Search results for: material uncertainty
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7587

Search results for: material uncertainty

5727 The Problem of Legal Regulation of Joint Physical Custody: The Polish Perspective

Authors: Katarzyna Kamińska

Abstract:

The main purpose of the work is to present the results of the studies regarding joint physical custody in the Polish legal system. The issues addressed fit into the ongoing process of modernising family law regulations and their adaptation to changing social reality in Poland. The Polish legislator now faces a dilemma: whether to introduce into Polish law a developed substantive or procedural regulation of joint physical custody and then whether it should be considered a legal presumption. Joint physical custody after divorce or separation is theoretically possible in Poland. It can either follow from the court’s independent proposal based on the assessment of the circumstances or from the parenting plan submitted by parents wishing to jointly retain full parental authority. However, joint physical custody does not result directly from the Polish Family and Guardianship Code. Therefore, there is real legal uncertainty in this matter, which leads to different treatment of citizens by the public authorities and courts. Another problem is that joint physical custody is misunderstood by the Polish courts. The main thesis of the work is that joint physical custody does not only mean the system of symmetrical child care (50/50), and the possibility to award joint physical custody will require the courts to carefully weigh the pros and cons of such an arrangement in each individual case.

Keywords: joint physical custody, shared parenting, divorce, separation, parental authority

Procedia PDF Downloads 82
5726 An Experimental Study on Service Life Prediction of Self: Compacting Concrete Using Sorptivity as a Durability Index

Authors: S. Girish, N. Ajay

Abstract:

Permeation properties have been widely used to quantify durability characteristics of concrete for assessing long term performance and sustainability. The processes of deterioration in concrete are mediated largely by water. There is a strong interest in finding a better way of assessing the material properties of concrete in terms of durability. Water sorptivity is a useful single material property which can be one of the measures of durability useful in service life planning and prediction, especially in severe environmental conditions. This paper presents the results of the comparative study of sorptivity of Self-Compacting Concrete (SCC) with conventionally vibrated concrete. SCC is a new, special type of concrete mixture, characterized by high resistance to segregation that can flow through intricate geometrical configuration in the presence of reinforcement, under its own mass, without vibration and compaction. SCC mixes were developed for the paste contents of 0.38, 0.41 and 0.43 with fly ash as the filler for different cement contents ranging from 300 to 450 kg/m3. The study shows better performance by SCC in terms of capillary absorption. The sorptivity value decreased as the volume of paste increased. The use of higher paste content in SCC can make the concrete robust with better densification of the micro-structure, improving the durability and making the concrete more sustainable with improved long term performance. The sorptivity based on secondary absorption can be effectively used as a durability index to predict the time duration required for the ingress of water to penetrate the concrete, which has practical significance.

Keywords: self-compacting concrete, service life prediction, sorptivity, volume of paste

Procedia PDF Downloads 319
5725 Six Sigma-Based Optimization of Shrinkage Accuracy in Injection Molding Processes

Authors: Sky Chou, Joseph C. Chen

Abstract:

This paper focuses on using six sigma methodologies to reach the desired shrinkage of a manufactured high-density polyurethane (HDPE) part produced by the injection molding machine. It presents a case study where the correct shrinkage is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for an injection molding process. To improve this process and keep the product within specifications, the six sigma methodology, design, measure, analyze, improve, and control (DMAIC) approach, was implemented in this study. The six sigma approach was paired with the Taguchi methodology to identify the optimized processing parameters that keep the shrinkage rate within the specifications by our customer. An L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of the cooling time, melt temperature, holding time, and metering stroke. The noise factor is the difference between material brand 1 and material brand 2. After the confirmation run was completed, measurements verify that the new parameter settings are optimal. With the new settings, the process capability index has improved dramatically. The purpose of this study is to show that the six sigma and Taguchi methodology can be efficiently used to determine important factors that will improve the process capability index of the injection molding process.

