Search results for: statistical data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27049

Search results for: statistical data

25189 Fuzzy Wavelet Model to Forecast the Exchange Rate of IDR/USD

Authors: Tri Wijayanti Septiarini, Agus Maman Abadi, Muhammad Rifki Taufik

Abstract:

The exchange rate of IDR/USD can be the indicator to analysis Indonesian economy. The exchange rate as a important factor because it has big effect in Indonesian economy overall. So, it needs the analysis data of exchange rate. There is decomposition data of exchange rate of IDR/USD to be frequency and time. It can help the government to monitor the Indonesian economy. This method is very effective to identify the case, have high accurate result and have simple structure. In this paper, data of exchange rate that used is weekly data from December 17, 2010 until November 11, 2014.

Keywords: the exchange rate, fuzzy mamdani, discrete wavelet transforms, fuzzy wavelet

Procedia PDF Downloads 579
25188 Humanising Digital Healthcare to Build Capacity by Harnessing the Power of Patient Data

Authors: Durhane Wong-Rieger, Kawaldip Sehmi, Nicola Bedlington, Nicole Boice, Tamás Bereczky

Abstract:

Patient-generated health data should be seen as the expression of the experience of patients, including the outcomes reflecting the impact a treatment or service had on their physical health and wellness. We discuss how the healthcare system can reach a place where digital is a determinant of health - where data is generated by patients and is respected and which acknowledges their contribution to science. We explore the biggest barriers facing this. The International Experience Exchange with Patient Organisation’s Position Paper is based on a global patient survey conducted in Q3 2021 that received 304 responses. Results were discussed and validated by the 15 patient experts and supplemented with literature research. Results are a subset of this. Our research showed patient communities want to influence how their data is generated, shared, and used. Our study concludes that a reasonable framework is needed to protect the integrity of patient data and minimise abuse, and build trust. Results also demonstrated a need for patient communities to have more influence and control over how health data is generated, shared, and used. The results clearly highlight that the community feels there is a lack of clear policies on sharing data.

Keywords: digital health, equitable access, humanise healthcare, patient data

Procedia PDF Downloads 87
25187 Introducing, Testing, and Evaluating a Unified JavaScript Framework for Professional Online Studies

Authors: Caspar Goeke, Holger Finger, Dorena Diekamp, Peter König

Abstract:

Online-based research has recently gained increasing attention from various fields of research in the cognitive sciences. Technological advances in the form of online crowdsourcing (Amazon Mechanical Turk), open data repositories (Open Science Framework), and online analysis (Ipython notebook) offer rich possibilities to improve, validate, and speed up research. However, until today there is no cross-platform integration of these subsystems. Furthermore, implementation of online studies still suffers from the complex implementation (server infrastructure, database programming, security considerations etc.). Here we propose and test a new JavaScript framework that enables researchers to conduct any kind of behavioral research in the browser without the need to program a single line of code. In particular our framework offers the possibility to manipulate and combine the experimental stimuli via a graphical editor, directly in the browser. Moreover, we included an action-event system that can be used to handle user interactions, interactively change stimuli properties or store participants’ responses. Besides traditional recordings such as reaction time, mouse and keyboard presses, the tool offers webcam based eye and face-tracking. On top of these features our framework also takes care about the participant recruitment, via crowdsourcing platforms such as Amazon Mechanical Turk. Furthermore, the build in functionality of google translate will ensure automatic text translations of the experimental content. Thereby, thousands of participants from different cultures and nationalities can be recruited literally within hours. Finally, the recorded data can be visualized and cleaned online, and then exported into the desired formats (csv, xls, sav, mat) for statistical analysis. Alternatively, the data can also be analyzed online within our framework using the integrated Ipython notebook. The framework was designed such that studies can be used interchangeably between researchers. This will support not only the idea of open data repositories but also constitutes the possibility to share and reuse the experimental designs and analyses such that the validity of the paradigms will be improved. Particularly, sharing and integrating the experimental designs and analysis will lead to an increased consistency of experimental paradigms. To demonstrate the functionality of the framework we present the results of a pilot study in the field of spatial navigation that was conducted using the framework. Specifically, we recruited over 2000 subjects with various cultural backgrounds and consequently analyzed performance difference in dependence on the factors culture, gender and age. Overall, our results demonstrate a strong influence of cultural factors in spatial cognition. Such an influence has not yet been reported before and would not have been possible to show without the massive amount of data collected via our framework. In fact, these findings shed new lights on cultural differences in spatial navigation. As a consequence we conclude that our new framework constitutes a wide range of advantages for online research and a methodological innovation, by which new insights can be revealed on the basis of massive data collection.

Keywords: cultural differences, crowdsourcing, JavaScript framework, methodological innovation, online data collection, online study, spatial cognition

Procedia PDF Downloads 262
25186 Identification of Blood Biomarkers Unveiling Early Alzheimer's Disease Diagnosis Through Single-Cell RNA Sequencing Data and Autoencoders

Authors: Hediyeh Talebi, Shokoofeh Ghiam, Changiz Eslahchi

Abstract:

Traditionally, Alzheimer’s disease research has focused on genes with significant fold changes, potentially neglecting subtle but biologically important alterations. Our study introduces an integrative approach that highlights genes crucial to underlying biological processes, regardless of their fold change magnitude. Alzheimer's Single-cell RNA-seq data related to the peripheral blood mononuclear cells (PBMC) was extracted from the Gene Expression Omnibus (GEO). After quality control, normalization, scaling, batch effect correction, and clustering, differentially expressed genes (DEGs) were identified with adjusted p-values less than 0.05. These DEGs were categorized based on cell-type, resulting in four datasets, each corresponding to a distinct cell type. To distinguish between cells from healthy individuals and those with Alzheimer's, an adversarial autoencoder with a classifier was employed. This allowed for the separation of healthy and diseased samples. To identify the most influential genes in this classification, the weight matrices in the network, which includes the encoder and classifier components, were multiplied, and focused on the top 20 genes. The analysis revealed that while some of these genes exhibit a high fold change, others do not. These genes, which may be overlooked by previous methods due to their low fold change, were shown to be significant in our study. The findings highlight the critical role of genes with subtle alterations in diagnosing Alzheimer's disease, a facet frequently overlooked by conventional methods. These genes demonstrate remarkable discriminatory power, underscoring the need to integrate biological relevance with statistical measures in gene prioritization. This integrative approach enhances our understanding of the molecular mechanisms in Alzheimer’s disease and provides a promising direction for identifying potential therapeutic targets.

