Search results for: power network
8539 Smart Water Main Inspection and Condition Assessment Using a Systematic Approach for Pipes Selection
Authors: Reza Moslemi, Sebastien Perrier
Abstract:
Water infrastructure deterioration can result in increased operational costs owing to increased repair needs and non-revenue water and consequently cause a reduced level of service and customer service satisfaction. Various water main condition assessment technologies have been introduced to the market in order to evaluate the level of pipe deterioration and to develop appropriate asset management and pipe renewal plans. One of the challenges for any condition assessment and inspection program is to determine the percentage of the water network and the combination of pipe segments to be inspected in order to obtain a meaningful representation of the status of the entire water network with a desirable level of accuracy. Traditionally, condition assessment has been conducted by selecting pipes based on age or location. However, this may not necessarily offer the best approach, and it is believed that by using a smart sampling methodology, a better and more reliable estimate of the condition of a water network can be achieved. This research investigates three different sampling methodologies, including random, stratified, and systematic. It is demonstrated that selecting pipes based on the proposed clustering and sampling scheme can considerably improve the ability of the inspected subset to represent the condition of a wider network. With a smart sampling methodology, a smaller data sample can provide the same insight as a larger sample. This methodology offers increased efficiency and cost savings for condition assessment processes and projects.Keywords: condition assessment, pipe degradation, sampling, water main
Procedia PDF Downloads 1508538 Generative Adversarial Network for Bidirectional Mappings between Retinal Fundus Images and Vessel Segmented Images
Authors: Haoqi Gao, Koichi Ogawara
Abstract:
Retinal vascular segmentation of color fundus is the basis of ophthalmic computer-aided diagnosis and large-scale disease screening systems. Early screening of fundus diseases has great value for clinical medical diagnosis. The traditional methods depend on the experience of the doctor, which is time-consuming, labor-intensive, and inefficient. Furthermore, medical images are scarce and fraught with legal concerns regarding patient privacy. In this paper, we propose a new Generative Adversarial Network based on CycleGAN for retinal fundus images. This method can generate not only synthetic fundus images but also generate corresponding segmentation masks, which has certain application value and challenge in computer vision and computer graphics. In the results, we evaluate our proposed method from both quantitative and qualitative. For generated segmented images, our method achieves dice coefficient of 0.81 and PR of 0.89 on DRIVE dataset. For generated synthetic fundus images, we use ”Toy Experiment” to verify the state-of-the-art performance of our method.Keywords: retinal vascular segmentations, generative ad-versarial network, cyclegan, fundus images
Procedia PDF Downloads 1448537 Supply Chain Network Design for Perishable Products in Developing Countries
Authors: Abhishek Jain, Kavish Kejriwal, V. Balaji Rao, Abhigna Chavda
Abstract:
Increasing environmental and social concerns are forcing companies to take a fresh view of the impact of supply chain operations on environment and society when designing a supply chain. A challenging task in today’s food industry is the distribution of high-quality food items throughout the food supply chain. Improper storage and unwanted transportation are the major hurdles in food supply chain and can be tackled by making dynamic storage facility location decisions with the distribution network. Since food supply chain in India is one of the biggest supply chains in the world, the companies should also consider environmental impact caused by the supply chain. This project proposes a multi-objective optimization model by integrating sustainability in decision-making, on distribution in a food supply chain network (SCN). A Multi-Objective Mixed-Integer Linear Programming (MOMILP) model between overall cost and environmental impact caused by the SCN is formulated for the problem. The goal of MOMILP is to determine the pareto solutions for overall cost and environmental impact caused by the supply chain. This is solved by using GAMS with CPLEX as third party solver. The outcomes of the project are pareto solutions for overall cost and environmental impact, facilities to be operated and the amount to be transferred to each warehouse during the time horizon.Keywords: multi-objective mixed linear programming, food supply chain network, GAMS, multi-product, multi-period, environment
Procedia PDF Downloads 3208536 Self-Assembled Tin Particles Made by Plasma-Induced Dewetting
Authors: Han Joo Choe, Soon-Ho Kwon, Jung-Joong Lee
Abstract:
Tin particles of various size and distribution were self-assembled by plasma treating tin film deposited on silicon oxide substrates. Plasma treatment was conducted using an inductively coupled plasma (ICP) source. A range of ICP power and topographic templated substrates were evaluated to observe changes in particle size and particle distribution. Scanning electron microscopy images of the particles were analyzed using computer software. The evolution of tin film dewetting into particles initiated from the hole nucleation in grain boundaries. Increasing ICP power during plasma treatment produced larger number of particles per area and smaller particle size and particle-size distribution. Topographic templates were also effective in positioning and controlling the size of the particles. By combining the effects of ICP power and topographic templates, particles of similar size and well-ordered distribution were obtained.Keywords: dewetting, particles, plasma, tin
Procedia PDF Downloads 2558535 Bridgeless Boost Power Factor Correction Rectifier with Hold-Up Time Extension Circuit
Authors: Chih-Chiang Hua, Yi-Hsiung Fang, Yuan-Jhen Siao
Abstract:
A bridgeless boost (BLB) power factor correction (PFC) rectifier with hold-up time extension circuit is proposed in this paper. A full bridge rectifier is widely used in the front end of the ac/dc converter. Since the shortcomings of the full bridge rectifier, the bridgeless rectifier is developed. A BLB rectifier topology is utilized with the hold-up time extension circuit. Unlike the traditional hold-up time extension circuit, the proposed extension scheme uses fewer active switches to achieve a longer hold-up time. Simulation results are presented to verify the converter performance.Keywords: bridgeless boost (BLB), boost converter, power factor correction (PFC), hold-up time
Procedia PDF Downloads 4168534 Application of Artificial Neural Network for Prediction of Load-Haul-Dump Machine Performance Characteristics
Authors: J. Balaraju, M. Govinda Raj, C. S. N. Murthy
Abstract:
Every industry is constantly looking for enhancement of its day to day production and productivity. This can be possible only by maintaining the men and machinery at its adequate level. Prediction of performance characteristics plays an important role in performance evaluation of the equipment. Analytical and statistical approaches will take a bit more time to solve complex problems such as performance estimations as compared with software-based approaches. Keeping this in view the present study deals with an Artificial Neural Network (ANN) modelling of a Load-Haul-Dump (LHD) machine to predict the performance characteristics such as reliability, availability and preventive maintenance (PM). A feed-forward-back-propagation ANN technique has been used to model the Levenberg-Marquardt (LM) training algorithm. The performance characteristics were computed using Isograph Reliability Workbench 13.0 software. These computed values were validated using predicted output responses of ANN models. Further, recommendations are given to the industry based on the performed analysis for improvement of equipment performance.Keywords: load-haul-dump, LHD, artificial neural network, ANN, performance, reliability, availability, preventive maintenance
Procedia PDF Downloads 1508533 Integration of Hybrid PV-Wind in Three Phase Grid System Using Fuzzy MPPT without Battery Storage for Remote Area
Authors: Thohaku Abdul Hadi, Hadyan Perdana Putra, Nugroho Wicaksono, Adhika Prajna Nandiwardhana, Onang Surya Nugroho, Heri Suryoatmojo, Soedibjo
Abstract:
Access to electricity is now a basic requirement of mankind. Unfortunately, there are still many places around the world which have no access to electricity, such as small islands, where there could potentially be a factory, a plantation, a residential area, or resorts. Many of these places might have substantial potential for energy generation such us Photovoltaic (PV) and Wind turbine (WT), which can be used to generate electricity independently for themselves. Solar energy and wind power are renewable energy sources which are mostly found in nature and also kinds of alternative energy that are still developing in a rapid speed to help and meet the demand of electricity. PV and Wind has a characteristic of power depend on solar irradiation and wind speed based on geographical these areas. This paper presented a control methodology of hybrid small scale PV/Wind energy system that use a fuzzy logic controller (FLC) to extract the maximum power point tracking (MPPT) in different solar irradiation and wind speed. This paper discusses simulation and analysis of the generation process of hybrid resources in MPP and power conditioning unit (PCU) of Photovoltaic (PV) and Wind Turbine (WT) that is connected to the three-phase low voltage electricity grid system (380V) without battery storage. The capacity of the sources used is 2.2 kWp PV and 2.5 kW PMSG (Permanent Magnet Synchronous Generator) -WT power rating. The Modeling of hybrid PV/Wind, as well as integrated power electronics components in grid connected system, are simulated using MATLAB/Simulink.Keywords: fuzzy MPPT, grid connected inverter, photovoltaic (PV), PMSG wind turbine
Procedia PDF Downloads 3558532 The Application of Artificial Neural Networks for the Performance Prediction of Evacuated Tube Solar Air Collector with Phase Change Material
Authors: Sukhbir Singh
Abstract:
This paper describes the modeling of novel solar air collector (NSAC) system by using artificial neural network (ANN) model. The objective of the study is to demonstrate the application of the ANN model to predict the performance of the NSAC with acetamide as a phase change material (PCM) storage. Input data set consist of time, solar intensity and ambient temperature wherever as outlet air temperature of NSAC was considered as output. Experiments were conducted between 9.00 and 24.00 h in June and July 2014 underneath the prevailing atmospheric condition of Kurukshetra (city of the India). After that, experimental results were utilized to train the back propagation neural network (BPNN) to predict the outlet air temperature of NSAC. The results of proposed algorithm show that the BPNN is effective tool for the prediction of responses. The BPNN predicted results are 99% in agreement with the experimental results.Keywords: Evacuated tube solar air collector, Artificial neural network, Phase change material, solar air collector
Procedia PDF Downloads 1208531 Simulation of Maximum Power Point Tracking in a Photovoltaic System: A Circumstance Using Pulse Width Modulation Analysis
Authors: Asowata Osamede
Abstract:
Optimized gain in respect to output power of stand-alone photovoltaic (PV) systems is one of the major focus of PV in recent times. This is evident to its low carbon emission and efficiency. Power failure or outage from commercial providers in general does not promote development to the public and private sector, these basically limit the development of industries. The need for a well-structured PV system is of importance for an efficient and cost-effective monitoring system. The purpose of this paper is to validate the maximum power point of an off-grid PV system taking into consideration the most effective tilt and orientation angles for PV's in the southern hemisphere. This paper is based on analyzing the system using a solar charger with MPPT from a pulse width modulation (PWM) perspective. The power conditioning device chosen is a solar charger with MPPT. The practical setup consists of a PV panel that is set to an orientation angle of 0o north, with a corresponding tilt angle of 36 o, 26o and 16o. The load employed in this set-up are three Lead Acid Batteries (LAB). The percentage fully charged, charging and not charging conditions are observed for all three batteries. The results obtained in this research is used to draw the conclusion that would provide a benchmark for researchers and scientist worldwide. This is done so as to have an idea of the best tilt and orientation angles for maximum power point in a basic off-grid PV system. A quantitative analysis would be employed in this research. Quantitative research tends to focus on measurement and proof. Inferential statistics are frequently used to generalize what is found about the study sample to the population as a whole. This would involve: selecting and defining the research question, deciding on a study type, deciding on the data collection tools, selecting the sample and its size, analyzing, interpreting and validating findings Preliminary results which include regression analysis (normal probability plot and residual plot using polynomial 6) showed the maximum power point in the system. The best tilt angle for maximum power point tracking proves that the 36o tilt angle provided the best average on time which in turns put the system into a pulse width modulation stage.Keywords: power-conversion, meteonorm, PV panels, DC-DC converters
Procedia PDF Downloads 1478530 Machine Learning Based Gender Identification of Authors of Entry Programs
Authors: Go Woon Kwak, Siyoung Jun, Soyun Maeng, Haeyoung Lee
Abstract:
Entry is an education platform used in South Korea, created to help students learn to program, in which they can learn to code while playing. Using the online version of the entry, teachers can easily assign programming homework to the student and the students can make programs simply by linking programming blocks. However, the programs may be made by others, so that the authors of the programs should be identified. In this paper, as the first step toward author identification of entry programs, we present an artificial neural network based classification approach to identify genders of authors of a program written in an entry. A neural network has been trained from labeled training data that we have collected. Our result in progress, although preliminary, shows that the proposed approach could be feasible to be applied to the online version of entry for gender identification of authors. As future work, we will first use a machine learning technique for age identification of entry programs, which would be the second step toward the author identification.Keywords: artificial intelligence, author identification, deep neural network, gender identification, machine learning
Procedia PDF Downloads 3238529 Leadership Succession and Renewal in Zimbabwe Political Parties: A Critical Analysis of the Bhora Remusango Concept
Authors: A. F. Chikerema
Abstract:
Political leadership in Africa vary from the “criminalization” of the state to political leadership as “dispensing patrimony”, the “recycling” of elites and the use of state power and resources to consolidate political and economic power (Van Wyk:2007: p1). Political parties just like any other organizations always need leadership renewal and revamping, besides ideological and policy renewal. Zimbabwean politics present a shunned leadership renewal as reflected by the two champion political parties namely ZANU PF and MDC-T. Despite hot political power contestation between MDC and ZANUPF, the parties` internal structures are hinged on the two Godfather or Father figure that is Mugabe and Tsvangirai. They are the “labels “behind the two political parties. The suppressing of dissent voice on succession and renewal of leadership