Keywords: injection molding, shrinkage, six sigma, Taguchi parameter design

Procedia PDF Downloads 178
5724 Mechanical, Physical and Durability Properties of Cement Mortars Added with Recycled PP/PE-Based Food Packaging Waste Material

Authors: Livia Guerini, Christian Paglia

Abstract:

In Switzerland, only a fraction of plastic waste from food packaging is collected and recycled for further use in the food industry. Therefore, reusing these waste plastics for building applications can be an attractive alternative to disposal in order to reduce the problem of waste management and to make up for the depletion of raw materials needed for construction. In this study, experiments were conducted on the mechanical properties (compressive and flexural strength, elastic modulus), physical properties (density, workability, porosity, and water permeability) and durability (freeze/thaw resistance) of cementitious mortars with additions of recycled low-/high-density polyethylene (LDPE/HDPE)/ polypropylene (PP) regrind (addition of 5% and 10% by weight) and LDPE sheets (addition of 0.5% and 1.5% by weight) coming from food packaging. The results show that as the addition of plastic material increases, the density and mechanical properties of the mortars decrease compared to conventional ones. Porosity is similar in all the mixtures made, while the workability and the permeability are affected not only by the amount added but also by the shape of the plastic aggregate. Freeze/thaw resistance, on the other hand, is significantly higher in mortars with plastic aggregates than in traditional mortar. This feature may be interesting for the realization of outdoor mortars in cold environments.

Keywords: food packaging waste, durability properties, mechanical properties, mortar, recycled PE, recycled PP

Procedia PDF Downloads 144
5723 Effect of Surface Preparation of Concrete Substrate on Bond Tensile Strength of Thin Bonded Cement Based Overlays

Authors: S. Asad Ali Gillani, Ahmed Toumi, Anaclet Turatsinze

Abstract:

After a certain period of time, the degradation of concrete structures is unavoidable. For large concrete areas, thin bonded cement-based overlay is a suitable rehabilitation technique. Previous research demonstrated that durability of bonded cement-based repairs is always a problem and one of its main reasons is deboning at interface. Since durability and efficiency of any repair system mainly depend upon the bond between concrete substrate and repair material, the bond between concrete substrate and repair material can be improved by increasing the surface roughness. The surface roughness can be improved by performing surface treatment of the concrete substrate to enhance mechanical interlocking which is one of the basic mechanisms of adhesion between two surfaces. In this research, bond tensile strength of cement-based overlays having substrate surface prepared using different techniques has been characterized. In first step cement based substrate was prepared and then cured for three months. After curing two different types of the surface treatments were performed on this substrate; cutting and sandblasting. In second step overlay was cast on these prepared surfaces, which were cut and sandblasted surfaces. The overlay was also cast on the surface without any treatment. Finally, bond tensile strength of cement-based overlays was evaluated in direct tension test and the results are discussed in this paper.

Keywords: concrete substrate, surface preparation, overlays, bond tensile strength

Procedia PDF Downloads 456
5722 Graphene-Graphene Oxide Dopping Effect on the Mechanical Properties of Polyamide Composites

Authors: Daniel Sava, Dragos Gudovan, Iulia Alexandra Gudovan, Ioana Ardelean, Maria Sonmez, Denisa Ficai, Laurentia Alexandrescu, Ecaterina Andronescu

Abstract:

Graphene and graphene oxide have been intensively studied due to the very good properties, which are intrinsic to the material or come from the easy doping of those with other functional groups. Graphene and graphene oxide have known a broad band of useful applications, in electronic devices, drug delivery systems, medical devices, sensors and opto-electronics, coating materials, sorbents of different agents for environmental applications, etc. The board range of applications does not come only from the use of graphene or graphene oxide alone, or by its prior functionalization with different moieties, but also it is a building block and an important component in many composite devices, its addition coming with new functionalities on the final composite or strengthening the ones that are already existent on the parent product. An attempt to improve the mechanical properties of polyamide elastomers by compounding with graphene oxide in the parent polymer composition was attempted. The addition of the graphene oxide contributes to the properties of the final product, improving the hardness and aging resistance. Graphene oxide has a lower hardness and textile strength, and if the amount of graphene oxide in the final product is not correctly estimated, it can lead to mechanical properties which are comparable to the starting material or even worse, the graphene oxide agglomerates becoming a tearing point in the final material if the amount added is too high (in a value greater than 3% towards the parent material measured in mass percentages). Two different types of tests were done on the obtained materials, the hardness standard test and the tensile strength standard test, and they were made on the obtained materials before and after the aging process. For the aging process, an accelerated aging was used in order to simulate the effect of natural aging over a long period of time. The accelerated aging was made in extreme heat. For all materials, FT-IR spectra were recorded using FT-IR spectroscopy. From the FT-IR spectra only the bands corresponding to the polyamide were intense, while the characteristic bands for graphene oxide were very small in comparison due to the very small amounts introduced in the final composite along with the low absorptivity of the graphene backbone and limited number of functional groups. In conclusion, some compositions showed very promising results, both in tensile strength test and in hardness tests. The best ratio of graphene to elastomer was between 0.6 and 0.8%, this addition extending the life of the product. Acknowledgements: The present work was possible due to the EU-funding grant POSCCE-A2O2.2.1-2013-1, Project No. 638/12.03.2014, code SMIS-CSNR 48652. The financial contribution received from the national project ‘New nanostructured polymeric composites for centre pivot liners, centre plate and other components for the railway industry (RONERANANOSTRUCT)’, No: 18 PTE (PN-III-P2-2.1-PTE-2016-0146) is also acknowledged.

