M. Gandikota

Abstract:

Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry.

Keywords: deep learning, machine learning, satellite, photogrammetry, aerial laser scanning, terrestrial laser scanning, point cloud, fractal symmetry

Procedia PDF Downloads 104
9391 Instance Selection for MI-Support Vector Machines

Authors: Amy M. Kwon

Abstract:

Support vector machine (SVM) is a well-known algorithm in machine learning due to its superior performance, and it also functions well in multiple-instance (MI) problems. Our study proposes a schematic algorithm to select instances based on Hausdorff distance, which can be adapted to SVMs as input vectors under the MI setting. Based on experiments on five benchmark datasets, our strategy for adapting representation outperformed in comparison with original approach. In addition, task execution times (TETs) were reduced by more than 80% based on MissSVM. Hence, it is noteworthy to consider this representation adaptation to SVMs under MI-setting.

Keywords: support vector machine, Margin, Hausdorff distance, representation selection, multiple-instance learning, machine learning

Procedia PDF Downloads 37
9390 Instruct Students Effective Ways to Reach an Advanced Level after Graduation

Authors: Huynh Tan Hoi

Abstract:

Considered as one of the hardest languages in the world, Japanese is still the language that many young people choose to learn. Today, with the development of technology, learning foreign languages in general and Japanese language, in particular, is not an impossible barrier. Learning materials are not only from paper books, songs but also through software programs of smartphones or computers. Especially, students who begin to explore effective skills to study this language need to access modern technologies to improve their learning much better. When using the software, some students may feel embarrassed and challenged, but everything would go smoothly after a few days. After completing the course, students will get more knowledge, achieve a higher knowledge such as N2 or N1 Japanese Language Proficiency Test Certificate. In this research paper, 35 students who are studying at Ho Chi Minh City FPT University were asked to complete the questionnaire at the beginning of July up to August of 2018. Through this research, we realize that with the guidance of lecturers, the necessity of using modern software and some effective methods are indispensable in term of improving quality of teaching and learning process.

Keywords: higher knowledge, Japanese, methods, software, students

Procedia PDF Downloads 230
9389 TutorBot+: Automatic Programming Assistant with Positive Feedback based on LLMs

Authors: Claudia Martínez-Araneda, Mariella Gutiérrez, Pedro Gómez, Diego Maldonado, Alejandra Segura, Christian Vidal-Castro

Abstract:

The purpose of this document is to showcase the preliminary work in developing an EduChatbot-type tool and measuring the effects of its use aimed at providing effective feedback to students in programming courses. This bot, hereinafter referred to as tutorBot+, was constructed based on chatGPT and is tasked with assisting and delivering timely positive feedback to students in the field of computer science at the Universidad Católica de Concepción. The proposed working method consists of four stages: (1) Immersion in the domain of Large Language Models (LLMs), (2) Development of the tutorBot+ prototype and integration, (3) Experiment design, and (4) Intervention. The first stage involves a literature review on the use of artificial intelligence in education and the evaluation of intelligent tutors, as well as research on types of feedback for learning and the domain of chatGPT. The second stage encompasses the development of tutorBot+, and the final stage involves a quasi-experimental study with students from the Programming and Database labs, where the learning outcome involves the development of computational thinking skills, enabling the use and measurement of the tool's effects. The preliminary results of this work are promising, as a functional chatBot prototype has been developed in both conversational and non-conversational versions integrated into an open-source online judge and programming contest platform system. There is also an exploration of the possibility of generating a custom model based on a pre-trained one tailored to the domain of programming. This includes the integration of the created tool and the design of the experiment to measure its utility.