Keywords: alzheimer's disease, single-cell RNA-seq, neural networks, blood biomarkers

Procedia PDF Downloads 71
25185 Use of Machine Learning in Data Quality Assessment

Authors: Bruno Pinto Vieira, Marco Antonio Calijorne Soares, Armando Sérgio de Aguiar Filho

Abstract:

Nowadays, a massive amount of information has been produced by different data sources, including mobile devices and transactional systems. In this scenario, concerns arise on how to maintain or establish data quality, which is now treated as a product to be defined, measured, analyzed, and improved to meet consumers' needs, which is the one who uses these data in decision making and companies strategies. Information that reaches low levels of quality can lead to issues that can consume time and money, such as missed business opportunities, inadequate decisions, and bad risk management actions. The step of selecting, identifying, evaluating, and selecting data sources with significant quality according to the need has become a costly task for users since the sources do not provide information about their quality. Traditional data quality control methods are based on user experience or business rules limiting performance and slowing down the process with less than desirable accuracy. Using advanced machine learning algorithms, it is possible to take advantage of computational resources to overcome challenges and add value to companies and users. In this study, machine learning is applied to data quality analysis on different datasets, seeking to compare the performance of the techniques according to the dimensions of quality assessment. As a result, we could create a ranking of approaches used, besides a system that is able to carry out automatically, data quality assessment.

Keywords: machine learning, data quality, quality dimension, quality assessment

Procedia PDF Downloads 154
25184 Catering for Children with Autism in the Regular Classroom: Challenges and the Way Forward

Authors: Beatrice Tayo Ajayi, Dzever Linus Terry

Abstract:

Pupils with autism in the general classroom have dare need to be adequately catered for in social and academic activities for successful attainment in school work and future life. However, adequate catering for autistic children by teachers that basically received no training in content related to inclusive education and lack the ability to use inclusive strategies during classroom instruction appears to be a mirage. This paper intends to examine the current classroom environment in relation to the level to which autistic primary school pupils are catered for in the regular classroom. The study also seeks to identify the challenges teachers experience in the course of catering to the needs of children with autism and the way out. The sample consists of thirty (30) primary school teachers of Ondo West Local Government Area, Ondo State, Nigeria (10 male, 15 female), age grades between twenty five (25) to sixty (60). Data collection will be a survey using the researcher developed 18 statements Four Point- Likert Scale type to assess the level to which participants agree or disagree with the statement about catering for pupils with autism. Results are to be evaluated using descriptive statistical methods of mean scores and t-test.

Keywords: autism, catering, general classroom, way forward

Procedia PDF Downloads 121
25183 Exploring Data Leakage in EEG Based Brain-Computer Interfaces: Overfitting Challenges

Authors: Khalida Douibi, Rodrigo Balp, Solène Le Bars

Abstract:

In the medical field, applications related to human experiments are frequently linked to reduced samples size, which makes the training of machine learning models quite sensitive and therefore not very robust nor generalizable. This is notably the case in Brain-Computer Interface (BCI) studies, where the sample size rarely exceeds 20 subjects or a few number of trials. To address this problem, several resampling approaches are often used during the data preparation phase, which is an overly critical step in a data science analysis process. One of the naive approaches that is usually applied by data scientists consists in the transformation of the entire database before the resampling phase. However, this can cause model’ s performance to be incorrectly estimated when making predictions on unseen data. In this paper, we explored the effect of data leakage observed during our BCI experiments for device control through the real-time classification of SSVEPs (Steady State Visually Evoked Potentials). We also studied potential ways to ensure optimal validation of the classifiers during the calibration phase to avoid overfitting. The results show that the scaling step is crucial for some algorithms, and it should be applied after the resampling phase to avoid data leackage and improve results.

Keywords: data leackage, data science, machine learning, SSVEP, BCI, overfitting

Procedia PDF Downloads 157
25182 Lean Mass and Fat Mass Distribution in Ukrainian Postmenopausal Women with Abdominal Овesity and Metabolic Syndrome

Authors: V. V. Povoroznyuk, Lar. P. Martynyuk, N. I. Dzerovych, Lil. P. Martyntyuk

Abstract:

Objective: Menopause-related changes in female body are associated with the greater risk of metabolic syndrome (MS), which includes obesity, dyslipidemia, impaired glucose tolerance, hypertension. The aim of our study was to reveal peculiarities of fat and lean mass distribution between postmenopausal women with abdominal obesity and with MS. Materials and Methods: The sample consisted of 43 postmenopausal 60 – 69 years old women (age: mean = 64,8; S.D. = 0,4); duration of menopause: mean = 14,5; S.D.= 0,9). The diagnosis of MS was considered according to IDF (2005 yr) criteria. Lean and fat mass distrubution were measured by dual-energy X-ray absortiometry, and were compared for the cohorts with and without MS. Data were analyzed using Statistical Package 6.0 (Statsoft). Results: Findings revealed that 24 (55,8 %) of postmenopausal women had MS. In patients with and without MS compared, fat mass was higher in the former group (41248,25±2263,89 and 29817,68±2397,78 respectively; F=11,9; p=0,001) and at different body regions also: gynoid fat (6563,72±348,19 and 5115,21±392,43 respectively; F=7,6; p=0,008), android fat (3815,45±200,8128 and 2798,15±282,79 respectively; F=9,06; p=0,004. Lean mass comparing didn’t show significant differences in female with and without MS (42548,0±1239,18 and 40667,53±1223,78 respectively; F=1,1; p=0,29) and at different body regions also. Conclusion: These findings suggest that in postmenopausal women with MS there is prevalence of fat mass without increasing of lean mass quantity in compare to female with abdominal obesity without MS.