Keywords: graphene, graphene oxide, mechanical properties, dopping effect

Procedia PDF Downloads 311
5721 Thermal-Mechanical Analysis of a Bridge Deck to Determine Residual Weld Stresses

Authors: Evy Van Puymbroeck, Wim Nagy, Ken Schotte, Heng Fang, Hans De Backer

Abstract:

The knowledge of residual stresses for welded bridge components is essential to determine the effect of the residual stresses on the fatigue life behavior. The residual stresses of an orthotropic bridge deck are determined by simulating the welding process with finite element modelling. The stiffener is placed on top of the deck plate before welding. A chained thermal-mechanical analysis is set up to determine the distribution of residual stresses for the bridge deck. First, a thermal analysis is used to determine the temperatures of the orthotropic deck for different time steps during the welding process. Twin wire submerged arc welding is used to construct the orthotropic plate. A double ellipsoidal volume heat source model is used to describe the heat flow through a material for a moving heat source. The heat input is used to determine the heat flux which is applied as a thermal load during the thermal analysis. The heat flux for each element is calculated for different time steps to simulate the passage of the welding torch with the considered welding speed. This results in a time dependent heat flux that is applied as a thermal loading. Thermal material behavior is specified by assigning the properties of the material in function of the high temperatures during welding. Isotropic hardening behavior is included in the model. The thermal analysis simulates the heat introduced in the two plates of the orthotropic deck and calculates the temperatures during the welding process. After the calculation of the temperatures introduced during the welding process in the thermal analysis, a subsequent mechanical analysis is performed. For the boundary conditions of the mechanical analysis, the actual welding conditions are considered. Before welding, the stiffener is connected to the deck plate by using tack welds. These tack welds are implemented in the model. The deck plate is allowed to expand freely in an upwards direction while it rests on a firm and flat surface. This behavior is modelled by using grounded springs. Furthermore, symmetry points and lines are used to prevent the model to move freely in other directions. In the thermal analysis, a mechanical material model is used. The calculated temperatures during the thermal analysis are introduced during the mechanical analysis as a time dependent load. The connection of the elements of the two plates in the fusion zone is realized with a glued connection which is activated when the welding temperature is reached. The mechanical analysis results in a distribution of the residual stresses. The distribution of the residual stresses of the orthotropic bridge deck is compared with results from literature. Literature proposes uniform tensile yield stresses in the weld while the finite element modelling showed tensile yield stresses at a short distance from the weld root or the weld toe. The chained thermal-mechanical analysis results in a distribution of residual weld stresses for an orthotropic bridge deck. In future research, the effect of these residual stresses on the fatigue life behavior of welded bridge components can be studied.

Keywords: finite element modelling, residual stresses, thermal-mechanical analysis, welding simulation

Procedia PDF Downloads 170
5720 Stochastic Prioritization of Dependent Actuarial Risks: Preferences among Prospects

Authors: Ezgi Nevruz, Kasirga Yildirak, Ashis SenGupta

Abstract:

Comparing or ranking risks is the main motivating factor behind the human trait of making choices. Cumulative prospect theory (CPT) is a preference theory approach that evaluates perception and bias in decision making under risk and uncertainty. We aim to investigate the aggregate claims of different risk classes in terms of their comparability and amenability to ordering when the impact of risk perception is considered. For this aim, we prioritize the aggregate claims taken as actuarial risks by using various stochastic ordering relations. In order to prioritize actuarial risks, we use stochastic relations such as stochastic dominance and stop-loss dominance that are proposed in the frame of partial order theory. We take into account the dependency of the individual claims exposed to similar environmental risks. At first, we modify the zero-utility premium principle in order to obtain a solution for the stop-loss premium under CPT. Then, we propose a stochastic stop-loss dominance of the aggregate claims and find a relation between the stop-loss dominance and the first-order stochastic dominance under the dependence assumption by using properties of the familiar as well as some emerging multivariate claim distributions.

