Search results for: vulnerability intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2259

Search results for: vulnerability intelligence

399 Challenges to Reaching Higher Education in Developing Countries

Authors: Suhail Shersad

Abstract:

Introduction In developing countries, the access to higher education for the lower socioeconomic strata is very poor at less than 0.05%. The challenges faced by prospective students in these circumstances to pursue higher education have been explored through direct interaction with them and their families in urban slums of New Delhi. This study included evaluation of the demographics, social indices, expectations and perceptions of selected communities. Results The results show that the poor life expectancy, low exposure to technology, lack of social infrastructure and poor sanitary conditions have reduced their drive for academic achievements. This is despite a good level of intelligence and critical thinking skills among these students. The perception of the community including parents shows that despite their desire to excel, there are too may roadblocks to achieving a fruitful professional life for the next generation. Discussion The prerequisites of higher education may have to be revisited to be more inclusive of socially handicapped students. The knowledge, skills and attributes required for higher education system should form the baseline for creating a roadmap for higher secondary education suited for local needs. Conventional parameters like marks and grading have to be re-looked so that life skills and vocational training form part of the core curriculum. Essential skills should be incorporated at an earlier age, providing an alternative pathway for such students to join higher education. Conclusion: There is a need to bridge the disconnect that exists between higher education planning, the needs of the concerned cohorts and the existing higher secondary education. The variables that contribute to making such a decision have to be examined further. Keywords: prerequisites of higher education, social mobility, society expectations, access to higher education

Keywords: access to higher education, prerequisites of higher education, society expectations, social mobility

Procedia PDF Downloads 387
398 Midwives’ Perceptions and Experiences of Recommending and Delivering Vaccines to Pregnant Women Following the COVID-19 Pandemic

Authors: Cath Grimley, Debra Bick, Sarah Hillman, Louise Clarke, Helen Atherton, Jo Parsons

Abstract:

The problem: Women in the UK are offered influenza (flu), pertussis (whooping cough) and COVID-19 vaccinations during their pregnancy but uptake of all three vaccines is below the desired rate. These vaccines are offered during pregnancy as pregnant women are at an increased risk of hospitalisation, morbidity, and mortality from these illnesses. Exposure to these diseases during pregnancy can also have a negative impact on the unborn baby with an increased risk of serious complications both while in utero and following birth. The research aims to explore perceptions about the vaccinations offered in pregnancy both from the perspectives of pregnant women and midwives. To determine factors that influence pregnant women’s decisions about whether or not to accept the vaccines following the Covid-19 pandemic and to explore midwives’ experiences of recommending and delivering vaccines. The approach: This research follows a qualitative design involving semi-structured interviews with pregnant women and midwives in the UK. Interviews with midwives explored vaccination discussions they routinely have with pregnant women and identified some of the barriers to vaccination that pregnant women discuss with them. Interviews with pregnant women explored their views since the COVID-19 pandemic about vaccinations offered during pregnancy, and whether the pandemic has influenced perceptions of vulnerability to illness in pregnant women. Midwives were recruited via participating hospitals and midwife specific social media groups. Pregnant women were recruited via participating hospitals and community groups. All interviews were conducted remotely (using telephone or Microsoft Teams) and analysed using thematic analysis. Findings: 43 pregnant women and 16 midwives were recruited and interviewed. The findings presented here will focus on data from midwives. Topics identified included three key themes for midwives. These were 1) Delivery of vaccinations which includes the convenience of offering vaccinations while attending standard antenatal appointments and practical barriers faced in delivering these vaccinations at hospital. 2) Messages and guidance included the importance of up-to-date informational needs for midwives to deliver vaccines and that uncertainty and conflicting messages about the COVID-19 vaccine during pregnancy were a barrier to delivery. 3) Recommendations to have vaccines look at all aspects of recommendations such as how recommendations are communicated, the contents of the recommendation, the importance of the vaccine and the impact of those recommendations on whether women accept the vaccine. Implications: Findings highlight the importance for midwives to receive clear and consistent information so they can feel confident in relaying this information while recommending and delivering vaccines to pregnant women. Emphasising why vaccines are important when recommending vaccinations to pregnant women in addition to standard information on the availability and timing will add to the strength and impact of that recommendation in helping women to make informed decisions about accepting vaccines. The findings of this study will inform the development of an intervention to increase vaccination uptake amongst pregnant women.

Keywords: vaccination, pregnancy, qualitative, interviews, Covid-19, midwives

Procedia PDF Downloads 99
397 Clustering for Detection of the Population at Risk of Anticholinergic Medication

Authors: A. Shirazibeheshti, T. Radwan, A. Ettefaghian, G. Wilson, C. Luca, Farbod Khanizadeh

Abstract:

Anticholinergic medication has been associated with events such as falls, delirium, and cognitive impairment in older patients. To further assess this, anticholinergic burden scores have been developed to quantify risk. A risk model based on clustering was deployed in a healthcare management system to cluster patients into multiple risk groups according to anticholinergic burden scores of multiple medicines prescribed to patients to facilitate clinical decision-making. To do so, anticholinergic burden scores of drugs were extracted from the literature, which categorizes the risk on a scale of 1 to 3. Given the patients’ prescription data on the healthcare database, a weighted anticholinergic risk score was derived per patient based on the prescription of multiple anticholinergic drugs. This study was conducted on over 300,000 records of patients currently registered with a major regional UK-based healthcare provider. The weighted risk scores were used as inputs to an unsupervised learning algorithm (mean-shift clustering) that groups patients into clusters that represent different levels of anticholinergic risk. To further evaluate the performance of the model, any association between the average risk score within each group and other factors such as socioeconomic status (i.e., Index of Multiple Deprivation) and an index of health and disability were investigated. The clustering identifies a group of 15 patients at the highest risk from multiple anticholinergic medication. Our findings also show that this group of patients is located within more deprived areas of London compared to the population of other risk groups. Furthermore, the prescription of anticholinergic medicines is more skewed to female than male patients, indicating that females are more at risk from this kind of multiple medications. The risk may be monitored and controlled in well artificial intelligence-equipped healthcare management systems.