Keywords: assessment, chatGPT, learning strategies, LLMs, timely feedback

Procedia PDF Downloads 73
9388 Investigating Visual Statistical Learning during Aging Using the Eye-Tracking Method

Authors: Zahra Kazemi Saleh, Bénédicte Poulin-Charronnat, Annie Vinter

Abstract:

This study examines the effects of aging on visual statistical learning, using eye-tracking techniques to investigate this cognitive phenomenon. Visual statistical learning is a fundamental brain function that enables the automatic and implicit recognition, processing, and internalization of environmental patterns over time. Some previous research has suggested the robustness of this learning mechanism throughout the aging process, underscoring its importance in the context of education and rehabilitation for the elderly. The study included three distinct groups of participants, including 21 young adults (Mage: 19.73), 20 young-old adults (Mage: 67.22), and 17 old-old adults (Mage: 79.34). Participants were exposed to a series of 12 arbitrary black shapes organized into 6 pairs, each with different spatial configurations and orientations (horizontal, vertical, and oblique). These pairs were not explicitly revealed to the participants, who were instructed to passively observe 144 grids presented sequentially on the screen for a total duration of 7 min. In the subsequent test phase, participants performed a two-alternative forced-choice task in which they had to identify the most familiar pair from 48 trials, each consisting of a base pair and a non-base pair. Behavioral analysis using t-tests revealed notable findings. The mean score for the first group was significantly above chance, indicating the presence of visual statistical learning. Similarly, the second group also performed significantly above chance, confirming the persistence of visual statistical learning in young-old adults. Conversely, the third group, consisting of old-old adults, showed a mean score that was not significantly above chance. This lack of statistical learning in the old-old adult group suggests a decline in this cognitive ability with age. Preliminary eye-tracking results showed a decrease in the number and duration of fixations during the exposure phase for all groups. The main difference was that older participants focused more often on empty cases than younger participants, likely due to a decline in the ability to ignore irrelevant information, resulting in a decrease in statistical learning performance.

Keywords: aging, eye tracking, implicit learning, visual statistical learning

Procedia PDF Downloads 80
9387 An Assessment of Digital Platforms, Student Online Learning, Teaching Pedagogies, Research and Training at Kenya College of Accounting University

Authors: Jasmine Renner, Alice Njuguna

Abstract:

The booming technological revolution is driving a change in the mode of delivery systems especially for e-learning and distance learning in higher education. The report and findings of the study; an assessment of digital platforms, student online learning, teaching pedagogies, research and training at Kenya College of Accounting University (hereinafter 'KCA') was undertaken as a joint collaboration project between the Carnegie African Diaspora Fellowship and input from the staff, students and faculty at KCA University. The participants in this assessment/research met for selected days during a six-week period during which, one-one consultations, surveys, questionnaires, foci groups, training, and seminars were conducted to ascertain 'online learning and teaching, curriculum development, research and training at KCA.' The project was organized into an eight-week project workflow with each week culminating in project activities designed to assess digital online teaching and learning at KCA. The project also included the training of distance learning instructors at KCA and the evaluation of KCA’s distance platforms and programs. Additionally, through a curriculum audit and redesign, the project sought to enhance the curriculum development activities related to of distance learning at KCA. The findings of this assessment/research represent the systematic deliberate process of gathering, analyzing and using data collected from DL students, DL staff and lecturers and a librarian personnel in charge of online learning resources and access at KCA. We engaged in one-on-one interviews and discussions with staff, students, and faculty and collated the findings to inform practices that are effective in the ongoing design and development of eLearning earning at KCA University. Overall findings of the project led to the following recommendations. First, there is a need to address infrastructural challenges that led to poor internet connectivity for online learning, training needs and content development for faculty and staff. Second, there is a need to manage cultural impediments within KCA; for example fears of vital change from one platform to another for effectiveness and Institutional goodwill as a vital promise of effective online learning. Third, at a practical and short-term level, the following recommendations based on systematic findings of the research conducted were as follows: there is a need for the following to be adopted at KCA University to promote the effective adoption of online learning: a) an eLearning compatible faculty lab, b) revision of policy to include an eLearn strategy or strategic management, c) faculty and staff recognitions engaged in the process of training for the adoption and implementation of eLearning and d) adequate website resources on eLearning. The report and findings represent a comprehensive approach to a systematic assessment of online teaching and learning, research and training at KCA.