Keywords: lean mass, fat mass, овesity, metabolic syndrome, women, postmenopausal period

Procedia PDF Downloads 463
25181 An Analysis of the Need of Training for Indian Textile Manufacturing Sector

Authors: Shipra Sharma, Jagat Jerath

Abstract:

Human resource training is an essential element of talent management in the current era of global competitiveness and dynamic trade in the manufacturing industry. Globally, India is behind only China as the largest textile manufacturer. The major challenges faced by the Indian textile manufacturing Industry are low technology levels, growing skill gaps, unorganized structure, lower efficiencies, etc. indicating the need for constant talent up-gradation. Assessment of training needs from a strategic perspective is an essential step for the formulation of effective training. The paper established the significance of training in the Indian textile industry and to determine the training needs on various parameters as presented. 40 HR personnel/s working in the textile and apparel companies based in the industrial region of Punjab, India, were the respondents for the study. The research tool used in this case was a structured questionnaire as per five-point Likert scale. Statistical analysis through descriptive statistics and chi-square test indicated the increased need for training whenever there were technical changes in the organizations. As per the data presented in this study, most of the HR personnel/s agreed that the variables associated with organizational analysis, task analysis, and individual analysis have a statistically significant role to play in determining the need for training in an organization.

Keywords: Indian textile manufacturing industry, significance of training, training needs analysis, parameters for training needs assessment

Procedia PDF Downloads 170
25180 Effect of Mindfulness-Based Self-Care Training on Self-Esteem and Body Image Concern on Candidate Patients of Orthognathic Surgery

Authors: Hamide Azimi Lolaty, Fateme Alsadat Ghanipoor, Azar Ramzani, Reza Ali Mohammadpoor, Alireza Babaei

Abstract:

Background and Objective: Despite the merits behind orthognathic surgery, self-care training in such patients seems logical. The current research was performed pursuing the goal of outlining the effect of training mindfulness-based self-care on Self-Esteem (SE) and Body Image Concern (BIC) of orthognathic surgery candidate patients. Material and Methods: The present study was performed using a semi-experimental method with pre-and post-design in the control and intervention groups. The eligible patients to enter the Babol-based Shahid Beheshti Orthognathic Surgery Clinic were conveniently divided into two 25-person groups. The variables of Self-Esteem and Body Image Concern were measured before and after executing the eight 90-minute training sessions and in the follow-up period done three months after executing the intervention using Cooper Smith’s Self-Esteem Inventory (CSEI) and Body Image Concern Inventory (BICI). The data were analyzed using ANOVA and the independent t-test and using SPSS-26, the data were analyzed at a 0.05 level. Results: As a result of the intervention, the intervention group’s SE score critically changed on average from 25.4±7.31 in the pre-intervention to 31.16±7.05 in the post-intervention and to 40.45±3.51 in the follow-up period (P=0.01), the intervention group’s BIC score changed on average from 60.28±16.47 in the pre-intervention to 47.15±80.47 in the post-intervention and to 32.20 ± 10.73 in the follow-up period. This difference was meaningful (P=0.001). But due to time and the intervention interaction, the control group underwent this significant reduction with a delay. The study revealed the scores of the SE as 32± 6.84 and that of the BIC as 43.32±10.64 in the control group didn’t result in any meaningful statistical difference (P<0.05). Conclusion: Training mindfulness-based self-care exerts an effect on the SE and BIC of the patients undergoing orthognathic surgery. Therefore, it’s recommended to train mindfulness-based self-care for orthognathic surgery candidate patients.

Keywords: self-care, mindfulness, self-esteem, body image concern, orthognathic surgery

Procedia PDF Downloads 128
25179 Nuclear Decay Data Evaluation for 217Po

Authors: S. S. Nafee, A. M. Al-Ramady, S. A. Shaheen

Abstract:

Evaluated nuclear decay data for the 217Po nuclide ispresented in the present work. These data include recommended values for the half-life T1/2, α-, β--, and γ-ray emission energies and probabilities. Decay data from 221Rn α and 217Bi β—decays are presented. Q(α) has been updated based on the recent published work of the Atomic Mass Evaluation AME2012. In addition, the logft values were calculated using the Logft program from the ENSDF evaluation package. Moreover, the total internal conversion electrons has been calculated using Bricc program. Meanwhile, recommendation values or the multi-polarities have been assigned based on recently measurement yield a better intensity balance at the 254 keV and 264 keV gamma transitions.