Keywords: anticholinergic medicines, clustering, deprivation, socioeconomic status

Procedia PDF Downloads 212
396 The Food and Nutritional Effects of Smallholders’ Participation in Milk Value Chain in Ethiopia

Authors: Geday Elias, Montaigne Etienne, Padilla Martine, Tollossa Degefa

Abstract:

Smallholder farmers’ participation in agricultural value chain identified as a pathway to get out of poverty trap in Ethiopia. The smallholder dairy activities have a huge potential in poverty reduction through enhancing income, achieving food and nutritional security in the country. However, much less is known about the effects of smallholder’s participation in milk value chain on household food security and nutrition. This paper therefore, aims at evaluating the effects of smallholders’ participation in milk value chain on household food security taking in to account the four pillars of food security measurements (availability, access, utilization and stability). Using a semi-structured interview, a cross sectional farm household data collected from a randomly selected sample of 333 households (170 in Amhara and 163 in Oromia regions).Binary logit and propensity score matching( PSM) models are employed to examine the mechanisms through which smallholder’s participation in the milk value chain affects household food security where crop production, per capita calorie intakes, diet diversity score, and food insecurity access scale are used to measure food availability, access, utilization and stability respectively. Our findings reveal from 333 households, only 34.5% of smallholder farmers are participated in the milk value chain. Limited access to inputs and services, limited access to inputs markets and high transaction costs are key constraints for smallholders’ limited access to the milk value chain. To estimate the true average participation effects of milk value chain for participated households, the outcome variables (food security) of farm households who participated in milk value chain are compared with the outcome variables if the farm households had not participated. The PSM analysis reveals smallholder’s participation in milk value chain has a significant positive effect on household income, food security and nutrition. Smallholder farmers who are participated in milk chain are better by 15 quintals crops production and 73 percent of per capita calorie intakes in food availability and access respectively than smallholder farmers who are not participated in the market. Similarly, the participated households are better in dietary quality by 112 percents than non-participated households. Finally, smallholders’ who are participated in milk value chain are better in reducing household vulnerability to food insecurity by an average of 130 percent than non participated households. The results also shows income earned from milk value chain participation contributed to reduce capital’s constraints of the participated households’ by higher farm income and total household income by 5164 ETB and 14265 ETB respectively. This study therefore, confirms the potential role of smallholders’ participation in food value chain to get out of poverty trap through improving rural household income, food security and nutrition. Therefore, identified the determinants of smallholder participation in milk value chain and the participation effects on food security in the study areas are worth considering as a positive knock for policymakers and development agents to tackle the poverty trap in the study area in particular and in the country in general.

Keywords: effects, food security and nutrition, milk, participation, smallholders, value chain

Procedia PDF Downloads 343
395 Decision-Making Strategies on Smart Dairy Farms: A Review

Authors: L. Krpalkova, N. O' Mahony, A. Carvalho, S. Campbell, G. Corkery, E. Broderick, J. Walsh

Abstract:

Farm management and operations will drastically change due to access to real-time data, real-time forecasting, and tracking of physical items in combination with Internet of Things developments to further automate farm operations. Dairy farms have embraced technological innovations and procured vast amounts of permanent data streams during the past decade; however, the integration of this information to improve the whole farm-based management and decision-making does not exist. It is now imperative to develop a system that can collect, integrate, manage, and analyse on-farm and off-farm data in real-time for practical and relevant environmental and economic actions. The developed systems, based on machine learning and artificial intelligence, need to be connected for useful output, a better understanding of the whole farming issue, and environmental impact. Evolutionary computing can be very effective in finding the optimal combination of sets of some objects and, finally, in strategy determination. The system of the future should be able to manage the dairy farm as well as an experienced dairy farm manager with a team of the best agricultural advisors. All these changes should bring resilience and sustainability to dairy farming as well as improving and maintaining good animal welfare and the quality of dairy products. This review aims to provide an insight into the state-of-the-art of big data applications and evolutionary computing in relation to smart dairy farming and identify the most important research and development challenges to be addressed in the future. Smart dairy farming influences every area of management, and its uptake has become a continuing trend.

Keywords: big data, evolutionary computing, cloud, precision technologies

Procedia PDF Downloads 189
394 Urban Design as a Tool in Disaster Resilience and Urban Hazard Mitigation: Case of Cochin, Kerala, India

Authors: Vinu Elias Jacob, Manoj Kumar Kini

Abstract:

Disasters of all types are occurring more frequently and are becoming more costly than ever due to various manmade factors including climate change. A better utilisation of the concept of governance and management within disaster risk reduction is inevitable and of utmost importance. There is a need to explore the role of pre- and post-disaster public policies. The role of urban planning/design in shaping the opportunities of households, individuals and collectively the settlements for achieving recovery has to be explored. Governance strategies that can better support the integration of disaster risk reduction and management has to be examined. The main aim is to thereby build the resilience of individuals and communities and thus, the states too. Resilience is a term that is usually linked to the fields of disaster management and mitigation, but today has become an integral part of planning and design of cities. Disaster resilience broadly describes the ability of an individual or community to 'bounce back' from disaster impacts, through improved mitigation, preparedness, response, and recovery. The growing population of the world has resulted in the inflow and use of resources, creating a pressure on the various natural systems and inequity in the distribution of resources. This makes cities vulnerable to multiple attacks by both natural and man-made disasters. Each urban area needs elaborate studies and study based strategies to proceed in the discussed direction. Cochin in Kerala is the fastest and largest growing city with a population of more than 26 lakhs. The main concern that has been looked into in this paper is making cities resilient by designing a framework of strategies based on urban design principles for an immediate response system especially focussing on the city of Cochin, Kerala, India. The paper discusses, understanding the spatial transformations due to disasters and the role of spatial planning in the context of significant disasters. The paper also aims in developing a model taking into consideration of various factors such as land use, open spaces, transportation networks, physical and social infrastructure, building design, and density and ecology that can be implemented in any city of any context. Guidelines are made for the smooth evacuation of people through hassle-free transport networks, protecting vulnerable areas in the city, providing adequate open spaces for shelters and gatherings, making available basic amenities to affected population within reachable distance, etc. by using the tool of urban design. Strategies at the city level and neighbourhood level have been developed with inferences from vulnerability analysis and case studies.