Keywords: e-learning, digital platforms, student online learning, online teaching pedagogies

Procedia PDF Downloads 195
9386 Implementation of the Quality Management System and Development of Organizational Learning: Case of Three Small and Medium-Sized Enterprises in Morocco

Authors: Abdelghani Boudiaf

Abstract:

The profusion of studies relating to the concept of organizational learning shows the importance that has been given to this concept in the management sciences. A few years ago, companies leaned towards ISO 9001 certification; this requires the implementation of the quality management system (QMS). In order for this objective to be achieved, companies must have a set of skills, which pushes them to develop learning through continuous training. The results of empirical research have shown that implementation of the QMS in the company promotes the development of learning. It should also be noted that several types of learning are developed in this sense. Given the nature of skills development is normative in the context of the quality demarche, companies are obliged to qualify and improve the skills of their human resources. Continuous training is the keystone to develop the necessary learning. To carry out continuous training, companies need to be able to identify their real needs by developing training plans based on well-defined engineering. The training process goes obviously through several stages. Initially, training has a general aspect, that is to say, it focuses on topics and actions of a general nature. Subsequently, this is done in a more targeted and more precise way to accompany the evolution of the QMS and also to make the changes decided each time (change of working method, change of practices, change of objectives, change of mentality, etc.). To answer our problematic we opted for the method of qualitative research. It should be noted that the case study method crosses several data collection techniques to explain and understand a phenomenon. Three cases of companies were studied as part of this research work using different data collection techniques related to this method.

Keywords: changing mentalities, continuing training, organizational learning, quality management system, skills development

Procedia PDF Downloads 111
9385 Unsupervised Echocardiogram View Detection via Autoencoder-Based Representation Learning

Authors: Andrea Treviño Gavito, Diego Klabjan, Sanjiv J. Shah

Abstract:

Echocardiograms serve as pivotal resources for clinicians in diagnosing cardiac conditions, offering non-invasive insights into a heart’s structure and function. When echocardiographic studies are conducted, no standardized labeling of the acquired views is performed. Employing machine learning algorithms for automated echocardiogram view detection has emerged as a promising solution to enhance efficiency in echocardiogram use for diagnosis. However, existing approaches predominantly rely on supervised learning, necessitating labor-intensive expert labeling. In this paper, we introduce a fully unsupervised echocardiographic view detection framework that leverages convolutional autoencoders to obtain lower dimensional representations and the K-means algorithm for clustering them into view-related groups. Our approach focuses on discriminative patches from echocardiographic frames. Additionally, we propose a trainable inverse average layer to optimize decoding of average operations. By integrating both public and proprietary datasets, we obtain a marked improvement in model performance when compared to utilizing a proprietary dataset alone. Our experiments show boosts of 15.5% in accuracy and 9.0% in the F-1 score for frame-based clustering, and 25.9% in accuracy and 19.8% in the F-1 score for view-based clustering. Our research highlights the potential of unsupervised learning methodologies and the utilization of open-sourced data in addressing the complexities of echocardiogram interpretation, paving the way for more accurate and efficient cardiac diagnoses.

Keywords: artificial intelligence, echocardiographic view detection, echocardiography, machine learning, self-supervised representation learning, unsupervised learning

Procedia PDF Downloads 42
9384 Enabling Rather Than Managing: Organizational and Cultural Innovation Mechanisms in a Heterarchical Organization

Authors: Sarah M. Schoellhammer, Stephen Gibb

Abstract:

Bureaucracy, in particular, its core element, a formal and stable hierarchy of authority, is proving less and less appropriate under the conditions of today’s knowledge economy. Centralization and formalization were consistently found to hinder innovation, undermining cross-functional collaboration, personal responsibility, and flexibility. With its focus on systematical planning, controlling and monitoring the development of new or improved solutions for customers, even innovation management as a discipline is to a significant extent based on a mechanistic understanding of organizations. The most important drivers of innovation, human creativity, and initiative, however, can be more hindered than supported by central elements of classic innovation management, such as predefined innovation strategies, rigid stage gate processes, and decisions made in management gate meetings. Heterarchy, as an alternative network form of organization, is essentially characterized by its dynamic influence structures, whereby the biggest influence is allocated by the collective to the persons perceived the most competent in a certain issue. Theoretical arguments that the non-hierarchical concept better supports innovation than bureaucracy have been supported by empirical research. These prior studies either focus on the structure and general functioning of non-hierarchical organizations or on their innovativeness, that means innovation as an outcome. Complementing classic innovation management approaches, this work aims to shed light on how innovations are initiated and realized in heterarchies in order to identify alternative solutions practiced under conditions of the post-bureaucratic organization. Through an initial individual case study, which is part of a multiple-case project, the innovation practices of an innovative and highly heterarchical medium-sized company in the German fire engineering industry are investigated. In a pragmatic mixed methods approach media resonance, company documents, and workspace architecture are analyzed, in addition to qualitative interviews with the CEO and employees of the case company, as well as a quantitative survey aiming to characterize the company along five scaled dimensions of a heterarchy spectrum. The analysis reveals some similarities and striking differences to approaches suggested by classic innovation management. The studied heterarchy has no predefined innovation strategy guiding new product and service development. Instead, strategic direction is provided by the CEO, described as visionary and creative. Procedures for innovation are hardly formalized, with new product ideas being evaluated on the basis of gut feeling and flexible, rather general criteria. Employees still being hesitant to take responsibility and make decisions, hierarchical influence is still prominent. Described as open-minded and collaborative, culture and leadership were found largely congruent with definitions of innovation culture. Overall, innovation efforts at the case company tend to be coordinated more through cultural than through formal organizational mechanisms. To better enable innovation in mainstream organizations, responsible practitioners are recommended not to limit changes to reducing the central elements of the bureaucratic organization, formalization, and centralization. The freedoms this entails need to be sustained through cultural coordination mechanisms, with personal initiative and responsibility by employees as well as common innovation-supportive norms and values. These allow to integrate diverse competencies, opinions, and activities and, thus, to guide innovation efforts.

Keywords: bureaucracy, heterarchy, innovation management, values

Procedia PDF Downloads 190
9383 Noise Reduction in Web Data: A Learning Approach Based on Dynamic User Interests

Authors: Julius Onyancha, Valentina Plekhanova

Abstract:

One of the significant issues facing web users is the amount of noise in web data which hinders the process of finding useful information in relation to their dynamic interests. Current research works consider noise as any data that does not form part of the main web page and propose noise web data reduction tools which mainly focus on eliminating noise in relation to the content and layout of web data. This paper argues that not all data that form part of the main web page is of a user interest and not all noise data is actually noise to a given user. Therefore, learning of noise web data allocated to the user requests ensures not only reduction of noisiness level in a web user profile, but also a decrease in the loss of useful information hence improves the quality of a web user profile. Noise Web Data Learning (NWDL) tool/algorithm capable of learning noise web data in web user profile is proposed. The proposed work considers elimination of noise data in relation to dynamic user interest. In order to validate the performance of the proposed work, an experimental design setup is presented. The results obtained are compared with the current algorithms applied in noise web data reduction process. The experimental results show that the proposed work considers the dynamic change of user interest prior to elimination of noise data. The proposed work contributes towards improving the quality of a web user profile by reducing the amount of useful information eliminated as noise.

Keywords: web log data, web user profile, user interest, noise web data learning, machine learning

Procedia PDF Downloads 266
9382 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks

Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos

Abstract:

This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.

Keywords: metaphor detection, deep learning, representation learning, embeddings

Procedia PDF Downloads 155
9381 Face Tracking and Recognition Using Deep Learning Approach

Authors: Degale Desta, Cheng Jian

Abstract:

The most important factor in identifying a person is their face. Even identical twins have their own distinct faces. As a result, identification and face recognition are needed to tell one person from another. A face recognition system is a verification tool used to establish a person's identity using biometrics. Nowadays, face recognition is a common technique used in a variety of applications, including home security systems, criminal identification, and phone unlock systems. This system is more secure because it only requires a facial image instead of other dependencies like a key or card. Face detection and face identification are the two phases that typically make up a human recognition system.The idea behind designing and creating a face recognition system using deep learning with Azure ML Python's OpenCV is explained in this paper. Face recognition is a task that can be accomplished using deep learning, and given the accuracy of this method, it appears to be a suitable approach. To show how accurate the suggested face recognition system is, experimental results are given in 98.46% accuracy using Fast-RCNN Performance of algorithms under different training conditions.