Keywords: cumulative prospect theory, partial order theory, risk perception, stochastic dominance, stop-loss dominance

Procedia PDF Downloads 319
5719 Analysis of Construction Waste Generation and Its Effect in a Construction Site

Authors: R. K. D. G. Kaluarachchi

Abstract:

The generation of solid waste and its effective management are debated topics in Sri Lanka as well as in the global environment. It was estimated that the most of the waste generated in global was originated from construction and demolition of buildings. Thus, the proportion of construction waste in solid waste generation cannot be underestimated. The construction waste, which is the by-product generated and removed from work sites is collected in direct and indirect processes. Hence, the objectives of this research are to identify the proportion of construction waste which can be reused and identify the methods to reduce the waste generation without reducing the quality of the process. A 6-storey building construction site was selected for this research. The site was divided into six zones depending on the process. Ten waste materials were identified by considering the adverse effects on safety and health of people and the economic value of them. The generated construction waste in each zone was recorded per week for a period of five months. The data revealed that sand, cement, wood used for form work and rusted steel rods were the generated waste which has higher economic value in all zones. Structured interviews were conducted to gather information on how the materials are categorized as waste and the capability of reducing, reusing and recycling the waste. It was identified that waste is generated in following processes; ineffective storage of material for a longer time and improper handling of material during the work process. Further, the alteration of scheduled activities of construction work also yielded more waste. Finally, a proper management of construction waste is suggested to reduce and reuse waste.

Keywords: construction-waste, effective management, reduce, reuse

Procedia PDF Downloads 199
5718 Study of Microstructure and Mechanical Properties Obtained by FSW of Similar and Dissimilar Non-Ferrous Alloys Used in Aerospace and Automobile Industry

Authors: Ajay Sidana, Kulbir Singh Sandhu, Balwinder Singh Sidhu

Abstract:

Joining of dissimilar non-ferrous alloys like aluminium and magnesium alloys becomes important in various automobile and aerospace applications due to their low density and good corrosion resistance. Friction Stir Welding (FSW), a solid state joining process, successfully welds difficult to weld similar and dissimilar aluminum and magnesium alloys. Two tool rotation speeds were selected by keeping the transverse speed constant to weld similar and dissimilar alloys. Similar(Al to Al) and Dissimilar(Al to Mg) weld joints were obtained by FSW. SEM scans revealed that higher tool rotation fragments the coarse grains of base material into fine grains in the weld zone. Also, there are less welding defects in weld joints obtained with higher tool rotation speed. The material of dissimilar alloys was mixed with each other forming recrystallised new intermetallics. There was decrease in hardness of similar weld joint however there is significant increase in hardness of weld zone in case of dissimilar weld joints due to stirring action of tool and formation of inter metallics. Tensile tests revealed that there was decrease in percentage elongation in both similar and dissimilar weld joints.

Keywords: aluminum alloys, magnesium alloys, friction stir welding, microstructure, mechanical properties

Procedia PDF Downloads 452
5717 Study of Influencing Factors on the Flowability of Jute Nonwoven Reinforced Sheet Molding Compound

Authors: Miriam I. Lautenschläger, Max H. Scheiwe, Kay A. Weidenmann, Frank Henning, Peter Elsner

Abstract:

Due to increasing environmental awareness jute fibers are more often used in fiber reinforced composites. In the Sheet Molding Compound (SMC) process, the mold cavity is filled via material flow allowing more complex component design. But, the difficulty of using jute fibers in this process is the decreased capacity of fiber movement in the mold. A comparative flow study with jute nonwoven reinforced SMC was conducted examining the influence of the fiber volume content, the grammage of the jute nonwoven textile and a mechanical modification of the nonwoven textile on the flowability. The nonwoven textile reinforcement was selected to support homogeneous fiber distribution. Trials were performed using two SMC paste formulations differing only in filler type. Platy-shaped kaolin with a mean particle size of 0.8 μm and ashlar calcium carbonate with a mean particle size of 2.7 μm were selected as fillers. Ensuring comparability of the two SMC paste formulations the filler content was determined to reach equal initial viscosity for both systems. The calcium carbonate filled paste was set as reference. The flow study was conducted using a jute nonwoven textile with 300 g/m² as reference. The manufactured SMC sheets were stacked and centrally placed in a square mold. The mold coverage was varied between 25 and 90% keeping the weight of the stack for comparison constant. Comparing the influence of the two fillers kaolin yielded better results regarding a homogeneous fiber distribution. A mold coverage of about 68% was already sufficient to homogeneously fill the mold cavity whereas for calcium carbonate filled system about 79% mold coverage was necessary. The flow study revealed a strong influence of the fiber volume content on the flowability. A fiber volume content of 12 vol.-% and 25 vol.-% were compared for both SMC formulations. The lower fiber volume content strongly supported fiber transport whereas 25 vol.-% showed insignificant influence. The results indicate a limiting fiber volume content for the flowability. The influence of the nonwoven textile grammage was determined using nonwoven jute material with 500 g/m² and a fiber volume content of 20 vol.-%. The 500 g/m² reinforcement material showed inferior results with regard to fiber movement. A mold coverage of about 90 % was required to prevent the destruction of the nonwoven structure. Below this mold coverage the 500 g/m² nonwoven material was ripped and torn apart. Low mold coverages led to damage of the textile reinforcement. Due to the ripped nonwoven structure the textile was modified with cuts in order to facilitate fiber movement in the mold. Parallel cuts of about 20 mm length and 20 mm distance to each other were applied to the textile and stacked with varying orientations prior to molding. Stacks with unidirectional orientated cuts over stacks with cuts in various directions e.g. (0°, 45°, 90°, -45°) were investigated. The mechanical modification supported tearing of the textile without achieving benefit for the flowability.

Keywords: filler, flowability, jute fiber, nonwoven, sheet molding compound

Procedia PDF Downloads 331
5716 Development and Characterization of a Composite Material for Ceiling Board Construction Applications in Ethiopia

Authors: Minase Yitbarek Mengistu, Abrham Melkamu, Dawit Yisfaw, Bisrat Belihu, Abdulhakim Lalega

Abstract:

This research was aimed at reducing and recycling waste paper and sawdust from our environment, thereby reducing environmental pollution resulting from the management/disposal of these waste materials. In this research, some mechanical properties of composite ceiling board materials made from waste paper, sawdust, and pineapple leaf fibers were investigated to determine their suitability for use in low-cost construction work. The ceiling board was obtained from the waste of paper, sawdust chips, and pineapple leaf fibers by manual mechanical bonding techniques using dissolved polystyrene films as a binding agent. The results obtained showed that the water absorption values of between 6 % and 8.1 %; as well as density values of 500 kg/mm3 and 611.1 kg/mm3.From our result, the better one is a ratio of pineapple leaf fiber 25%, sawdust 40%, binder 25%, and waste paper 10%. The composite ceiling boards were successfully nailed with firm grips. These values obtained were compared with those of the conventional ceiling boards and it was observed that these composite materials can be used for internal low-cost construction work and Insulation (acoustic and thermal) performance. It is highly recommended that small and medium enterprises be encouraged to venture into waste recycling and the production of these composite ceiling materials to create jobs for skilled and unskilled labor that are locally available.

Keywords: composite material, environment, textile, ceiling board

Procedia PDF Downloads 70
5715 3D Finite Element Analysis for Mechanics of Soil-Tool Interaction

Authors: A. Armin, R. Fotouhi, W. Szyszkowski

Abstract:

This paper is part of a study to develop robots for farming. As such power requirement to operate equipment attach to such robots become an important factor. Soil-tool interaction play major role in power consumption, thus predicting accurately the forces which act on the blade during the farming is prime importance for optimal designing of farm equipment. In this paper a finite element investigation for tillage tools and soil interaction is described by using an inelastic constitutive material law for agriculture application. A 3-dimentional (3D) nonlinear finite element analysis (FEA) is developed to examine behavior of a blade with different rake angles moving in a block of soil, and to estimate the blade force. The soil model considered is an elastic-plastic with non-associated Drucker-Prager material model. Special use of contact elements are employed to consider connection between soil-blade and soil-soil surfaces. The FEA results are compared with experiment ones, which show good agreement in accurately predicting draft forces developed on the blade when it moves through the soil. Also, a very good correlation was obtained between FEA results and analytical results from classical soil mechanics theories for straight blades. These comparisons verified the FEA model developed. For analyzing complicated soil-tool interactions and for optimum design of blades, this method will be useful.