Keywords: disaster management, resilience, spatial planning, spatial transformations

Procedia PDF Downloads 297
393 Optimizing the Readability of Orthopaedic Trauma Patient Education Materials Using ChatGPT-4

Authors: Oscar Covarrubias, Diane Ghanem, Christopher Murdock, Babar Shafiq

Abstract:

Introduction: ChatGPT is an advanced language AI tool designed to understand and generate human-like text. The aim of this study is to assess the ability of ChatGPT-4 to re-write orthopaedic trauma patient education materials at the recommended 6th-grade level. Methods: Two independent reviewers accessed ChatGPT-4 (chat.openai.com) and gave identical instructions to simplify the readability of provided text to a 6th-grade level. All trauma-related articles by the Orthopaedic Trauma Association (OTA) and American Academy of Orthopaedic Surgeons (AAOS) were sequentially provided. The academic grade level was determined using the Flesh-Kincaid Grade Level (FKGL) and Flesch Reading Ease (FRE). Paired t-tests and Wilcox-rank sum tests were used to compare the FKGL and FRE between the ChatGPT-4 revised and original text. Inter-rater correlation coefficient (ICC) was used to assess variability in ChatGPT-4 generated text between the two reviewers. Results: ChatGPT-4 significantly reduced FKGL and increased FRE scores in the OTA (FKGL: 5.7±0.5 compared to the original 8.2±1.1, FRE: 76.4±5.7 compared to the original 65.5±6.6, p < 0.001) and AAOS articles (FKGL: 5.8±0.8 compared to the original 8.9±0.8, FRE: 76±5.5 compared to the original 56.7±5.9, p < 0.001). On average, 14.6% of OTA and 28.6% of AAOS articles required at least two revisions by ChatGPT-4 to achieve a 6th-grade reading level. ICC demonstrated poor reliability for FKGL (OTA 0.24, AAOS 0.45) and moderate reliability for FRE (OTA 0.61, AAOS 0.73). Conclusion: This study provides a novel, simple and efficient method using language AI to optimize the readability of patient education content which may only require the surgeon’s final proofreading. This method would likely be as effective for other medical specialties.

Keywords: artificial intelligence, AI, chatGPT, patient education, readability, trauma education

Procedia PDF Downloads 73
392 The Intersection of Art and Technology: Innovations in Visual Communication Design

Authors: Sareh Enjavi

Abstract:

In recent years, the field of visual communication design has seen a significant shift in the way that art is created and consumed, with the advent of new technologies like virtual reality, augmented reality, and artificial intelligence. This paper explores the ways in which technology is changing the landscape of visual communication design, and how designers are incorporating new technological tools into their artistic practices. The primary objective of this research paper is to investigate the ways in which technology is influencing the creative process of designers and artists in the field of visual communication design. The paper also aims to examine the challenges and limitations that arise from the intersection of art and technology in visual communication design, and to identify strategies for overcoming these challenges. Drawing on examples from a range of fields, including advertising, fine art, and digital media, this paper highlights the exciting innovations that are emerging as artists and designers use technology to push the boundaries of traditional artistic expression. The paper argues that embracing technological innovation is essential for the continued evolution of visual communication design. By exploring the intersection of art and technology, designers can create new and exciting visual experiences that engage and inspire audiences in new ways. The research also contributes to the theoretical and methodological understanding of the intersection of art and technology, a topic that has gained significant attention in recent years. Ultimately, this paper emphasizes the importance of embracing innovation and experimentation in the field of visual communication design, and highlights the exciting innovations that are emerging as a result of the intersection of art and technology, and emphasizes the importance of embracing innovation and experimentation in the field of visual communication design.

Keywords: visual communication design, art and technology, virtual reality, interactive art, creative process

Procedia PDF Downloads 120
391 A Virtual Reality Simulation Tool for Reducing the Risk of Building Content during Earthquakes

Authors: Ali Asgary, Haopeng Zhou, Ghassem Tofighi

Abstract:

Use of virtual (VR), augmented reality (AR), and extended reality technologies for training and education has increased in recent years as more hardware and software tools have become available and accessible to larger groups of users. Similarly, the applications of these technologies in earthquake related training and education are on the rise. Several studies have reported promising results for the use of VR and AR for evacuation behaviour and training under earthquake situations. They simulate the impacts that earthquake has on buildings, buildings’ contents, and how building occupants and users can find safe spots or open paths to outside. Considering that considerable number of earthquake injuries and fatalities are linked to the behaviour, our goal is to use these technologies to reduce the impacts of building contents on people. Building on our artificial intelligence (AI) based indoor earthquake risk assessment application that enables users to use their mobile device to assess the risks associated with building contents during earthquakes, we develop a virtual reality application to demonstrate the behavior of different building contents during earthquakes, their associate moving, spreading, falling, and collapsing risks, and their risk mitigation methods. We integrate realistic seismic models, building contents behavior with and without risk mitigation measures in virtual reality environment. The application can be used for training of architects, interior design experts, and building users to enhance indoor safety of the buildings that can sustain earthquakes. This paper describes and demonstrates the application development background, structure, components, and usage.

Keywords: virtual reality, earthquake damage, building content, indoor risks, earthquake risk mitigation, interior design, unity game engine, oculus

Procedia PDF Downloads 107
390 The Effect of Technology and Artifical Intelligence on Legal Securities and Privacy Issues

Authors: Kerolis Samoul Zaghloul Noaman

Abstract:

area law is the brand new access in the basket of worldwide law in the latter half of the 20 th Century. inside the last hundred and fifty years, courts and pupils advanced a consensus that, the custom is an vital supply of global law. Article 38(1) (b) of the statute of the international court of Justice identified global custom as a supply of global law. country practices and usages have a more role to play in formulating commonplace international regulation. This paper examines those country practices which may be certified to emerge as global standard law. due to the fact that, 1979 (after Moon Treaty) no hard law had been developed within the vicinity of space exploration. It attempts to link among country practices and custom in area exploration and development of standard global regulation in area activities. The paper makes use of doctrinal approach of felony research for inspecting the current questions of worldwide regulation. The paper explores exceptional worldwide prison files which include general meeting Resolutions, Treaty standards, working papers of UN, cases relating to commonplace global law and writing of jurists regarding area law and standard international law. it's far argued that, ideas such as common background of mankind, non-navy region, sovereign equality, nuclear weapon unfastened area and protection of outer area environment, etc. evolved nation practices a number of the worldwide community which can be certified to turn out to be international customary regulation.

Keywords: social networks privacy issues, social networks security issues, social networks privacy precautions measures, social networks security precautions measures

Procedia PDF Downloads 26
389 Analysis of Truck Drivers’ Distraction on Crash Risk

Authors: Samuel Nderitu Muchiri, Tracy Wangechi Maina

Abstract:

Truck drivers face a myriad of challenges in their profession. Enhancements in logistics effectiveness can be pivotal in propelling economic developments. The specific objective of the study was to assess the influence of driver distraction on crash risk. The study is significant as it elucidates best practices that truck drivers can embrace in an effort to enhance road safety. These include amalgamating behaviors that enable drivers to fruitfully execute multifaceted functions such as finding and following routes, evading collisions, monitoring speed, adhering to road regulations, and evaluating vehicle systems’ conditions. The analysis involved an empirical review of ten previous studies related to the research topic. The articles revealed that driver distraction plays a substantial role in road accidents and other crucial road security incidents across the globe. Africa depends immensely on the freight transport sector to facilitate supply chain operations. Several studies indicate that drivers who operate primarily on rural roads, such as those found in Sub-Saharan Africa, have an increased propensity to engage in distracted activities such as cell phone usage while driving. The findings also identified the need for digitalization in truck driving operations, including carrier management techniques such as fatigue management, artificial intelligence, and automating functions like cell phone usage controls. The recommendations can aid policymakers and commercial truck carriers in deepening their understanding of driver distraction and enforcing mitigations to foster road safety.