Keywords: nuclear decay data evaluation, mass evaluation, total converison coefficients, atomic mass evaluation

Procedia PDF Downloads 437
25178 Reconceptualizing Evidence and Evidence Types for Digital Journalism Studies

Authors: Hai L. Tran

Abstract:

In the digital age, evidence-based reporting is touted as a best practice for seeking the truth and keeping the public well-informed. Journalists are expected to rely on evidence to demonstrate the validity of a factual statement and lend credence to an individual account. Evidence can be obtained from various sources, and due to a rich supply of evidence types available, the definition of this important concept varies semantically. To promote clarity and understanding, it is necessary to break down the various types of evidence and categorize them in a more coherent, systematic way. There is a wide array of devices that digital journalists deploy as proof to back up or refute a truth claim. Evidence can take various formats, including verbal and visual materials. Verbal evidence encompasses quotes, soundbites, talking heads, testimonies, voice recordings, anecdotes, and statistics communicated through written or spoken language. There are instances where evidence is simply non-verbal, such as when natural sounds are provided without any verbalized words. On the other hand, other language-free items exhibited in photos, video footage, data visualizations, infographics, and illustrations can serve as visual evidence. Moreover, there are different sources from which evidence can be cited. Supporting materials, such as public or leaked records and documents, data, research studies, surveys, polls, or reports compiled by governments, organizations, and other entities, are frequently included as informational evidence. Proof can also come from human sources via interviews, recorded conversations, public and private gatherings, or press conferences. Expert opinions, eye-witness insights, insider observations, and official statements are some of the common examples of testimonial evidence. Digital journalism studies tend to make broad references when comparing qualitative versus quantitative forms of evidence. Meanwhile, limited efforts are being undertaken to distinguish between sister terms, such as “data,” “statistical,” and “base-rate” on one side of the spectrum and “narrative,” “anecdotal,” and “exemplar” on the other. The present study seeks to develop the evidence taxonomy, which classifies evidence through the quantitative-qualitative juxtaposition and in a hierarchical order from broad to specific. According to this scheme, data, statistics, and base rate belong to the quantitative evidence group, whereas narrative, anecdote, and exemplar fall into the qualitative evidence group. Subsequently, the taxonomical classification arranges data versus narrative at the top of the hierarchy of types of evidence, followed by statistics versus anecdote and base rate versus exemplar. This research reiterates the central role of evidence in how journalists describe and explain social phenomena and issues. By defining the various types of evidence and delineating their logical connections it helps remove a significant degree of conceptual inconsistency, ambiguity, and confusion in digital journalism studies.

Keywords: evidence, evidence forms, evidence types, taxonomy

Procedia PDF Downloads 72
25177 Geographic Information System Using Google Fusion Table Technology for the Delivery of Disease Data Information

Authors: I. Nyoman Mahayasa Adiputra

Abstract:

Data in the field of health can be useful for the purposes of data analysis, one example of health data is disease data. Disease data is usually in a geographical plot in accordance with the area. Where the data was collected, in the city of Denpasar, Bali. Disease data report is still published in tabular form, disease information has not been mapped in GIS form. In this research, disease information in Denpasar city will be digitized in the form of a geographic information system with the smallest administrative area in the form of district. Denpasar City consists of 4 districts of North Denpasar, East Denpasar, West Denpasar and South Denpasar. In this research, we use Google fusion table technology for map digitization process, where this technology can facilitate from the administrator and from the recipient information. From the administrator side of the input disease, data can be done easily and quickly. From the receiving end of the information, the resulting GIS application can be published in a website-based application so that it can be accessed anywhere and anytime. In general, the results obtained in this study, divided into two, namely: (1) Geolocation of Denpasar and all of Denpasar districts, the process of digitizing the map of Denpasar city produces a polygon geolocation of each - district of Denpasar city. These results can be utilized in subsequent GIS studies if you want to use the same administrative area. (2) Dengue fever mapping in 2014 and 2015. Disease data used in this study is dengue fever case data taken in 2014 and 2015. Data taken from the profile report Denpasar Health Department 2015 and 2016. This mapping can be useful for the analysis of the spread of dengue hemorrhagic fever in the city of Denpasar.

Keywords: geographic information system, Google fusion table technology, delivery of disease data information, Denpasar city

Procedia PDF Downloads 136
25176 Inclusive Practices in Health Sciences: Equity Proofing Higher Education Programs

Authors: Mitzi S. Brammer

Abstract:

Given that the cultural make-up of programs of study in institutions of higher learning is becoming increasingly diverse, much has been written about cultural diversity from a university-level perspective. However, there are little data in the way of specific programs and how they address inclusive practices when teaching and working with marginalized populations. This research study aimed to discover baseline knowledge and attitudes of health sciences faculty, instructional staff, and students related to inclusive teaching/learning and interactions. Quantitative data were collected via an anonymous online survey (one designed for students and another designed for faculty/instructional staff) using a web-based program called Qualtrics. Quantitative data were analyzed amongst the faculty/instructional staff and students, respectively, using descriptive and comparative statistics (t-tests). Additionally, some participants voluntarily engaged in a focus group discussion in which qualitative data were collected around these same variables. Collecting qualitative data to triangulate the quantitative data added trustworthiness to the overall data. The research team analyzed collected data and compared identified categories and trends, comparing those data between faculty/staff and students, and reported results as well as implications for future study and professional practice.

Keywords: inclusion, higher education, pedagogy, equity, diversity

Procedia PDF Downloads 69
25175 An Analysis of Sequential Pattern Mining on Databases Using Approximate Sequential Patterns

Authors: J. Suneetha, Vijayalaxmi

Abstract:

Sequential Pattern Mining involves applying data mining methods to large data repositories to extract usage patterns. Sequential pattern mining methodologies used to analyze the data and identify patterns. The patterns have been used to implement efficient systems can recommend on previously observed patterns, in making predictions, improve usability of systems, detecting events, and in general help in making strategic product decisions. In this paper, identified performance of approximate sequential pattern mining defines as identifying patterns approximately shared with many sequences. Approximate sequential patterns can effectively summarize and represent the databases by identifying the underlying trends in the data. Conducting an extensive and systematic performance over synthetic and real data. The results demonstrate that ApproxMAP effective and scalable in mining large sequences databases with long patterns.