in the two parties has brew resistance from within and this has resulted in factional fights within the two political parties. The disgruntlement in the political parties has led to the stemming of the ‘bhoramusango concept’ from the electorate and party cadres whereby they are throwing or donating away their votes to other political parties. The ‘bhoramusango’ concept haunted ZANUPF in 2008 leading to its defeat by the opposition MDC-T .The paper takes the form of an analytic approach on leadership crisis in Zimbabwe. The narrative is framed on key concepts of leadership: namely leadership renewal and leadership succession, as agents operating within inherited structures negotiated political settlements, and form structures of leadership. Rulers gave priority to the consolidation of state power by installing party loyalists in the armed forces, civil service and local government. As part of this process, rulers have ensured consolidated power and authority.Keywords: leadership renewal, leadership succession, ‘Bhora Musango’, political culture, political legitimacy
Procedia PDF Downloads 4128528 Bias Prevention in Automated Diagnosis of Melanoma: Augmentation of a Convolutional Neural Network Classifier
Authors: Kemka Ihemelandu, Chukwuemeka Ihemelandu
Abstract:
Melanoma remains a public health crisis, with incidence rates increasing rapidly in the past decades. Improving diagnostic accuracy to decrease misdiagnosis using Artificial intelligence (AI) continues to be documented. Unfortunately, unintended racially biased outcomes, a product of lack of diversity in the dataset used, with a noted class imbalance favoring lighter vs. darker skin tone, have increasingly been recognized as a problem.Resulting in noted limitations of the accuracy of the Convolutional neural network (CNN)models. CNN models are prone to biased output due to biases in the dataset used to train them. Our aim in this study was the optimization of convolutional neural network algorithms to mitigate bias in the automated diagnosis of melanoma. We hypothesized that our proposed training algorithms based on a data augmentation method to optimize the diagnostic accuracy of a CNN classifier by generating new training samples from the original ones will reduce bias in the automated diagnosis of melanoma. We applied geometric transformation, including; rotations, translations, scale change, flipping, and shearing. Resulting in a CNN model that provided a modifiedinput data making for a model that could learn subtle racial features. Optimal selection of the momentum and batch hyperparameter increased our model accuracy. We show that our augmented model reduces bias while maintaining accuracy in the automated diagnosis of melanoma.Keywords: bias, augmentation, melanoma, convolutional neural network
Procedia PDF Downloads 2108527 Comparative Study on Daily Discharge Estimation of Soolegan River
Authors: Redvan Ghasemlounia, Elham Ansari, Hikmet Kerem Cigizoglu
Abstract:
Hydrological modeling in arid and semi-arid regions is very important. Iran has many regions with these climate conditions such as Chaharmahal and Bakhtiari province that needs lots of attention with an appropriate management. Forecasting of hydrological parameters and estimation of hydrological events of catchments, provide important information that used for design, management and operation of water resources such as river systems, and dams, widely. Discharge in rivers is one of these parameters. This study presents the application and comparison of some estimation methods such as Feed-Forward Back Propagation Neural Network (FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) to predict the daily flow discharge of the Soolegan River, located at Chaharmahal and Bakhtiari province, in Iran. In this study, Soolegan, station was considered. This Station is located in Soolegan River at 51° 14՜ Latitude 31° 38՜ longitude at North Karoon basin. The Soolegan station is 2086 meters higher than sea level. The data used in this study are daily discharge and daily precipitation of Soolegan station. Feed Forward Back Propagation Neural Network(FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) models were developed using the same input parameters for Soolegan's daily discharge estimation. The results of estimation models were compared with observed discharge values to evaluate performance of the developed models. Results of all methods were compared and shown in tables and charts.Keywords: ANN, multi linear regression, Bayesian network, forecasting, discharge, gene expression programming
Procedia PDF Downloads 5618526 Learning Traffic Anomalies from Generative Models on Real-Time Observations
Authors: Fotis I. Giasemis, Alexandros Sopasakis
Abstract:
This study focuses on detecting traffic anomalies using generative models applied to real-time observations. By integrating a Graph Neural Network with an attention-based mechanism within the Spatiotemporal Generative Adversarial Network framework, we enhance the capture of both spatial and temporal dependencies in traffic data. Leveraging minute-by-minute observations from cameras distributed across Gothenburg, our approach provides a more detailed and precise anomaly detection system, effectively capturing the complex topology and dynamics of urban traffic networks.Keywords: traffic, anomaly detection, GNN, GAN
Procedia PDF Downloads 78525 Thermoelectrical Properties of Cs Doped BiCuSeO as Promising Oxide Materials for Thermoelectric Energy Converter