Keywords: truck drivers, distraction, digitalization, crash risk, road safety

Procedia PDF Downloads 51
388 Design and Characterization of Ecological Materials Based on Demolition and Concrete Waste, Casablanca (Morocco)

Authors: Mourad Morsli, Mohamed Tahiri, Azzedine Samdi

Abstract:

The Cities are the urbanized territories most favorable to the consumption of resources (materials, energy). In Morocco, the economic capital Casablanca is one of them, with its 4M inhabitants and its 60% share in the economic and industrial activity of the kingdom. In the absence of legal status in force, urban development has favored the generation of millions of tons of demolition and construction waste scattered in open spaces causing a significant nuisance to the environment and citizens. Hence the main objective of our work is to valorize concrete waste. The representative wastes are mainly concrete, concrete, and fired clay bricks, ceramic tiles, marble panels, gypsum, and scrap metal. The work carried out includes: geolocation with a combination of artificial intelligence, GIS, and Google Earth, which allowed the estimation of the quantity of these wastes per site; then the sorting, crushing, grinding, and physicochemical characterization of the collected samples allowed the definition of the exploitation ways for each extracted fraction for integrated management of the said wastes. In the present work, we proceeded to the exploitation of the fractions obtained after sieving the representative samples to incorporate them in the manufacture of new ecological materials for construction. These formulations prepared studies have been tested and characterized: physical criteria (specific surface, resistance to flexion and compression) and appearance (cracks, deformation). We will present in detail the main results of our research work and also describe the specific properties of each material developed.

Keywords: demolition and construction waste, GIS combination software, inert waste recovery, ecological materials, Casablanca, Morocco

Procedia PDF Downloads 135
387 Social-Cognitive Aspects of Interpretation: Didactic Approaches in Language Processing and English as a Second Language Difficulties in Dyslexia

Authors: Schnell Zsuzsanna

Abstract:

Background: The interpretation of written texts, language processing in the visual domain, in other words, atypical reading abilities, also known as dyslexia, is an ever-growing phenomenon in today’s societies and educational communities. The much-researched problem affects cognitive abilities and, coupled with normal intelligence normally manifests difficulties in the differentiation of sounds and orthography and in the holistic processing of written words. The factors of susceptibility are varied: social, cognitive psychological, and linguistic factors interact with each other. Methods: The research will explain the psycholinguistics of dyslexia on the basis of several empirical experiments and demonstrate how domain-general abilities of inhibition, retrieval from the mental lexicon, priming, phonological processing, and visual modality transfer affect successful language processing and interpretation. Interpretation of visual stimuli is hindered, and the problem seems to be embedded in a sociocultural, psycholinguistic, and cognitive background. This makes the picture even more complex, suggesting that the understanding and resolving of the issues of dyslexia has to be interdisciplinary, aided by several disciplines in the field of humanities and social sciences, and should be researched from an empirical approach, where the practical, educational corollaries can be analyzed on an applied basis. Aim and applicability: The lecture sheds light on the applied, cognitive aspects of interpretation, social cognitive traits of language processing, the mental underpinnings of cognitive interpretation strategies in different languages (namely, Hungarian and English), offering solutions with a few applied techniques for success in foreign language learning that can be useful advice for the developers of testing methodologies and measures across ESL teaching and testing platforms.

Keywords: dyslexia, social cognition, transparency, modalities

Procedia PDF Downloads 85
386 Winning the Future of Education in Africa through Project Base Learning: How the Implementation of PBL Pedagogy Can Transform Africa’s Educational System from Theory Base to Practical Base in School Curriculum

Authors: Bismark Agbemble

Abstract:

This paper talks about how project-based learning (PBL) is being infused or implemented in the educational sphere of Africa. The paper navigates through the liminal aspects of PBL as a pedagogical approach to bridge the divide between theoretical knowledge and its application within school curriculums. Given that contextualized learning can be embodied, the abstract vehemently discusses that PBL creates an opportunity for students to work on projects that are of academic relevance in their local settings. It presents PBL’s growth of critical thinking, problem-solving, cooperation, and communications, which is vital in getting young citizens to prepare for the 21st-century revolution. In addition, the abstract stresses the possibility that PBL could become a stimulus to creativity and innovation wherein learning becomes motivated from within by intrinsic motivations. The paper advocates for a holistic approach that is based on teacher’s professional development with the provision of adequate infrastructural facilities and resource allocation, thus ensuring the success and sustainability of PBLs in African education systems. In the end, the paper positions this as a transformative educational methodology that has great potential in helping to shape an African generation that is prepared for a great future.

Keywords: student centered pedagogy, constructivist learning theory, self-directed learning, active exploration, real world challenges, STEM, 21st century skills, curriculum design, classroom management, project base learning curriculum, global intelligence, social and communication skills, transferable skills, critical thinking, investigatable learning, life skills

Procedia PDF Downloads 58
385 An Intelligent Prediction Method for Annular Pressure Driven by Mechanism and Data

Authors: Zhaopeng Zhu, Xianzhi Song, Gensheng Li, Shuo Zhu, Shiming Duan, Xuezhe Yao

Abstract:

Accurate calculation of wellbore pressure is of great significance to prevent wellbore risk during drilling. The traditional mechanism model needs a lot of iterative solving procedures in the calculation process, which reduces the calculation efficiency and is difficult to meet the demand of dynamic control of wellbore pressure. In recent years, many scholars have introduced artificial intelligence algorithms into wellbore pressure calculation, which significantly improves the calculation efficiency and accuracy of wellbore pressure. However, due to the ‘black box’ property of intelligent algorithm, the existing intelligent calculation model of wellbore pressure is difficult to play a role outside the scope of training data and overreacts to data noise, often resulting in abnormal calculation results. In this study, the multi-phase flow mechanism is embedded into the objective function of the neural network model as a constraint condition, and an intelligent prediction model of wellbore pressure under the constraint condition is established based on more than 400,000 sets of pressure measurement while drilling (MPD) data. The constraint of the multi-phase flow mechanism makes the prediction results of the neural network model more consistent with the distribution law of wellbore pressure, which overcomes the black-box attribute of the neural network model to some extent. The main performance is that the accuracy of the independent test data set is further improved, and the abnormal calculation values basically disappear. This method is a prediction method driven by MPD data and multi-phase flow mechanism, and it is the main way to predict wellbore pressure accurately and efficiently in the future.