Keywords: multiple data, performance analysis, sequential pattern, sequence database scalability

Procedia PDF Downloads 353
25174 Prediction of Saturated Hydraulic Conductivity Dynamics in an Iowan Agriculture Watershed

Authors: Mohamed Elhakeem, A. N. Thanos Papanicolaou, Christopher Wilson, Yi-Jia Chang

Abstract:

In this study, a physically-based, modelling framework was developed to predict saturated hydraulic conductivity (KSAT) dynamics in the Clear Creek Watershed (CCW), Iowa. The modelling framework integrated selected pedotransfer functions and watershed models with geospatial tools. A number of pedotransfer functions and agricultural watershed models were examined to select the appropriate models that represent the study site conditions. Models selection was based on statistical measures of the models’ errors compared to the KSAT field measurements conducted in the CCW under different soil, climate and land use conditions. The study has shown that the predictions of the combined pedotransfer function of Rosetta and the Water Erosion Prediction Project (WEPP) provided the best agreement to the measured KSAT values in the CCW compared to the other tested models. Therefore, Rosetta and WEPP were integrated with the Geographic Information System (GIS) tools for visualization of the data in forms of geospatial maps and prediction of KSAT variability in CCW due to the seasonal changes in climate and land use activities.

Keywords: saturated hydraulic conductivity, pedotransfer functions, watershed models, geospatial tools

Procedia PDF Downloads 266
25173 Artificial Neural Network and Statistical Method

Authors: Tomas Berhanu Bekele

Abstract:

Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea of avoiding traffic instabilities and homogenizing traffic flow in such a way that the risk of accidents is minimized and traffic flow is maximized. Lately, Intelligent Transport Systems (ITS) has become an important area of research to solve such road traffic-related issues for making smart decisions. It links people, roads and vehicles together using communication technologies to increase safety and mobility. Moreover, accurate prediction of road traffic is important to manage traffic congestion. The aim of this study is to develop an ANN model for the prediction of traffic flow and to compare the ANN model with the linear regression model of traffic flow predictions. Data extraction was carried out in intervals of 15 minutes from the video player. Video of mixed traffic flow was taken and then counted during office work in order to determine the traffic volume. Vehicles were classified into six categories, namely Car, Motorcycle, Minibus, mid-bus, Bus, and Truck vehicles. The average time taken by each vehicle type to travel the trap length was measured by time displayed on a video screen.

Keywords: intelligent transport system (ITS), traffic flow prediction, artificial neural network (ANN), linear regression

Procedia PDF Downloads 74
25172 Suicide Risk Assessment of UM Tagum College Students: Basis for Intervention Program

Authors: Ezri Coda, Kris Justine Miparanum, Relvin Jay Sale

Abstract:

The study dealt on suicide risk level of college students in UM Tagum College. The primary goal of the study was to assess the level of suicide risk among students at the UM Tagum College in terms of perceived burdensomeness, low belongingness/social alienation and acquired ability to enact lethal self-injury utilizing quantitative non- experimental study with 380 students in UM Tagum College as respondents of the study. Mean was the statistical tools used for the data treatment. Moreover, the study aims to determine the mean of the level of the suicide risk assessment in terms of program, type of student, age, year level, civil status and gender, and lastly, to design an intervention program for those identified students with high suicide risk. Results showed a low level of suicide risk in terms of perceived burdensomeness, low belongingness/social alienation and acquired ability to enact lethal self-injury.

Keywords: suicide risk, perceived burdensomeness, low belongingness/social alienation, acquired ability to enact lethal self-injury, UM Tagum College, Philippines

Procedia PDF Downloads 142
25171 Medical Knowledge Management since the Integration of Heterogeneous Data until the Knowledge Exploitation in a Decision-Making System

Authors: Nadjat Zerf Boudjettou, Fahima Nader, Rachid Chalal

Abstract:

Knowledge management is to acquire and represent knowledge relevant to a domain, a task or a specific organization in order to facilitate access, reuse and evolution. This usually means building, maintaining and evolving an explicit representation of knowledge. The next step is to provide access to that knowledge, that is to say, the spread in order to enable effective use. Knowledge management in the medical field aims to improve the performance of the medical organization by allowing individuals in the care facility (doctors, nurses, paramedics, etc.) to capture, share and apply collective knowledge in order to make optimal decisions in real time. In this paper, we propose a knowledge management approach based on integration technique of heterogeneous data in the medical field by creating a data warehouse, a technique of extracting knowledge from medical data by choosing a technique of data mining, and finally an exploitation technique of that knowledge in a case-based reasoning system.

Keywords: data warehouse, data mining, knowledge discovery in database, KDD, medical knowledge management, Bayesian networks

Procedia PDF Downloads 401
25170 Waste Identification Diagrams Effectiveness: A Case Study in the Manaus Industrial Pole

Authors: José Dinis-Carvalho, Levi Guimarães, Celina Leão, Rui Sousa, Rosa Eliza Vieira, Larissa Thomaz, Kelliane Guerreiro

Abstract:

This research paper investigates the efficacy of waste identification diagrams (WIDs) as a tool for waste reduction and management within the Manaus Industrial Pole. The study focuses on assessing the practical application and effectiveness of WIDs in identifying, categorizing, and mitigating various forms of waste generated across industrial processes. Employing a mixed-methods approach, including a qualitative questionnaire applied to 5 companies and quantitative data analysis with SPSS statistical software, the research evaluates the implementation and impact of WIDs on waste reduction practices in select industries within the Manaus Industrial Pole. The findings contribute to understanding the utility of WIDs as a proactive strategy for waste management, offering insights into their potential for fostering sustainable practices and promoting environmental stewardship in industrial settings. The study also discusses challenges, best practices, and recommendations for optimizing the utilization of WIDs in industrial waste management, thereby addressing the broader implications for sustainable industrial development.