Authors: Abdenour Achour, Kan Chen, Mike Reece, Zhaorong Huang
Abstract:
Here we report the synthesis of pure and cost effective of BiCuSeO by a flux method in air, and the enhancement of the thermoelectric performance by Cs doping. The comparison between our synthesis and the usual vacuum furnace method has been studied for the pristine oxyselenides BiCuSeO. We report for very high Seebeck coefficients up to 516 μV K⁻¹ at room temperature with the electrical conductivity of 5.20 S cm⁻¹ which lead to a high power factor of 140 µWm⁻¹K⁻². We also report at the high temperatures the lowest thermal conductivity value of 0.42 µWm⁻¹K⁻¹. Upon doping with Cs, enhanced electrical conductivity coupled with a moderate Seebeck coefficient lead to a power factor of 338 µWm⁻¹K⁻² at 682 K. Moreover, it shows a very low thermal conductivity in the temperature range of 300 to 682 K (0.75 to 0.35 Wm⁻¹K⁻¹). By optimizing the power factor and reducing the thermal conductivity, this results in a high ZT of ~ 0.66 at 682 K for Bi0.995Cs0.005CuSeO.Keywords: BiCuSeO, Cs doping, thermoelectric, oxyselenide
Procedia PDF Downloads 3008524 Handshake Algorithm for Minimum Spanning Tree Construction
Authors: Nassiri Khalid, El Hibaoui Abdelaaziz et Hajar Moha
Abstract:
In this paper, we introduce and analyse a probabilistic distributed algorithm for a construction of a minimum spanning tree on network. This algorithm is based on the handshake concept. Firstly, each network node is considered as a sub-spanning tree. And at each round of the execution of our algorithm, a sub-spanning trees are merged. The execution continues until all sub-spanning trees are merged into one. We analyze this algorithm by a stochastic process.Keywords: Spanning tree, Distributed Algorithm, Handshake Algorithm, Matching, Probabilistic Analysis
Procedia PDF Downloads 6588523 Criticality Assessment of Power Transformer by Using Entropy Weight Method
Authors: Rattanakorn Phadungthin, Juthathip Haema
Abstract:
This research presents an assessment of the criticality of the substation's power transformer using the Entropy Weight method to enable more effective maintenance planning. Typically, transformers fail due to heat, electricity, chemical reactions, mechanical stress, and extreme climatic conditions. Effective monitoring of the insulating oil is critical to prevent transformer failure. However, finding appropriate weights for dissolved gases is a major difficulty due to the lack of a defined baseline and the requirement for subjective expert opinion. To decrease expert prejudice and subjectivity, the Entropy Weight method is used to optimise the weightings of eleven key dissolved gases. The algorithm to assess the criticality operates through five steps: create a decision matrix, normalise the decision matrix, compute the entropy, calculate the weight, and calculate the criticality score. This study not only optimises gas weighing but also greatly minimises the need for expert judgment in transformer maintenance. It is expected to improve the efficiency and reliability of power transformers so failures and related economic costs are minimized. Furthermore, maintenance schemes and ranking are accomplished appropriately when the assessment of criticality is reached.Keywords: criticality assessment, dissolved gas, maintenance scheme, power transformer
Procedia PDF Downloads 88522 Vulnerable Paths Assessment for Distributed Denial of Service Attacks in a Cloud Computing Environment
Authors: Manas Tripathi, Arunabha Mukhopadhyay
Abstract:
In Cloud computing environment, cloud servers, sometimes may crash after receiving huge amount of request and cloud services may stop which can create huge loss to users of that cloud services. This situation is called Denial of Service (DoS) attack. In Distributed Denial of Service (DDoS) attack, an attacker targets multiple network paths by compromising various vulnerable systems (zombies) and floods the victim with huge amount of request through these zombies. There are many solutions to mitigate this challenge but most of the methods allows the attack traffic to arrive at Cloud Service Provider (CSP) and then only takes actions against mitigation. Here in this paper we are rather focusing on preventive mechanism to deal with these attacks. We analyze network topology and find most vulnerable paths beforehand without waiting for the traffic to arrive at CSP. We have used Dijkstra's and Yen’s algorithm. Finally, risk assessment of these paths can be done by multiplying the probabilities of attack for these paths with the potential loss.Keywords: cloud computing, DDoS, Dijkstra, Yen’s k-shortest path, network security
Procedia PDF Downloads 2788521 Fault-Detection and Self-Stabilization Protocol for Wireless Sensor Networks
Authors: Ather Saeed, Arif Khan, Jeffrey Gosper
Abstract:
Sensor devices are prone to errors and sudden node failures, which are difficult to detect in a timely manner when deployed in real-time, hazardous, large-scale harsh environments and in medical emergencies. Therefore, the loss of data can be life-threatening when the sensed phenomenon is not disseminated due to sudden node failure, battery depletion or temporary malfunctioning. We introduce a set of partial differential equations for localizing faults, similar to Green’s and Maxwell’s equations used in Electrostatics and Electromagnetism. We introduce a node organization and clustering scheme for self-stabilizing sensor networks. Green’s theorem is applied to regions where the curve is closed and continuously differentiable to ensure network connectivity. Experimental results show that the proposed GTFD (Green’s Theorem fault-detection and Self-stabilization) protocol not only detects faulty nodes but also accurately generates network stability graphs where urgent intervention is required for dynamically self-stabilizing the network.Keywords: Green’s Theorem, self-stabilization, fault-localization, RSSI, WSN, clustering