Keywords: multiphase flow mechanism, pressure while drilling data, wellbore pressure, mechanism constraints, combined drive

Procedia PDF Downloads 175
384 Determination of Optimum Parameters for Thermal Stress Distribution in Composite Plate Containing a Triangular Cutout by Optimization Method

Authors: Mohammad Hossein Bayati Chaleshtari, Hadi Khoramishad

Abstract:

Minimizing the stress concentration around triangular cutout in infinite perforated plates subjected to a uniform heat flux induces thermal stresses is an important consideration in engineering design. Furthermore, understanding the effective parameters on stress concentration and proper selection of these parameters enables the designer to achieve a reliable design. In the analysis of thermal stress, the effective parameters on stress distribution around cutout include fiber angle, flux angle, bluntness and rotation angle of the cutout for orthotropic materials. This paper was tried to examine effect of these parameters on thermal stress analysis of infinite perforated plates with central triangular cutout. In order to achieve the least amount of thermal stress around a triangular cutout using a novel swarm intelligence optimization technique called dragonfly optimizer that inspired by the life method and hunting behavior of dragonfly in nature. In this study, using the two-dimensional thermoelastic theory and based on the Likhnitskiiʼ complex variable technique, the stress analysis of orthotropic infinite plate with a circular cutout under a uniform heat flux was developed to the plate containing a quasi-triangular cutout in thermal steady state condition. To achieve this goal, a conformal mapping function was used to map an infinite plate containing a quasi- triangular cutout into the outside of a unit circle. The plate is under uniform heat flux at infinity and Neumann boundary conditions and thermal-insulated condition at the edge of the cutout were considered.

Keywords: infinite perforated plate, complex variable method, thermal stress, optimization method

Procedia PDF Downloads 150
383 Signs, Signals and Syndromes: Algorithmic Surveillance and Global Health Security in the 21st Century

Authors: Stephen L. Roberts

Abstract:

This article offers a critical analysis of the rise of syndromic surveillance systems for the advanced detection of pandemic threats within contemporary global health security frameworks. The article traces the iterative evolution and ascendancy of three such novel syndromic surveillance systems for the strengthening of health security initiatives over the past two decades: 1) The Program for Monitoring Emerging Diseases (ProMED-mail); 2) The Global Public Health Intelligence Network (GPHIN); and 3) HealthMap. This article demonstrates how each newly introduced syndromic surveillance system has become increasingly oriented towards the integration of digital algorithms into core surveillance capacities to continually harness and forecast upon infinitely generating sets of digital, open-source data, potentially indicative of forthcoming pandemic threats. This article argues that the increased centrality of the algorithm within these next-generation syndromic surveillance systems produces a new and distinct form of infectious disease surveillance for the governing of emergent pathogenic contingencies. Conceptually, the article also shows how the rise of this algorithmic mode of infectious disease surveillance produces divergences in the governmental rationalities of global health security, leading to the rise of an algorithmic governmentality within contemporary contexts of Big Data and these surveillance systems. Empirically, this article demonstrates how this new form of algorithmic infectious disease surveillance has been rapidly integrated into diplomatic, legal, and political frameworks to strengthen the practice of global health security – producing subtle, yet distinct shifts in the outbreak notification and reporting transparency of states, increasingly scrutinized by the algorithmic gaze of syndromic surveillance.

Keywords: algorithms, global health, pandemic, surveillance

Procedia PDF Downloads 187
382 Potassium-Phosphorus-Nitrogen Detection and Spectral Segmentation Analysis Using Polarized Hyperspectral Imagery and Machine Learning

Authors: Nicholas V. Scott, Jack McCarthy

Abstract:

Military, law enforcement, and counter terrorism organizations are often tasked with target detection and image characterization of scenes containing explosive materials in various types of environments where light scattering intensity is high. Mitigation of this photonic noise using classical digital filtration and signal processing can be difficult. This is partially due to the lack of robust image processing methods for photonic noise removal, which strongly influence high resolution target detection and machine learning-based pattern recognition. Such analysis is crucial to the delivery of reliable intelligence. Polarization filters are a possible method for ambient glare reduction by allowing only certain modes of the electromagnetic field to be captured, providing strong scene contrast. An experiment was carried out utilizing a polarization lens attached to a hyperspectral imagery camera for the purpose of exploring the degree to which an imaged polarized scene of potassium, phosphorus, and nitrogen mixture allows for improved target detection and image segmentation. Preliminary imagery results based on the application of machine learning algorithms, including competitive leaky learning and distance metric analysis, to polarized hyperspectral imagery, suggest that polarization filters provide a slight advantage in image segmentation. The results of this work have implications for understanding the presence of explosive material in dry, desert areas where reflective glare is a significant impediment to scene characterization.

Keywords: explosive material, hyperspectral imagery, image segmentation, machine learning, polarization

Procedia PDF Downloads 142
381 Optimizing Data Integration and Management Strategies for Upstream Oil and Gas Operations

Authors: Deepak Singh, Rail Kuliev

Abstract:

The abstract highlights the critical importance of optimizing data integration and management strategies in the upstream oil and gas industry. With its complex and dynamic nature generating vast volumes of data, efficient data integration and management are essential for informed decision-making, cost reduction, and maximizing operational performance. Challenges such as data silos, heterogeneity, real-time data management, and data quality issues are addressed, prompting the proposal of several strategies. These strategies include implementing a centralized data repository, adopting industry-wide data standards, employing master data management (MDM), utilizing real-time data integration technologies, and ensuring data quality assurance. Training and developing the workforce, “reskilling and upskilling” the employees and establishing robust Data Management training programs play an essential role and integral part in this strategy. The article also emphasizes the significance of data governance and best practices, as well as the role of technological advancements such as big data analytics, cloud computing, Internet of Things (IoT), and artificial intelligence (AI) and machine learning (ML). To illustrate the practicality of these strategies, real-world case studies are presented, showcasing successful implementations that improve operational efficiency and decision-making. In present study, by embracing the proposed optimization strategies, leveraging technological advancements, and adhering to best practices, upstream oil and gas companies can harness the full potential of data-driven decision-making, ultimately achieving increased profitability and a competitive edge in the ever-evolving industry.