Keywords: deep learning, face recognition, identification, fast-RCNN

Procedia PDF Downloads 140
9380 The Effect of Cooperative Learning on Academic Achievement of Grade Nine Students in Mathematics: The Case of Mettu Secondary and Preparatory School

Authors: Diriba Gemechu, Lamessa Abebe

Abstract:

The aim of this study was to examine the effect of cooperative learning method on student’s academic achievement and on the achievement level over a usual method in teaching different topics of mathematics. The study also examines the perceptions of students towards cooperative learning. Cooperative learning is the instructional strategy in which pairs or small groups of students with different levels of ability work together to accomplish a shared goal. The aim of this cooperation is for students to maximize their own and each other learning, with members striving for joint benefit. The teacher’s role changes from wise on the wise to guide on the side. Cooperative learning due to its influential aspects is the most prevalent teaching-learning technique in the modern world. Therefore the study was conducted in order to examine the effect of cooperative learning on the academic achievement of grade 9 students in Mathematics in case of Mettu secondary school. Two sample sections are randomly selected by which one section served randomly as an experimental and the other as a comparison group. Data gathering instruments are achievement tests and questionnaires. A treatment of STAD method of cooperative learning was provided to the experimental group while the usual method is used in the comparison group. The experiment lasted for one semester. To determine the effect of cooperative learning on the student’s academic achievement, the significance of difference between the scores of groups at 0.05 levels was tested by applying t test. The effect size was calculated to see the strength of the treatment. The student’s perceptions about the method were tested by percentiles of the questionnaires. During data analysis, each group was divided into high and low achievers on basis of their previous Mathematics result. Data analysis revealed that both the experimental and comparison groups were almost equal in Mathematics at the beginning of the experiment. The experimental group out scored significantly than comparison group on posttest. Additionally, the comparison of mean posttest scores of high achievers indicates significant difference between the two groups. The same is true for low achiever students of both groups on posttest. Hence, the result of the study indicates the effectiveness of the method for Mathematics topics as compared to usual method of teaching.

Keywords: academic achievement, comparison group, cooperative learning, experimental group

Procedia PDF Downloads 249
9379 An Assessment on the Impact of Community Policing in Crime Prevention and Control in Fagge Local Government Area, Kano State, Nigeria

Authors: Aliyu Shitu Said

Abstract:

One of the major setbacks of every society is the proliferation of crimes that results in the inducement of fear, destruction of properties and loss of lives of people. The rising incidence of crime and general insecurity rate in the society and the inability of the policing agencies to curtail the menace necessitated the introduction of community policing in order to have a collaborative effort with community members in addressing the problem of crime. Thus, this study assessed the impact of community policing in crime prevention and control in Fagge Local Government area, Kano State, Nigeria. The study also examined the elements, roles, and challenges of community policing in crime prevention and control in the study area. The study adopted Broken Window and Routine Activity theories as frame of analysis. Mixed methods of data collection (quantitative and qualitative) were utilized for the study. Multi stage and purposive sampling techniques were adopted in selection of the study population. A total of 308 respondents were sampled for the study. These include 300 members of the public who were sampled through a multi stage sampling for questionnaire administration and 8 other respondents who were purposively sampled for in-depth interview. Findings of the study revealed that community policing has significant impact on crime prevention and control in the study area. Findings of the study further revealed that the elements and roles of community policing are effective and fully utilized, and there is cordial relationship between the police and the community members in the study area. This study therefore recommends that government should provide adequate support to community policing programmes and give more awareness to public, so as to boost the morale of the community in having a collaborative effort with the police in crime prevention and control.

Keywords: community, policing, crime, prevention, control

Procedia PDF Downloads 79
9378 Design and Implementation a Platform for Adaptive Online Learning Based on Fuzzy Logic

Authors: Budoor Al Abid

Abstract:

Educational systems are increasingly provided as open online services, providing guidance and support for individual learners. To adapt the learning systems, a proper evaluation must be made. This paper builds the evaluation model Fuzzy C Means Adaptive System (FCMAS) based on data mining techniques to assess the difficulty of the questions. The following steps are implemented; first using a dataset from an online international learning system called (slepemapy.cz) the dataset contains over 1300000 records with 9 features for students, questions and answers information with feedback evaluation. Next, a normalization process as preprocessing step was applied. Then FCM clustering algorithms are used to adaptive the difficulty of the questions. The result is three cluster labeled data depending on the higher Wight (easy, Intermediate, difficult). The FCM algorithm gives a label to all the questions one by one. Then Random Forest (RF) Classifier model is constructed on the clustered dataset uses 70% of the dataset for training and 30% for testing; the result of the model is a 99.9% accuracy rate. This approach improves the Adaptive E-learning system because it depends on the student behavior and gives accurate results in the evaluation process more than the evaluation system that depends on feedback only.