Procedia PDF Downloads 758520 Power Series Solution to Sliding Velocity in Three-Dimensional Multibody Systems with Impact and Friction
Authors: Hesham A. Elkaranshawy, Amr M. Abdelrazek, Hosam M. Ezzat
Abstract:
The system of ordinary nonlinear differential equations describing sliding velocity during impact with friction for a three-dimensional rigid-multibody system is developed. No analytical solutions have been obtained before for this highly nonlinear system. Hence, a power series solution is proposed. Since the validity of this solution is limited to its convergence zone, a suitable time step is chosen and at the end of it a new series solution is constructed. For a case study, the trajectory of the sliding velocity using the proposed method is built using 6 time steps, which coincides with a Runge-Kutta solution using 38 time steps.Keywords: impact with friction, nonlinear ordinary differential equations, power series solutions, rough collision
Procedia PDF Downloads 4888519 VANETs: Security Challenges and Future Directions
Authors: Jared Oluoch
Abstract:
Connected vehicles are equipped with wireless sensors that aid in Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I) communication. These vehicles will in the near future provide road safety, improve transport efficiency, and reduce traffic congestion. One of the challenges for connected vehicles is how to ensure that information sent across the network is secure. If security of the network is not guaranteed, several attacks can occur, thereby compromising the robustness, reliability, and efficiency of the network. This paper discusses existing security mechanisms and unique properties of connected vehicles. The methodology employed in this work is exploratory. The paper reviews existing security solutions for connected vehicles. More concretely, it discusses various cryptographic mechanisms available, and suggests areas of improvement. The study proposes a combination of symmetric key encryption and public key cryptography to improve security. The study further proposes message aggregation as a technique to overcome message redundancy. This paper offers a comprehensive overview of connected vehicles technology, its applications, its security mechanisms, open challenges, and potential areas of future research.Keywords: VANET, connected vehicles, 802.11p, WAVE, DSRC, trust, security, cryptography
Procedia PDF Downloads 3128518 A Coordinate-Based Heuristic Route Search Algorithm for Delivery Truck Routing Problem
Authors: Ahmed Tarek, Ahmed Alveed
Abstract:
Vehicle routing problem is a well-known re-search avenue in computing. Modern vehicle routing is more focused with the GPS-based coordinate system, as the state-of-the-art vehicle, and trucking systems are equipped with digital navigation. In this paper, a new two dimensional coordinate-based algorithm for addressing the vehicle routing problem for a supply chain network is proposed and explored, and the algorithm is compared with other available, and recently devised heuristics. For the algorithms discussed, which includes the pro-posed coordinate-based search heuristic as well, the advantages and the disadvantages associated with the heuristics are explored. The proposed algorithm is studied from the stand point of a small supermarket chain delivery network that supplies to its stores in four different states around the East Coast area, and is trying to optimize its trucking delivery cost. Minimizing the delivery cost for the supply network of a supermarket chain is important to ensure its business success.Keywords: coordinate-based optimal routing, Hamiltonian Circuit, heuristic algorithm, traveling salesman problem, vehicle routing problem
Procedia PDF Downloads 1478517 An Analysis of the Dominance of Migrants in the South African Spaza and Retail market: A Relationship-Based Network Perspective
Authors: Meron Okbandrias
Abstract:
The South African formal economy is rule-based economy, unlike most African and Asian markets. It has a highly developed financial market. In such a market, foreign migrants have dominated the small or spaza shops that service the poor. They are highly competitive and capture significant market share in South Africa. This paper analyses the factors that assisted the foreign migrants in having a competitive age. It does that by interviewing Somali, Bangladesh, and Ethiopian shop owners in Cape Town analysing the data through a narrative analysis. The paper also analyses the 2019 South African consumer report. The three migrant nationalities mentioned above dominate the spaza shop business and have significant distribution networks. The findings of the paper indicate that family, ethnic, and nationality based network, in that order of importance, form bases for a relationship-based business network that has trust as its mainstay. Therefore, this network ensures the pooling of resources and abiding by certain principles outside the South African rule-based system. The research identified practises like bulk buying within a community of traders, sharing information, buying from a within community distribution business, community based transportation system and providing seed capital for people from the community to start a business is all based on that relationship-based system. The consequences of not abiding by the rules of these networks are social and economic exclusion. In addition, these networks have their own commercial and social conflict resolution mechanisms aside from the South African justice system. Network theory and relationship based systems theory form the theoretical foundations of this paper.Keywords: migrant, spaza shops, relationship-based system, South Africa