Keywords: master data management, IoT, AI&ML, cloud Computing, data optimization

Procedia PDF Downloads 71
380 Experimental and Numerical Investigations on the Vulnerability of Flying Structures to High-Energy Laser Irradiations

Authors: Vadim Allheily, Rudiger Schmitt, Lionel Merlat, Gildas L'Hostis

Abstract:

Inflight devices are nowadays major actors in both military and civilian landscapes. Among others, missiles, mortars, rockets or even drones this last decade are increasingly sophisticated, and it is today of prior manner to develop always more efficient defensive systems from all these potential threats. In this frame, recent High Energy Laser weapon prototypes (HEL) have demonstrated some extremely good operational abilities to shot down within seconds flying targets several kilometers off. Whereas test outcomes are promising from both experimental and cost-related perspectives, the deterioration process still needs to be explored to be able to closely predict the effects of a high-energy laser irradiation on typical structures, heading finally to an effective design of laser sources and protective countermeasures. Laser matter interaction researches have a long history of more than 40 years at the French-German Research Institute (ISL). Those studies were tied with laser sources development in the mid-60s, mainly for specific metrology of fast phenomena. Nowadays, laser matter interaction can be viewed as the terminal ballistics of conventional weapons, with the unique capability of laser beams to carry energy at light velocity over large ranges. In the last years, a strong focus was made at ISL on the interaction process of laser radiation with metal targets such as artillery shells. Due to the absorbed laser radiation and the resulting heating process, an encased explosive charge can be initiated resulting in deflagration or even detonation of the projectile in flight. Drones and Unmanned Air Vehicles (UAVs) are of outmost interests in modern warfare. Those aerial systems are usually made up of polymer-based composite materials, whose complexity involves new scientific challenges. Aside this main laser-matter interaction activity, a lot of experimental and numerical knowledge has been gathered at ISL within domains like spectrometry, thermodynamics or mechanics. Techniques and devices were developed to study separately each aspect concerned by this topic; optical characterization, thermal investigations, chemical reactions analysis or mechanical examinations are beyond carried out to neatly estimate essential key values. Results from these diverse tasks are then incorporated into analytic or FE numerical models that were elaborated, for example, to predict thermal repercussion on explosive charges or mechanical failures of structures. These simulations highlight the influence of each phenomenon during the laser irradiation and forecast experimental observations with good accuracy.

Keywords: composite materials, countermeasure, experimental work, high-energy laser, laser-matter interaction, modeling

Procedia PDF Downloads 263
379 A Use Case-Oriented Performance Measurement Framework for AI and Big Data Solutions in the Banking Sector

Authors: Yassine Bouzouita, Oumaima Belghith, Cyrine Zitoun, Charles Bonneau

Abstract:

Performance measurement framework (PMF) is an essential tool in any organization to assess the performance of its processes. It guides businesses to stay on track with their objectives and benchmark themselves from the market. With the growing trend of the digital transformation of business processes, led by innovations in artificial intelligence (AI) & Big Data applications, developing a mature system capable of capturing the impact of digital solutions across different industries became a necessity. Based on the conducted research, no such system has been developed in academia nor the industry. In this context, this paper covers a variety of methodologies on performance measurement, overviews the major AI and big data applications in the banking sector, and covers an exhaustive list of relevant metrics. Consequently, this paper is of interest to both researchers and practitioners. From an academic perspective, it offers a comparative analysis of the reviewed performance measurement frameworks. From an industry perspective, it offers exhaustive research, from market leaders, of the major applications of AI and Big Data technologies, across the different departments of an organization. Moreover, it suggests a standardized classification model with a well-defined structure of intelligent digital solutions. The aforementioned classification is mapped to a centralized library that contains an indexed collection of potential metrics for each application. This library is arranged in a manner that facilitates the rapid search and retrieval of relevant metrics. This proposed framework is meant to guide professionals in identifying the most appropriate AI and big data applications that should be adopted. Furthermore, it will help them meet their business objectives through understanding the potential impact of such solutions on the entire organization.

Keywords: AI and Big Data applications, impact assessment, metrics, performance measurement

Procedia PDF Downloads 198
378 Recent Developments in the Application of Deep Learning to Stock Market Prediction

Authors: Shraddha Jain Sharma, Ratnalata Gupta

Abstract:

Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.

Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume

Procedia PDF Downloads 92
377 The Effect of Law on Society

Authors: Rezki Omar

Abstract:

Openness cosmic shares dramatically in the order of something quite a bit of neglected priorities within the community at the level of thought and consciousness, and these priorities provider of legal and human rights awareness after a long delay in the process of awareness of human rights, there is no doubt that the long and arduous road. As is obvious to any observer public affairs as well as the specialist and the observer that there is growth and development in the scene and the legal movement is unprecedented, many when dealing with many of the details sought and tries as much as possible to know what is the natural rights, and duties that must comply with legally in no charge with the issue of what is going on, any attempt of weakness and lack of self-reliance and obstacles level during the search show him by virtue of the difficulty of the availability of legal information in some cases on a particular issue, whether or not the image is complete, legally insufficient. Law relationship to society basically a close relationship, there is no law society, a society is impossible without both at the level of domestic relations or international law: «There is a close link between law and society. The law remains influenced by the society in which it grew, as well as the law affects the society, which is governed by, the relationship between the community and law affected and the impact of relationship ». The law of the most important objectives of protecting members of society, and its role is based on the distribution of rights and duties in a fair way, and protect the public interest of the citizen’s basis. The word community when some sociologists are limited to the group that gathered, including cultural unity Cultural Group distinguish between society and the last. In the recent period issued a set of regulations in the various branches of law, which is different from the class and important one hand, and here is important study of the interaction between law and society, and how to make the laws effective in the community? The opposite is true as well. The law as a social phenomenon is impossible to understand and analyzed without taking into account the extent of their impact and vulnerability within the community and accepted. Must evoke the basis that it was developed to address the problems faced by citizens. The over-age and amplify the sanctions are a contradiction of that fundamental reform of the basic objectives of the offender more than anything else Calantqam and revenge, and if the process is not human mistakes. Michel Foucault believes that «tighten laws and regulations against criminals will not reduce the crime rate in the community, so you must activate the system of moral values of society after more deterrent, and the threat of scandal on a social level.» Besson and refers to the legislators, saying the law: «The only way to reduce the crime rate to strengthen the ethical system of the society, especially in the social Amnhoha sanctity of conscience, then you will not be forced to issue harsh sentences against criminals».In summary, it is necessary to combine the enactment of laws and activate the system of moral values and educational values on the ground, and to understand the causes of social problems at the root of all for the equation is complete, and that the law was drafted to serve the citizens and not to harm him.