Keywords: machine learning, adaptive, fuzzy logic, data mining

Procedia PDF Downloads 198
9377 Post-Processing Method for Performance Improvement of Aerial Image Parcel Segmentation

Authors: Donghee Noh, Seonhyeong Kim, Junhwan Choi, Heegon Kim, Sooho Jung, Keunho Park

Abstract:

In this paper, we describe an image post-processing method to enhance the performance of the parcel segmentation method using deep learning-based aerial images conducted in previous studies. The study results were evaluated using a confusion matrix, IoU, Precision, Recall, and F1-Score. In the case of the confusion matrix, it was observed that the false positive value, which is the result of misclassification, was greatly reduced as a result of image post-processing. The average IoU was 0.9688 in the image post-processing, which is higher than the deep learning result of 0.8362, and the F1-Score was also 0.9822 in the image post-processing, which was higher than the deep learning result of 0.8850. As a result of the experiment, it was found that the proposed technique positively complements the deep learning results in segmenting the parcel of interest.

Keywords: aerial image, image process, machine vision, open field smart farm, segmentation

Procedia PDF Downloads 83
9376 Addressing the Exorbitant Cost of Labeling Medical Images with Active Learning

Authors: Saba Rahimi, Ozan Oktay, Javier Alvarez-Valle, Sujeeth Bharadwaj

Abstract:

Successful application of deep learning in medical image analysis necessitates unprecedented amounts of labeled training data. Unlike conventional 2D applications, radiological images can be three-dimensional (e.g., CT, MRI), consisting of many instances within each image. The problem is exacerbated when expert annotations are required for effective pixel-wise labeling, which incurs exorbitant labeling effort and cost. Active learning is an established research domain that aims to reduce labeling workload by prioritizing a subset of informative unlabeled examples to annotate. Our contribution is a cost-effective approach for U-Net 3D models that uses Monte Carlo sampling to analyze pixel-wise uncertainty. Experiments on the AAPM 2017 lung CT segmentation challenge dataset show that our proposed framework can achieve promising segmentation results by using only 42% of the training data.

Keywords: image segmentation, active learning, convolutional neural network, 3D U-Net

Procedia PDF Downloads 158
9375 Living or Surviving in an Intercultural Context: A Study on Transformative Learning of UK Students in China and Chinese Students in the UK

Authors: Yiran Wang

Abstract:

As international education continues to expand countries providing such opportunities not only benefit but also face challenges. For traditional destinations, including the United States and the United Kingdom, the number of international students has been falling. At the same time emerging economies, such as China, are witnessing a rapid increase in the number of international students enrolled in their universities. China is, therefore, beginning to play an important role in the competitive global market for higher education. This study analyses and compares the experiences of international students in the UK and China using Transformative Learning theory. While there is an extensive literature on both international higher education and also Transformative Learning theory there are currently three contributions this study makes. First, this research applies the theory to two international student groups: UK students in Chinese universities and Chinese students in UK universities.Second, this study includes a focus on the intercultural learning of Chinese doctoral students in the UK filling a gap in current research. Finally, this investigation has extended the very limited number of current research projects on UK students in China. It is generally acknowledged that international students will experience various challenges when they are in a culturally different context. Little research has focused on how, why, and why not learners are transformed through exposure to their new environment. This study applies Transformative Learning theory to address two research questions: first, do UK international students in Chinese universities and Chinese international students in UK universities experience transformational learning in/during their overseas studies? Second, what factors foster or impede international students’ experience of transformative learning? To answer the above questions, semi-structured interviews were used to investigate international students’ academic and social experiences. Based on the insights provided by Mezirow,Taylor,and previous studies on international students, this study argues that international students’ intercultural experience is a complex process.Transformation can occur in various ways and social and personal perspectives underpin the transformative learning of the students studied. Contributing factors include culture shock, educational conventions,the student’s motivation, expectations, personality, gender and previous work experience.The results reflect the significance of differences in teaching styles in the UK and China and the impact this can have on the student teaching and learning process when they move to a new university.