Keywords: waste identification diagram, value stream mapping, overall equipment effectiveness, lean manufacturing

Procedia PDF Downloads 60
25169 Bioinformatics Approach to Identify Physicochemical and Structural Properties Associated with Successful Cell-free Protein Synthesis

Authors: Alexander A. Tokmakov

Abstract:

Cell-free protein synthesis is widely used to synthesize recombinant proteins. It allows genome-scale expression of various polypeptides under strictly controlled uniform conditions. However, only a minor fraction of all proteins can be successfully expressed in the systems of protein synthesis that are currently used. The factors determining expression success are poorly understood. At present, the vast volume of data is accumulated in cell-free expression databases. It makes possible comprehensive bioinformatics analysis and identification of multiple features associated with successful cell-free expression. Here, we describe an approach aimed at identification of multiple physicochemical and structural properties of amino acid sequences associated with protein solubility and aggregation and highlight major correlations obtained using this approach. The developed method includes: categorical assessment of the protein expression data, calculation and prediction of multiple properties of expressed amino acid sequences, correlation of the individual properties with the expression scores, and evaluation of statistical significance of the observed correlations. Using this approach, we revealed a number of statistically significant correlations between calculated and predicted features of protein sequences and their amenability to cell-free expression. It was found that some of the features, such as protein pI, hydrophobicity, presence of signal sequences, etc., are mostly related to protein solubility, whereas the others, such as protein length, number of disulfide bonds, content of secondary structure, etc., affect mainly the expression propensity. We also demonstrated that amenability of polypeptide sequences to cell-free expression correlates with the presence of multiple sites of post-translational modifications. The correlations revealed in this study provide a plethora of important insights into protein folding and rationalization of protein production. The developed bioinformatics approach can be of practical use for predicting expression success and optimizing cell-free protein synthesis.

Keywords: bioinformatics analysis, cell-free protein synthesis, expression success, optimization, recombinant proteins

Procedia PDF Downloads 422
25168 Assessment and Evaluation Resilience of Urban Neighborhoods in Coping with Natural Disasters in in the Metropolis of Tabriz (Case Study: Region 6 of Tabriz)

Authors: Ali panahi-Kosar Khosravi

Abstract:

Earthquake resilience is one of the most important theoretical and practical concepts in crisis management. Over the past few decades, the rapid growth of urban areas and developing lower urban areas (especially in developing countries) have made them more vulnerable to human and natural crises. Therefore, the resilience of urban communities, especially low-income and unhealthy neighborhoods, is of particular importance. The present study seeks to assess and evaluate the resilience of neighborhoods in the center of district 6 of Tabriz in terms of awareness, knowledge and personal skills, social and psychological capital, managerial-institutional, and the ability to return to appropriate and sustainable conditions. The research method in this research is descriptive-analytical. The authors used library and survey methods to collect information and a questionnaire to assess resilience. The statistical population of this study is the total households living in the four neighborhoods of Shanb Ghazan, Khatib, Gharamalek, and Abuzar alley. Three hundred eighty-four families from four neighborhoods were selected based on the Cochran formula using a simple random sampling method. A one-sample t-test, simple linear regression, and structural equations were used to test the research hypotheses. Findings showed that only two social and psychological awareness and capital indicators in district 6 of Tabriz had a favorable and approved status. Therefore, considering the multidimensional concept of resilience, district 6 of Tabriz is in an unfavorable resilience situation. Also, the findings based on the analysis of variance indicated no significant difference between the neighborhoods of district 6 in terms of resilience, and most neighborhoods are in an unfavorable situation.

Keywords: resilience, statistical analysis, earthquake, district 6 of tabriz

Procedia PDF Downloads 81
25167 Thyroid Hormones and Thyrotropin Status in Nepalese Postmenopausal Women

Authors: S. A. Khan, B. Mishra, O. Sherchan

Abstract:

Background and Aims: Thyroid disorder is the most common endocrine disorder after diabetes mellitus. Females are more vulnerable to this disease, and old age is an important risk factor. This study was undertaken to investigate the burden of thyroid disorder in Nepalese postmenopausal women. Methods: In the present cross-sectional study, we included 271 post-menopausal women. Three ml of blood was collected following standard protocol after taking the written consent. Serum was separated and analyzed for free T3, free T4, and Thyroid Stimulating Hormone (TSH) by Chemiluminescence Immunoassay (CLIA) method in Snibe Maglumi 1000 analyzer. Data obtained was analyzed in SPSS Version 21. P < 0.05 was set for statistical significant at 95% Confidence Interval (CI). Results: Majority of the participants belong to Janjati (46.5%) ethnicity, followed by Brahmin/Chhetri (41.7%), residing either in urban or suburban locality. Most of them were non-vegetarian, non-smoker, and non-alcoholic. Subjects were divided into hyperthyroid (TSH < 0.3 uIU/ml), hypothyroid (TSH > 4.5 uIU/ml), and euthyroid (TSH=0.3-4.5 uIU/ml) based on TSH value. We reported 10.3% hyperthyroid and 29.2% hypothyroid cases. TSH was significantly correlated with T3 (r=-0.244; p < 0.001) T4 (r=-0.398; p < 0.001); age (r=-0.138; p=0.023) and BMI (r=0.123; p=0.043). Multiple linear regression model for TSH reveals only T3 and T4 were significantly associated with TSH (p < 0.001; p=0.001). Conclusion: To conclude, nearly 39.5% of the postmenopausal women had thyroid disorder. Postmenopausal women are vulnerable to thyroid disorder; therefore, requires regular thyroid monitoring.