Keywords: legislators, distinguish, awareness, insufficient

Procedia PDF Downloads 496
376 Chronic Care Management for the Medically Vulnerable during the Pandemic: Experiences of Family Caregivers of Youth with Substance Use Disorders in Zambia

Authors: Ireen Manase Kabembo, Patrick Chanda

Abstract:

Background: Substance use disorders are among the chronic conditions that affect all age groups. Worldwide, there is an increase in young people affected by SUDs, which implies that more family members are transitioning into the caregiver role. Family caregivers play a buffering role in the formal healthcare system due to their involvement in caring for persons with acute and chronic conditions in the home setting. Family carers of youth with problematic alcohol and marijuana use experience myriad challenges in managing daily care for this medically vulnerable group. In addition, the poor health-seeking behaviours of youth with SUDs characterized by eluding treatment and runaway tendencies coupled with the effects of the pandemic made caregiving a daunting task for most family caregivers. Issues such as limited and unavailable psychotropic medications, social stigma and discrimination, financial hurdles, systemic barriers in adolescent and young adult mental healthcare services, and the lack of a perceived vulnerability to Covid-19 by youth with SUDs are experiences of family caretakers. Methods: A qualitative study with 30 family caregivers of youth aged 16-24 explored their lived experiences and subjective meanings using two in-depth semi-structured interviews, a caregiving timeline, and participant observation. Findings: Results indicate that most family caregivers had challenges managing care for treatment elusive youth, let alone having them adhere to Covid-19 regulations. However, youth who utilized healthcare services and adhered to treatment regimens had positive outcomes and sustained recovery. The effects of the pandemic, such as job losses and the closure of businesses, further exacerbated the financial challenges experienced by family caregivers, making it difficult to purchase needed medications and daily necessities for the youth. The unabated stigma and discrimination of families of substance-dependent youth in Zambian communities further isolated family caregivers, leaving them with limited support. Conclusion: Since young people with SUDs have a compromised mental capacity due to the cognitive impairments that come with continued substance abuse, they often have difficulties making sound judgements, including the need to utilize SUD recovery services. Also, their tendency to not adhere to the Covid-19 pandemic requirements places them at a higher risk for adverse health outcomes in the (post) pandemic era. This calls for urgent implementation of robust youth mental health services that address prevention and recovery for these emerging adults grappling with substance use disorders. Support for their family caregivers, often overlooked, cannot be overemphasized.

Keywords: chronic care management, Covid-19 pandemic, family caregivers, youth with substance use disorders

Procedia PDF Downloads 106
375 Study and Simulation of a Dynamic System Using Digital Twin

Authors: J.P. Henriques, E. R. Neto, G. Almeida, G. Ribeiro, J.V. Coutinho, A.B. Lugli

Abstract:

Industry 4.0, or the Fourth Industrial Revolution, is transforming the relationship between people and machines. In this scenario, some technologies such as Cloud Computing, Internet of Things, Augmented Reality, Artificial Intelligence, Additive Manufacturing, among others, are making industries and devices increasingly intelligent. One of the most powerful technologies of this new revolution is the Digital Twin, which allows the virtualization of a real system or process. In this context, the present paper addresses the linear and nonlinear dynamic study of a didactic level plant using Digital Twin. In the first part of the work, the level plant is identified at a fixed point of operation, BY using the existing method of least squares means. The linearized model is embedded in a Digital Twin using Automation Studio® from Famous Technologies. Finally, in order to validate the usage of the Digital Twin in the linearized study of the plant, the dynamic response of the real system is compared to the Digital Twin. Furthermore, in order to develop the nonlinear model on a Digital Twin, the didactic level plant is identified by using the method proposed by Hammerstein. Different steps are applied to the plant, and from the Hammerstein algorithm, the nonlinear model is obtained for all operating ranges of the plant. As for the linear approach, the nonlinear model is embedded in the Digital Twin, and the dynamic response is compared to the real system in different points of operation. Finally, yet importantly, from the practical results obtained, one can conclude that the usage of Digital Twin to study the dynamic systems is extremely useful in the industrial environment, taking into account that it is possible to develop and tune controllers BY using the virtual model of the real systems.

Keywords: industry 4.0, digital twin, system identification, linear and nonlinear models

Procedia PDF Downloads 151
374 Promoting Incubation Support to Youth Led Enterprises: A Case Study from Bangladesh to Eradicate Hazardous Child Labour through Microfinance

Authors: Md Maruf Hossain Koli

Abstract:

The issue of child labor is enormous and cannot be ignored in Bangladesh. The problem of child exploitation is a socio-economic reality of Bangladesh. This paper will indicate the causes, consequences, and possibilities of using microfinance as remedies of hazardous child labor in Bangladesh. Poverty is one of the main reasons for children to become child laborers. It is an indication of economic vulnerability, inadequate law, and enforcement system and cultural and social inequities along with the inaccessible and low-quality educational system. An attempt will be made in this paper to explore and analyze child labor scenario in Bangladesh and will explain holistic intervention of BRAC, the largest nongovernmental organization in the world to address child labor through promoting incubation support to youth-led enterprises. A combination of research methods were used to write this paper. These include non-reactive observation in the form of literature review, desk studies as well as reactive observation like site visits and, semi-structured interviews. Hazardous Child labor is a multi-dimensional and complex issue. This paper was guided by the answer following research questions to better understand the current context of hazardous child labor in Bangladesh, especially in Dhaka city. The author attempted to figure out why child labor should be considered as a development issue? Further, it also encountered why child labor in Bangladesh is not being reduced at an expected pace? And finally what could be a sustainable solution to eradicate this situation. One of the most challenging characteristics of child labor is that it interrupts a child’s education and cognitive development hence limiting the building of human capital and fostering intergenerational reproduction of poverty and social exclusion. Children who are working full-time and do not attend school, cannot develop the necessary skills. This leads them and their future generation to remain in poor socio-economic condition as they do not get a better paying job. The vicious cycle of poverty will be reproduced and will slow down sustainable development. The outcome of the research suggests that most of the parents send their children to work to help them to increase family income. In addition, most of the youth engaged in hazardous work want to get training, mentoring and easy access to finance to start their own business. The intervention of BRAC that includes classroom and on the job training, tailored mentoring, health support, access to microfinance and insurance help them to establish startup. This intervention is working in developing business and management capacity through public-private partnerships and technical consulting. Supporting entrepreneurs, improving working conditions with micro, small and medium enterprises and strengthening value chains focusing on youth and children engaged with hazardous child labor.