Procedia PDF Downloads 1278516 A Weighted K-Medoids Clustering Algorithm for Effective Stability in Vehicular Ad Hoc Networks
Authors: Rejab Hajlaoui, Tarek Moulahi, Hervé Guyennet
Abstract:
In a highway scenario, the vehicle speed can exceed 120 kmph. Therefore, any vehicle can enter or leave the network within a very short time. This mobility adversely affects the network connectivity and decreases the life time of all established links. To ensure an effective stability in vehicular ad hoc networks with minimum broadcasting storm, we have developed a weighted algorithm based on the k-medoids clustering algorithm (WKCA). Indeed, the number of clusters and the initial cluster heads will not be selected randomly as usual, but considering the available transmission range and the environment size. Then, to ensure optimal assignment of nodes to clusters in both k-medoids phases, the combined weight of any node will be computed according to additional metrics including direction, relative speed and proximity. Empirical results prove that in addition to the convergence speed that characterizes the k-medoids algorithm, our proposed model performs well both AODV-Clustering and OLSR-Clustering protocols under different densities and velocities in term of end-to-end delay, packet delivery ratio, and throughput.Keywords: communication, clustering algorithm, k-medoids, sensor, vehicular ad hoc network
Procedia PDF Downloads 2388515 A Motion Dictionary to Real-Time Recognition of Sign Language Alphabet Using Dynamic Time Warping and Artificial Neural Network
Authors: Marcio Leal, Marta Villamil
Abstract:
Computacional recognition of sign languages aims to allow a greater social and digital inclusion of deaf people through interpretation of their language by computer. This article presents a model of recognition of two of global parameters from sign languages; hand configurations and hand movements. Hand motion is captured through an infrared technology and its joints are built into a virtual three-dimensional space. A Multilayer Perceptron Neural Network (MLP) was used to classify hand configurations and Dynamic Time Warping (DWT) recognizes hand motion. Beyond of the method of sign recognition, we provide a dataset of hand configurations and motion capture built with help of fluent professionals in sign languages. Despite this technology can be used to translate any sign from any signs dictionary, Brazilian Sign Language (Libras) was used as case study. Finally, the model presented in this paper achieved a recognition rate of 80.4%.Keywords: artificial neural network, computer vision, dynamic time warping, infrared, sign language recognition
Procedia PDF Downloads 2178514 Coordinated Voltage Control in Radial Distribution System with Distributed Generators Using Sensitivity Analysis
Authors: Anubhav Shrivastava Shivarudraswamy, Bhat Lakshya
Abstract:
Distributed generation has indeed become a major area of interest in recent years. Distributed generation can address a large number of loads in a power line and hence has better efficiency over the conventional methods. However, there are certain drawbacks associated with it, an increase in voltage being the major one. This paper addresses the voltage control at the buses for an IEEE 30 bus system by regulating reactive power. For carrying out the analysis, the suitable location for placing distributed generators (DG) is identified through load flow analysis and seeing where the voltage profile is dipping. MATLAB programming is used to regulate the voltage at all buses within +/- 5% of the base value even after the introduction of DGs. Three methods for regulation of voltage are discussed. A sensitivity based analysis is then carried out to determine the priority among the various methods listed in the paper.Keywords: distributed generators, distributed system, reactive power, voltage control, sensitivity analysis
Procedia PDF Downloads 6598513 Enhancing Power Conversion Efficiency of P3HT/PCBM Polymer Solar Cells
Authors: Nidal H. Abu-Zahra, Mahmoud Algazzar
Abstract:
In this research, n-dodecylthiol was added to P3HT/PC70BM polymer solar cells to improve the crystallinity of P3HT and enhance the phase separation of P3HT/PC70BM. The improved crystallinity of P3HT/PC70BM doped with 0-5% by volume of n-dodecylthiol resulted in improving the power conversion efficiency of polymer solar cells by 33%. In addition, thermal annealing of the P3HT/PC70MB/n-dodecylthiolcompound showed further improvement in crystallinity with n-dodecylthiol concentration up to 2%. The highest power conversion efficiency of 3.21% was achieved with polymer crystallites size L of 11.2nm, after annealing at 150°C for 30 minutes under a vacuum atmosphere. The smaller crystallite size suggests a shorter path of the charge carriers between P3HT backbones, which could be beneficial to getting a higher short circuit current in the devices made with the additive.Keywords: n-dodecylthiol, congugated PSC, P3HT/PCBM, polymer solar cells