Keywords: thyroid stimulating hormone, TSH, T3, T4, thyroid disorder

Procedia PDF Downloads 133
25166 Mean Shift-Based Preprocessing Methodology for Improved 3D Buildings Reconstruction

Authors: Nikolaos Vassilas, Theocharis Tsenoglou, Djamchid Ghazanfarpour

Abstract:

In this work we explore the capability of the mean shift algorithm as a powerful preprocessing tool for improving the quality of spatial data, acquired from airborne scanners, from densely built urban areas. On one hand, high resolution image data corrupted by noise caused by lossy compression techniques are appropriately smoothed while at the same time preserving the optical edges and, on the other, low resolution LiDAR data in the form of normalized Digital Surface Map (nDSM) is upsampled through the joint mean shift algorithm. Experiments on both the edge-preserving smoothing and upsampling capabilities using synthetic RGB-z data show that the mean shift algorithm is superior to bilateral filtering as well as to other classical smoothing and upsampling algorithms. Application of the proposed methodology for 3D reconstruction of buildings of a pilot region of Athens, Greece results in a significant visual improvement of the 3D building block model.

Keywords: 3D buildings reconstruction, data fusion, data upsampling, mean shift

Procedia PDF Downloads 318
25165 GIS Data Governance: GIS Data Submission Process for Build-in Project, Replacement Project at Oman Electricity Transmission Company

Authors: Rahma Al Balushi

Abstract:

Oman Electricity Transmission Company's (OETC) vision is to be a renowned world-class transmission grid by 2025, and one of the indications of achieving the vision is obtaining Asset Management ISO55001 certification, which required setting out a documented Standard Operating Procedures (SOP). Hence, documented SOP for the Geographical information system data process has been established. Also, to effectively manage and improve OETC power transmission, asset data and information need to be governed as such by Asset Information & GIS dept. This paper will describe in detail the GIS data submission process and the journey to develop the current process. The methodology used to develop the process is based on three main pillars, which are system and end-user requirements, Risk evaluation, data availability, and accuracy. The output of this paper shows the dramatic change in the used process, which results subsequently in more efficient, accurate, updated data. Furthermore, due to this process, GIS has been and is ready to be integrated with other systems as well as the source of data for all OETC users. Some decisions related to issuing No objection certificates (NOC) and scheduling asset maintenance plans in Computerized Maintenance Management System (CMMS) have been made consequently upon GIS data availability. On the Other hand, defining agreed and documented procedures for data collection, data systems update, data release/reporting, and data alterations salso aided to reduce the missing attributes of GIS transmission data. A considerable difference in Geodatabase (GDB) completeness percentage was observed between the year 2017 and the year 2021. Overall, concluding that by governance, asset information & GIS department can control GIS data process; collect, properly record, and manage asset data and information within OETC network. This control extends to other applications and systems integrated with/related to GIS systems.

Keywords: asset management ISO55001, standard procedures process, governance, geodatabase, NOC, CMMS

Procedia PDF Downloads 211
25164 Importance of Ethics in Cloud Security

Authors: Pallavi Malhotra

Abstract:

This paper examines the importance of ethics in cloud computing. In the modern society, cloud computing is offering individuals and businesses an unlimited space for storing and processing data or information. Most of the data and information stored in the cloud by various users such as banks, doctors, architects, engineers, lawyers, consulting firms, and financial institutions among others require a high level of confidentiality and safeguard. Cloud computing offers centralized storage and processing of data, and this has immensely contributed to the growth of businesses and improved sharing of information over the internet. However, the accessibility and management of data and servers by a third party raise concerns regarding the privacy of clients’ information and the possible manipulations of the data by third parties. This document suggests the approaches various stakeholders should take to address various ethical issues involving cloud-computing services. Ethical education and training is key to all stakeholders involved in the handling of data and information stored or being processed in the cloud.

Keywords: IT ethics, cloud computing technology, cloud privacy and security, ethical education

Procedia PDF Downloads 327
25163 The Feminism of Data Privacy and Protection in Africa

Authors: Olayinka Adeniyi, Melissa Omino

Abstract:

The field of data privacy and data protection in Africa is still an evolving area, with many African countries yet to enact legislation on the subject. While African Governments are bringing their legislation to speed in this field, how patriarchy pervades every sector of African thought and manifests in society needs to be considered. Moreover, the laws enacted ought to be inclusive, especially towards women. This, in a nutshell, is the essence of data feminism. Data feminism is a new way of thinking about data science and data ethics that is informed by the ideas of intersectional feminism. Feminising data privacy and protection will involve thinking women, considering women in the issues of data privacy and protection, particularly in legislation, as is the case in this paper. The line of thought of women inclusion is not uncommon when even international and regional human rights specific for women only came long after the general human rights. The consideration is that these should have been inserted or rather included in the original general instruments in the first instance. Since legislation on data privacy is coming in this century, having seen the rights and shortcomings of earlier instruments, then the cue should be taken to ensure inclusive wholistic legislation for data privacy and protection in the first instance. Data feminism is arguably an area that has been scantily researched, albeit a needful one. With the spate of increase in the violence against women spiraling in the cyber world, compounding the issue of COVID-19 and the needful response of governments, and the effect of these on women and their rights, fast forward, the research on the feminism of data privacy and protection in Africa becomes inevitable. This paper seeks to answer the questions, what is data feminism in the African context, why is it important in the issue of data privacy and protection legislation; what are the laws, if any, existing on data privacy and protection in Africa, are they women inclusive, if not, why; what are the measures put in place for the privacy and protection of women in Africa, and how can this be made possible. The paper aims to investigate the issue of data privacy and protection in Africa, the legal framework, and the protection or provision that it has for women if any. It further aims to research the importance and necessity of feminizing data privacy and protection, the effect of lack of it, the challenges or bottlenecks in attaining this feat and the possibilities of accessing data privacy and protection for African women. The paper also researches the emerging practices of data privacy and protection of women in other jurisprudences. It approaches the research through the methodology of review of papers, analysis of laws, and reports. It seeks to contribute to the existing literature in the field and is explorative in its suggestion. It suggests a draft of some clauses to make any data privacy and protection legislation women inclusive. It would be useful for policymaking, academic, and public enlightenment.