Keywords: child labour, enterprise development, microfinance, youth entrepreneurship

Procedia PDF Downloads 129
373 Municipal Action Against Urbanisation-Induced Warming: Case Studies from Jordan, Zambia, and Germany

Authors: Muna Shalan

Abstract:

Climate change is a systemic challenge for cities, with its impacts not happening in isolation but rather intertwined, thus increasing hazards and the vulnerability of the exposed population. The increase in the frequency and intensity of heat waves, for example, is associated with multiple repercussions on the quality of life of city inhabitants, including health discomfort, a rise in mortality and morbidity, increasing energy demand for cooling, and shrinking of green areas due to drought. To address the multi-faceted impact of urbanisation-induced warming, municipalities and local governments are challenged with devising strategies and implementing effective response measures. Municipalities are recognising the importance of guiding urban concepts to drive climate action in the urban environment. An example is climate proofing, which refers to a process of mainstreaming climate change into development strategies and programs, i.e., urban planning is viewed through a climate change lens. There is a multitude of interconnected aspects that are critical to paving the path toward climate-proofing of urban areas and avoiding poor planning of layouts and spatial arrangements. Navigating these aspects through an analysis of the overarching practices governing municipal planning processes, which is the focus of this research, will highlight entry points to improve procedures, methods, and data availability for optimising planning processes and municipal actions. By employing a case study approach, the research investigates how municipalities in different contexts, namely in the city of Sahab in Jordan, Chililabombwe in Zambia, and the city of Dortmund in Germany, are integrating guiding urban concepts to shrink the deficit in adaptation and mitigation and achieve climate proofing goals in their respective local contexts. The analysis revealed municipal strategies and measures undertaken to optimize existing building and urban design regulations by introducing key performance indicators and improving in-house capacity. Furthermore, the analysis revealed that establishing or optimising interdepartmental communication frameworks or platforms is key to strengthening the steering structures governing local climate action. The most common challenge faced by municipalities is related to their role as a regulator and implementers, particularly in budget analysis and instruments for cost recovery of climate action measures. By leading organisational changes related to improving procedures and methods, municipalities can mitigate the various challenges that may emanate from uncoordinated planning and thus promote action against urbanisation-induced warming.

Keywords: urbanisation-induced warming, response measures, municipal planning processes, key performance indicators, interdepartmental communication frameworks, cost recovery

Procedia PDF Downloads 70
372 Studying Second Language Development from a Complex Dynamic Systems Perspective

Authors: L. Freeborn

Abstract:

This paper discusses the application of complex dynamic system theory (DST) to the study of individual differences in second language development. This transdisciplinary framework allows researchers to view the trajectory of language development as a dynamic, non-linear process. A DST approach views language as multi-componential, consisting of multiple complex systems and nested layers. These multiple components and systems continuously interact and influence each other at both the macro- and micro-level. Dynamic systems theory aims to explain and describe the development of the language system, rather than make predictions about its trajectory. Such a holistic and ecological approach to second language development allows researchers to include various research methods from neurological, cognitive, and social perspectives. A DST perspective would involve in-depth analyses as well as mixed methods research. To illustrate, a neurobiological approach to second language development could include non-invasive neuroimaging techniques such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) to investigate areas of brain activation during language-related tasks. A cognitive framework would further include behavioural research methods to assess the influence of intelligence and personality traits, as well as individual differences in foreign language aptitude, such as phonetic coding ability and working memory capacity. Exploring second language development from a DST approach would also benefit from including perspectives from the field of applied linguistics, regarding the teaching context, second language input, and the role of affective factors such as motivation. In this way, applying mixed research methods from neurobiological, cognitive, and social approaches would enable researchers to have a more holistic view of the dynamic and complex processes of second language development.

Keywords: dynamic systems theory, mixed methods, research design, second language development

Procedia PDF Downloads 136
371 Reducing the Imbalance Penalty Through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey

Authors: Hayriye Anıl, Görkem Kar

Abstract:

In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations since geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning, and, time series methods, the total generation of the power plants belonging to Zorlu Natural Electricity Generation, which has a high installed capacity in terms of geothermal, was estimated for the first one and two weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.

Keywords: machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting

Procedia PDF Downloads 110
370 Decision-Making, Expectations and Life Project in Dependent Adults Due to Disability

Authors: Julia Córdoba

Abstract:

People are not completely autonomous, as we live in society; therefore, people could be defined as relationally dependent. The lack, decrease or loss of physical, psychological and/or social interdependence due to a disability situation is known as dependence. This is related to the need for help from another person in order to carry out activities of daily living. This population group lives with major social limitations that significantly reduce their participation and autonomy. They have high levels of stigma and invisibility from private environments (family and close networks), as well as from the public order (environment, community). The importance of this study lies in the fact that the lack of support and adjustments leads to what authors call the circle of exclusion. This circle describes how not accessing services - due to the difficulties caused by the disability situation impacts biological, social and psychological levels. This situation produces higher levels of exclusion and vulnerability. This study will focus on the process of autonomy and dependence of adults with disability from the model of disability proposed by the International Classification of Functioning, Health and Disability (ICF). The objectives are: i) to write down the relationship between autonomy and dependence based on socio-health variables and ii) to determine the relationship between the situation of autonomy and dependence and the expectations and interests of the participants. We propose a study that will use a survey technique through a previously validated virtual questionnaire. The data obtained will be analyzed using quantitative and qualitative methods for the details of the profiles obtained. No less than 200 questionnaires will be administered to people between 18 and 64 years of age who self-identify as having some degree of dependency due to disability. For the analysis of the results, the two main variables of autonomy and dependence will be considered. Socio-demographic variables such as age, gender identity, area of residence and family composition will be used. In relation to the biological dimension of the situation, the diagnosis, if any, and the type of disability will be asked. For the description of these profiles of autonomy and dependence, the following variables will be used: self-perception, decision-making, interests, expectations and life project, care of their health condition, support and social network, and labor and educational inclusion. The relationship between the target population and the variables collected provides several guidelines that could form the basis for the analysis of other research of interest in terms of self-perception, autonomy and dependence. The areas and situations where people state that they have greater possibilities to decide and have a say will be obtained. It will identify social (networks and support, educational background), demographic (age, gender identity and residence) and health-related variables (diagnosis and type of disability, quality of care) that may have a greater relationship with situations of dependency or autonomy. It will be studied whether the level of autonomy and/or dependence has an impact on the type of expectations and interests of the people surveyed.

Keywords: life project, disability, inclusion, autonomy

Procedia PDF Downloads 68