Procedia PDF Downloads 2838512 Opto-Thermal Frequency Modulation of Phase Change Micro-Electro-Mechanical Systems
Authors: Syed A. Bukhari, Ankur Goswmai, Dale Hume, Thomas Thundat
Abstract:
Here we demonstrate mechanical detection of photo-induced Insulator to metal transition (MIT) in ultra-thin vanadium dioxide (VO₂) micro strings by using < 100 µW of optical power. Highly focused laser beam heated the string locally resulting in through plane and along axial heat diffusion. Localized temperature increase can cause temperature rise > 60 ºC. The heated region of VO₂ can transform from insulating (monoclinic) to conducting (rutile) phase leading to lattice compressions and stiffness increase in the resonator. The mechanical frequency of the resonator can be tuned by changing optical power and wavelength. The first mode resonance frequency was tuned in three different ways. A decrease in frequency below a critical optical power, a large increase between 50-120 µW followed by a large decrease in frequency for optical powers greater than 120 µW. The dynamic mechanical response was studied as a function of incident optical power and gas pressure. The resonance frequency and amplitude of vibration were found to be decreased with increasing laser power from 25-38 µW and increased by1-2 % when the laser power was further increased to 52 µW. The transition in films was induced and detected by a single pump and probe source and by employing external optical sources of different wavelengths. This trend in dynamic parameters of the strings can be co-related with reversible Insulator to metal transition in VO₂ films which creates change in density of the material and hence the overall stiffness of the strings leading to changes in string dynamics. The increase in frequency at a particular optical power manifests a transition to a more ordered metallic phase which tensile stress onto the string. The decrease in frequency at higher optical powers can be correlated with poor phonon thermal conductivity of VO₂ in conducting phase. Poor thermal conductivity of VO₂ can force in-plane penetration of heat causing the underneath SiN supporting VO₂ which can result as a decrease in resonance frequency. This noninvasive, non-contact laser-based excitation and detection of Insulator to metal transition using micro strings resonators at room temperature and with laser power in few µWs is important for low power electronics, and optical switching applications.Keywords: thermal conductivity, vanadium dioxide, MEMS, frequency tuning
Procedia PDF Downloads 1208511 Technical and Economical Evaluation of Electricity Generation and Seawater Desalination Using Nuclear Energy
Authors: A. Hany A. Khater, G. M. Mostafa, M. R. Badawy
Abstract:
The techno-economic analysis of the nuclear desalination is a very important tool that enables studying of the mutual effects between the nuclear power plant and the coupled desalination plant under different operating conditions, and hence investigating the feasibility of safe and economical production of potable water. For this purpose, a comprehensive model for both technical and economic performance evaluation of the nuclear desalination has been prepared. The developed model has the capability to be used in performing a parametric study for the performance measuring parameters of the nuclear desalination system. Also a sensitivity analysis of varying important factors such as interest/discount rate, power plant availability, fossil fuel prices, purchased electricity price, nuclear fuel cost, and specific base cost for both power and water plant has been conducted.Keywords: uclear desalination, PWR, MED, MED-TVC, MSF, RO
Procedia PDF Downloads 7258510 Imputation of Urban Movement Patterns Using Big Data
Authors: Eusebio Odiari, Mark Birkin, Susan Grant-Muller, Nicolas Malleson
Abstract:
Big data typically refers to consumer datasets revealing some detailed heterogeneity in human behavior, which if harnessed appropriately, could potentially revolutionize our understanding of the collective phenomena of the physical world. Inadvertent missing values skew these datasets and compromise the validity of the thesis. Here we discuss a conceptually consistent strategy for identifying other relevant datasets to combine with available big data, to plug the gaps and to create a rich requisite comprehensive dataset for subsequent analysis. Specifically, emphasis is on how these methodologies can for the first time enable the construction of more detailed pictures of passenger demand and drivers of mobility on the railways. These methodologies can predict the influence of changes within the network (like a change in time-table or impact of a new station), explain local phenomena outside the network (like rail-heading) and the other impacts of urban morphology. Our analysis also reveals that our new imputation data model provides for more equitable revenue sharing amongst network operators who manage different parts of the integrated UK railways.Keywords: big-data, micro-simulation, mobility, ticketing-data, commuters, transport, synthetic, population
Procedia PDF Downloads 231