Keywords: finite element analysis, soil-blade contact modeling, blade force, mechanical engineering

Procedia PDF Downloads 295
5714 Ideological Stance in Political Discourse: A Transitivity Analysis of Nawaz Sharif's Address at 71st UN Assembly

Authors: A. Nawaz

Abstract:

The present study uses Halliday’s transitivity model to analyze and interpret ideological stance in PM Nawaz Sharif’s political discourse. His famous speech at the 71st UN assembly was analyzed qualitatively using clausal analysis approach to investigate the communicative functions of the linguistic choices made in the address. The study discovers that among the six process types under the transitivity model, material, relational and mental processes appear most frequently in the speech, making up almost 86% of the whole. Verbal processes rank 4th, whereas existential and behavioral are the least occurring processes covering only 2 and 1 percent respectively. The dominant use of material processes suggests that Nawaz Sharif and his government are the main actors working on several concrete projects to produce a sense of developmental progression and continuity. Using relational and mental processes the PM, along with establishing proximity with masses and especially Kashmiri, gives guarantees and promises. The linguistic analysis concludes Kashmir dispute as being the central theme of the address, since it covers more than half of the discourse. The address calls for a strong action instead of formal assurances and wishful thoughts. The study establishes that language structures can yield certain connotations and ideologies which are not overt for readers. This is in affirmation to the supposition that language form performs a communicative function and is not merely fortuitous.

Keywords: Hallidian perspective on language, implicit meanings, Nawaz Sharif, political ideologies, political speeches, transitivity, UN Assembly

Procedia PDF Downloads 209
5713 Early-Age Cracking of Low Carbon Concrete Incorporating Ferronickel Slag as Supplementary Cementitious Material

Authors: Mohammad Khan, Arnaud Castel

Abstract:

Concrete viscoelastic properties such as shrinkage, creep, and associated relaxation are important in assessing the risk of cracking during the first few days after placement. This paper investigates the early-age mechanical and viscoelastic properties, restrained shrinkage-induced cracking and time to cracking of concrete incorporating ferronickel slag (FNS) as supplementary cementitious material. Compressive strength, indirect tensile strength and elastic modulus were measured. Tensile creep and drying shrinkage was measured on dog-bone shaped specimens. Restrained shrinkage induced stresses and concrete cracking age were assessed by using the ring test. Results revealed that early-age strength development of FNS blended concrete is lower than that of the corresponding ordinary Portland cement (OPC) concrete. FNS blended concrete showed significantly higher tensile creep. The risk of early-age cracking for the restrained specimens depends on the development of concrete tensile stress considering both restrained shrinkage and tensile creep and the development of the tensile strength. FNS blended concrete showed only 20% reduction in time to cracking compared to reference OPC concrete, and this reduction is significantly lower compared to fly ash and ground granulated blast furnace slag blended concretes at similar replacement level.

Keywords: ferronickel slag, restraint shrinkage, tensile creep, time to cracking

Procedia PDF Downloads 183
5712 Effect of the Polymer Modification on the Cytocompatibility of Human and Rat Cells

Authors: N. Slepickova Kasalkova, P. Slepicka, L. Bacakova, V. Svorcik

Abstract:

Tissue engineering includes combination of materials and techniques used for the improvement, repair or replacement of the tissue. Scaffolds, permanent or temporally material, are used as support for the creation of the "new cell structures". For this important component (scaffold), a variety of materials can be used. The advantage of some polymeric materials is their cytocompatibility and possibility of biodegradation. Poly(L-lactic acid) (PLLA) is a biodegradable,  semi-crystalline thermoplastic polymer. PLLA can be fully degraded into H2O and CO2. In this experiment, the effect of the surface modification of biodegradable polymer (performed by plasma treatment) on the various cell types was studied. The surface parameters and changes of the physicochemical properties of modified PLLA substrates were studied by different methods. Surface wettability was determined by goniometry, surface morphology and roughness study were performed with atomic force microscopy and chemical composition was determined using photoelectron spectroscopy. The physicochemical properties were studied in relation to cytocompatibility of human osteoblast (MG 63 cells), rat vascular smooth muscle cells (VSMC), and human stem cells (ASC) of the adipose tissue in vitro. A fluorescence microscopy was chosen to study and compare cell-material interaction. Important parameters of the cytocompatibility like adhesion, proliferation, viability, shape, spreading of the cells were evaluated. It was found that the modification leads to the change of the surface wettability depending on the time of modification. Short time of exposition (10-120 s) can reduce the wettability of the aged samples, exposition longer than 150 s causes to increase of contact angle of the aged PLLA. The surface morphology is significantly influenced by duration of modification, too. The plasma treatment involves the formation of the crystallites, whose number increases with increasing time of modification. On the basis of physicochemical properties evaluation, the cells were cultivated on the selected samples. Cell-material interactions are strongly affected by material chemical structure and surface morphology. It was proved that the plasma treatment of PLLA has a positive effect on the adhesion, spreading, homogeneity of distribution and viability of all cultivated cells. This effect was even more apparent for the VSMCs and ASCs which homogeneously covered almost the whole surface of the substrate after 7 days of cultivation. The viability of these cells was high (more than 98% for VSMCs, 89-96% for ASCs). This experiment is one part of the basic research, which aims to easily create scaffolds for tissue engineering with subsequent use of stem cells and their subsequent "reorientation" towards the bone cells or smooth muscle cells.

Keywords: poly(L-lactic acid), plasma treatment, surface characterization, cytocompatibility, human osteoblast, rat vascular smooth muscle cells, human stem cells

Procedia PDF Downloads 227
5711 Evaluation of Video Development about Exclusive Breastfeeding as a Nutrition Education Media for Posyandu Cadre

Authors: Ari Istiany, Guspri Devi Artanti, M. Si

Abstract:

Based on the results Riskesdas, it is known that breastfeeding awareness about the importance of exclusive breastfeeding is still low at only 15.3 %. These conditions resulted in a very infant at risk for infectious diseases, such as diarrhea and acute respiratory infection. Therefore, the aim of this study to evaluate the video development about exclusive breastfeeding as a nutrition education media for posyandu cadre. This research used development methods for making the video about exclusive breastfeeding. The study was conducted in urban areas Rawamangun, East Jakarta. Respondents of this study were 1 media experts from the Department of Educational Technology - UNJ, 2 subject matter experts from Department of Home Economics - UNJ and 20 posyandu cadres to assess the quality of the video. Aspects assessed include the legibility of text, image display quality, color composition, clarity of sound, music appropriateness, duration, suitability of the material and language. Data were analyzed descriptively likes frequency distribution table, the average value, and deviation standard. The result of this study showed that the average score assessment according to media experts, subject matter experts, and posyandu cadres respectively was 3.43 ± 0.51 (good), 4.37 ± 0.52 (very good) and 3.6 ± 0.73 (good). The conclusion is on exclusive breastfeeding video as feasible as a media for nutrition education. While suggestions for the improvement of visual media is multiply illustrations, add material about the correct way of breastfeeding and healthy baby pictures.

Keywords: exclusive breastfeeding, posyandu cadre, video, nutrition education

Procedia PDF Downloads 410
5710 Simulation Study of Enhanced Terahertz Radiation Generation by Two-Color Laser Plasma Interaction

Authors: Nirmal Kumar Verma, Pallavi Jha

Abstract:

Terahertz (THz) radiation generation by propagation of two-color laser pulses in plasma is an active area of research due to its potential applications in various areas, including security screening, material characterization and spectroscopic techniques. Due to non ionizing nature and the ability to penetrate several millimeters, THz radiation is suitable for diagnosis of cancerous cells. Traditional THz emitters like optically active crystals when irradiated with high power laser radiation, are subject to material breakdown and hence low conversion efficiencies. This problem is not encountered in laser - plasma based THz radiation sources. The present paper is devoted to the simulation study of the enhanced THz radiation generation by propagation of two-color, linearly polarized laser pulses through magnetized plasma. The two laser pulses orthogonally polarized are co-propagating along the same direction. The direction of the external magnetic field is such that one of the two laser pulses propagates in the ordinary mode, while the other pulse propagates in the extraordinary mode through homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the static magnetic field. It is observed that larger amplitude terahertz can be generated by mixing of ordinary and extraordinary modes of two-color laser pulses as compared with a single laser pulse propagating in the extraordinary mode.