Keywords: feminism, women, law, data, Africa

Procedia PDF Downloads 213
25162 Designing a Model for Measuring the Components of Good Governance in the Iranian Higher Education System

Authors: Maria Ghorbanian, Mohammad Ghahramani, Mahmood Abolghasemi

Abstract:

Universities and institutions of higher education in Iran, like other higher education institutions in the world, have a heavy mission and task to educate students based on the needs of the country. Taking on such a serious responsibility requires having a good governance system for planning, formulating executive plans, evaluating, and finally modifying them in accordance with the current conditions and challenges ahead. In this regard, the present study was conducted with the aim of identifying the components of good governance in the Iranian higher education system by survey method and with a quantitative approach. In order to collect data, a researcher-made questionnaire was used, which includes two parts: personal and professional characteristics (5 questions) and the three components of good governance in the Iranian higher education system, including good management and leadership (8 items), continuous evaluation and effective (university performance, finance, and university appointments) (8 items) and civic responsibility and sustainable development (7 items). These variables were measured and coded in the form of a five-level Likert scale from "Very Low = 1" to "Very High = 5". First, the validity and reliability of the research model were examined. In order to calculate the reliability of the questionnaire, two methods of Cronbach's alpha and combined reliability were used. Fornell-Larker interaction and criterion were also used to determine the degree of diagnostic validity. The statistical population of this study included all faculty members of public universities in Tehran (N = 4429). The sample size was estimated to be 340 using the Cochran's formula. These numbers were studied using a randomized method with a proportional assignment. The data were analyzed by the structural equation method with the least-squares approach. The results showed that the component of civil responsibility and sustainable development with a factor load of 0.827 is the most important element of good governance.

Keywords: good governance, higher education, sustainable, development

Procedia PDF Downloads 178
25161 Quantitative Analysis of Contract Variations Impact on Infrastructure Project Performance

Authors: Soheila Sadeghi

Abstract:

Infrastructure projects often encounter contract variations that can significantly deviate from the original tender estimates, leading to cost overruns, schedule delays, and financial implications. This research aims to quantitatively assess the impact of changes in contract variations on project performance by conducting an in-depth analysis of a comprehensive dataset from the Regional Airport Car Park project. The dataset includes tender budget, contract quantities, rates, claims, and revenue data, providing a unique opportunity to investigate the effects of variations on project outcomes. The study focuses on 21 specific variations identified in the dataset, which represent changes or additions to the project scope. The research methodology involves establishing a baseline for the project's planned cost and scope by examining the tender budget and contract quantities. Each variation is then analyzed in detail, comparing the actual quantities and rates against the tender estimates to determine their impact on project cost and schedule. The claims data is utilized to track the progress of work and identify deviations from the planned schedule. The study employs statistical analysis using R to examine the dataset, including tender budget, contract quantities, rates, claims, and revenue data. Time series analysis is applied to the claims data to track progress and detect variations from the planned schedule. Regression analysis is utilized to investigate the relationship between variations and project performance indicators, such as cost overruns and schedule delays. The research findings highlight the significance of effective variation management in construction projects. The analysis reveals that variations can have a substantial impact on project cost, schedule, and financial outcomes. The study identifies specific variations that had the most significant influence on the Regional Airport Car Park project's performance, such as PV03 (additional fill, road base gravel, spray seal, and asphalt), PV06 (extension to the commercial car park), and PV07 (additional box out and general fill). These variations contributed to increased costs, schedule delays, and changes in the project's revenue profile. The study also examines the effectiveness of project management practices in managing variations and mitigating their impact. The research suggests that proactive risk management, thorough scope definition, and effective communication among project stakeholders can help minimize the negative consequences of variations. The findings emphasize the importance of establishing clear procedures for identifying, assessing, and managing variations throughout the project lifecycle. The outcomes of this research contribute to the body of knowledge in construction project management by demonstrating the value of analyzing tender, contract, claims, and revenue data in variation impact assessment. However, the research acknowledges the limitations imposed by the dataset, particularly the absence of detailed contract and tender documents. This constraint restricts the depth of analysis possible in investigating the root causes and full extent of variations' impact on the project. Future research could build upon this study by incorporating more comprehensive data sources to further explore the dynamics of variations in construction projects.

Keywords: contract variation impact, quantitative analysis, project performance, claims analysis

Procedia PDF Downloads 46
25160 Evaluation of Practicality of On-Demand Bus Using Actual Taxi-Use Data through Exhaustive Simulations

Authors: Jun-ichi Ochiai, Itsuki Noda, Ryo Kanamori, Keiji Hirata, Hitoshi Matsubara, Hideyuki Nakashima

Abstract:

We conducted exhaustive simulations for data assimilation and evaluation of service quality for various setting in a new shared transportation system, called SAVS. Computational social simulation is a key technology to design recent social services like SAVS as new transportation service. One open issue in SAVS was to determine the service scale through the social simulation. Using our exhaustive simulation framework, OACIS, we did data-assimilation and evaluation of effects of SAVS based on actual tax-use data at Tajimi city, Japan. Finally, we get the conditions to realize the new service in a reasonable service quality.

Keywords: on-demand bus sytem, social simulation, data assimilation, exhaustive simulation

Procedia PDF Downloads 324