Keywords: intercultural learning, international higher education, transformative learning, UK and Chinese international students

Procedia PDF Downloads 413
9374 Engaging Girls in 'Learn Science by Doing' as Strategy for Enhanced Learning Outcome at the Junior High School Level in Nigeria

Authors: Stella Y. Erinosho

Abstract:

In an attempt to impact on girls’ interest in science, an instructional package on ‘Learn Science by Doing (LSD)’ was developed to support science teachers in teaching integrated science at the junior secondary level in Nigeria. LSD provides an instructional framework aimed at actively engaging girls in beginners’ science through activities that are discovery-oriented and allow for experiential learning. The goal of this study was to show the impact of application of LSD on girls’ performance and interest in science. The major hypothesis that was tested in the study was that students would exhibit higher learning outcomes (achievement and attitude) in science as effect of exposure to LSD instructional package. A quasi-experimental design was adopted, incorporating four all-girls schools. Three of the schools (comprising six classes) were randomly designated as experimental and one as the control. The sample comprised 357 girls (275 experimental and 82 control) and nine science teachers drawn from the experimental schools. The questionnaire was designed to gather data on students’ background characteristics and their attitude toward science while the cognitive outcomes were measured using tests, both within a group and between groups, the girls who had exposure to LSD exhibited improved cognitive outcomes and more positive attitude towards science compared with those who had conventional teaching. The data are consistent with previous studies indicating that interactive learning activities increase student performance and interest.

Keywords: active learning, school science, teaching and learning, Nigeria

Procedia PDF Downloads 386
9373 Teaching, Learning and Evaluation Enhancement of Information Communication Technology Education in Schools through Pedagogical and E-Learning Techniques in the Sri Lankan Context

Authors: M. G. N. A. S. Fernando

Abstract:

This study uses a researchable framework to improve the quality of ICT education and the Teaching Learning Assessment/ Evaluation (TLA/TLE) process. It utilizes existing resources while improving the methodologies along with pedagogical techniques and e-Learning approaches used in the secondary schools of Sri Lanka. The study was carried out in two phases. Phase I focused on investigating the factors which affect the quality of ICT education. Based on the key factors of phase I, the Phase II focused on the design of an Experimental Application Model with 6 activity levels. Each Level in the Activity Model covers one or more levels in the Revised Bloom’s Taxonomy. Towards further enhancement of activity levels, other pedagogical techniques (activity based learning, e-learning techniques, problem solving activities and peer discussions etc.) were incorporated to each level in the activity model as appropriate. The application model was validated by a panel of teachers including a domain expert and was tested in the school environment too. The validity of performance was proved using 6 hypotheses testing and other methodologies. The analysis shows that student performance with problem solving activities increased by 19.5% due to the different treatment levels used. Compared to existing process it was also proved that the embedded techniques (mixture of traditional and modern pedagogical methods and their applications) are more effective with skills development of teachers and students.

Keywords: activity models, Bloom’s taxonomy, ICT education, pedagogies

Procedia PDF Downloads 166
9372 Measuring Student Teachers' Attitude and Intention toward Cell-Phone Use for Learning in Nigeria

Authors: Shittu Ahmed Tajudeen

Abstract:

This study examines student-teachers’ attitude and intention towards cell-phone use for learning. The study involves one hundred and ninety (190) trainee teachers in one of the Institutes of Education in Nigeria. The data of the study was collected through a questionnaire on a rating of seven point likert-type Scale. The data collected was used to test the hypothesized model of the study using Structural Equation Modeling approach. The finding of the study revealed that Perceived Usefulness (PU), Perceived Ease of Use (PEU), Subjective Norm (SN) and Attitude significantly influence students’ intention towards adoption of cell-phone for learning. The study showed that perceived ease of use stands to be the strongest predictor of cell-phone use. The model of the study exhibits a good-fit with the data and provides an explanation on student- teachers’ attitude and intention towards cell-phone for learning.

Keywords: cell-phone, adoption, structural equation modeling, technology acceptance model

Procedia PDF Downloads 458
9371 Compliance to Compassion: How COVID-19 Changed the Way Educators Used Social Media to Collaborate with Families

Authors: Eloise Thomson

Abstract:

The COVID-19 global pandemic challenged our normative conceptualization of teaching across all age levels, requiring the transition to remote instruction, in some instances, literally overnight. Included in the rapidly changing education environment was the delivery of early childhood education. In Victoria, Australia, the capital city, Melbourne, became known as the most locked down city in the world. This presentation examines the ways educators used social media to collaborate with families before the COVID-19 pandemic and during the lockdown phase through the use of a Third Space conceptual framework and case study methodology. As a first step, the paper examines how social media may offer new opportunities for collaborative practice between educators and families. Second, the data is outlined and discussed with respect to collaborative practice and quality. Finally, a postscript then allows for insight into how educators’ practice of using social media to collaborate with families has been impacted by the COVID-19 global pandemic. Finally, the implications of the ways in which educators are using social media to collaborate with families are discussed. The use of social media in early-childhood education has the potential to provide a valuable platform for educators to connect with families and students. However, the use of social media by educators uncovered a dialogue of ‘quality’ and appeared to be dominated by evidence around compliance and attaining quality in a very specific, and perhaps narrow, way. The findings suggest a culture of compliance that is dominated by outcomes, standards and assessments and that this has changed the dynamics by which educators engage with families. Furthermore, findings highlighted the disparity between educators' and families' understanding of the intent of the collaborations themselves. This research was significant as it exposed the ways in which educators are engaging with social media, resulting in a discussion on the intent of collaborations, the questioning of imposed quality, and the notion that quality is measurable and exists in only one form.

Keywords: collaboration, compliance, early childhood, third space, pedagogy of caring, social media

Procedia PDF Downloads 68
9370 Design of a Professional Development Framework in Teaching and Learning for Engineering Educators

Authors: Orla McConnell, Cormac MacMahon, Jen Harvey

Abstract:

Ireland’s national professional development framework for those who teach in higher education, aims to provide guidance and leadership in the planning, developing and engaging in professional development practices. A series of pilot projects have been initiated to help explore the framework’s likely utility and acceptance by educators and their institutions. These projects require engagement with staff in the interpretation and adaption of the framework within their working contexts. The purpose of this paper is to outline the development of one such project with engineering educators at three Institutes of Technology seeking designation as a technological university. The initiative aims to gain traction in the acceptance of the framework with the engineering education community by linking core and discipline-specific teaching and learning competencies with professional development activities most valued by engineering educators. Informed by three strands of literature: professional development in higher education; engineering education; and teaching and learning training provisions, the project begins with a survey of all those involved in teaching and learning in engineering across the three institutes. Based on engagement with key stakeholders, subsequent qualitative research informs the contextualization of the national framework for discipline-specific and institutional piloting. The paper concludes by exploring engineering educator perceptions of the national framework’s utility based on their engagement with the pilot process. Feedback from the pilot indicates that there is a significant gap between the professional development needs of engineering educators and the current professional development provision in teaching and learning.

Keywords: engineering education, pilot, professional development, teaching and learning

Procedia PDF Downloads 334
9369 Timbuktu Pattern of Islamic Education: A Role Model for the Establishment of Islamic Educational System in Sokoto Caliphate

Authors: A. M. Gada, H. U. Malami

Abstract:

Timbuktu is one of the eight regions in the present day the Republic of Mali. It flourished as one of the earliest centres of Islamic learning in West Africa in the eleventh century CE. The famous Islamic centre in Timbuktu is situated in the Sankore mosque, which is known to be one of the earliest established Islamic University. This centre produced scholars who were zealous in disseminating Islamic education to different parts of West Africa and beyond. As a result, most of these centres adopted the Timbuktu pattern of learning. Some of the beneficiaries of this noble activity are Muslim scholars which are responsible for the establishment of the Sokoto Caliphate in the early nineteenth century. This paper intends to reflect on the pattern of Islamic education of the Timbuktu scholars and see how it impacted on the Islamic centres of learning established by these Jihad-scholars who were successful in the establishment of an Islamic state known as the Sokoto Caliphate.

Keywords: Timbuktu, Sankore, Islamic educational system, Sokoto Caliphate, centres of Islamic learning

Procedia PDF Downloads 423