Keywords: two-color laser pulses, terahertz radiation, magnetized plasma, ordinary and extraordinary mode

Procedia PDF Downloads 300
5709 Simulation of Laser Structuring by Three Dimensional Heat Transfer Model

Authors: Bassim Shaheen Bachy, Jörg Franke

Abstract:

In this study, a three dimensional numerical heat transfer model has been used to simulate the laser structuring of polymer substrate material in the Three-Dimensional Molded Interconnect Device (3D MID) which is used in the advanced multi-functional applications. A finite element method (FEM) transient thermal analysis is performed using APDL (ANSYS Parametric Design Language) provided by ANSYS. In this model, the effect of surface heat source was modeled with Gaussian distribution, also the effect of the mixed boundary conditions which consist of convection and radiation heat transfers have been considered in this analysis. The model provides a full description of the temperature distribution, as well as calculates the depth and the width of the groove upon material removal at different set of laser parameters such as laser power and laser speed. This study also includes the experimental procedure to study the effect of laser parameters on the depth and width of the removal groove metal as verification to the modeled results. Good agreement between the experimental and the model results is achieved for a wide range of laser powers. It is found that the quality of the laser structure process is affected by the laser scan speed and laser power. For a high laser structured quality, it is suggested to use laser with high speed and moderate to high laser power.

Keywords: laser structuring, simulation, finite element analysis, thermal modeling

Procedia PDF Downloads 346
5708 Design-Analysis and Optimization of 10 MW Permanent Magnet Surface Mounted Off-Shore Wind Generator

Authors: Mamidi Ramakrishna Rao, Jagdish Mamidi

Abstract:

With advancing technology, the market environment for wind power generation systems has become highly competitive. The industry has been moving towards higher wind generator power ratings, in particular, off-shore generator ratings. Current off-shore wind turbine generators are in the power range of 10 to 12 MW. Unlike traditional induction motors, slow-speed permanent magnet surface mounted (PMSM) high-power generators are relatively challenging and designed differently. In this paper, PMSM generator design features have been discussed and analysed. The focus attention is on armature windings, harmonics, and permanent magnet. For the power ratings under consideration, the generator air-gap diameters are in the range of 8 to 10 meters, and active material weigh ~60 tons and above. Therefore, material weight becomes one of the critical parameters. Particle Swarm Optimization (PSO) technique is used for weight reduction and performance improvement. Four independent variables have been considered, which are air gap diameter, stack length, magnet thickness, and winding current density. To account for core and teeth saturation, preventing demagnetization effects due to short circuit armature currents, and maintaining minimum efficiency, suitable penalty functions have been applied. To check for performance satisfaction, a detailed analysis and 2D flux plotting are done for the optimized design.

Keywords: offshore wind generator, PMSM, PSO optimization, design optimization

Procedia PDF Downloads 152
5707 Impact of Instructional Designing in Digital Game-Based Learning for Enhancing Students' Motivation

Authors: Shafaq Rubab

Abstract:

The primary reason for dropping out of school is associated with students’ lack of motivation in class, especially in mathematics. Digital game-based learning is an approach that is being actively explored; there are very few learning games based on proven instructional design models or frameworks due to which the effectiveness of the learning games suffers. The purpose of this research was twofold: first, developing an appropriate instructional design model and second, evaluating the impact of the instructional design model on students’ motivation. This research contributes significantly to the existing literature in terms of student motivation and the impact of instructional design model in digital game-based learning. The sample size for this study consists of two hundred out-of-school students between the age of 6 and 12 years. The research methodology used for this research was a quasi-experimental approach and data was analyzed by using the instructional material motivational survey questionnaire which is adapted from the Keller Arcs model. Control and experimental groups consisting of two hundred students were analyzed by utilizing instructional material motivational survey (IMMS), and comparison of result from both groups showed the difference in the level of motivation of the students. The result of the research showed that the motivational level of student in the experimental group who were taught by the game was higher than the student in control group (taught by conventional methodology). The mean score of the experimental group against all subscales (attention, relevance, confidence, and satisfaction) of IMMS survey was higher; however, no statistical significance was found between the motivational scores of control and experimental group. The positive impact of game-based learning on students’ level of motivation, as measured in this study, strengthens the case for the use of pedagogically sound instructional design models in the design of interactive learning applications. In addition, the present study suggests learning from interactive, immersive applications as an alternative solution for children, especially in Third World countries, who, for various reasons, do not attend school. The mean score of experimental group against all subscales of IMMS survey was higher; however, no statistical significance was found between motivational scores of control and experimental group.

Keywords: digital game-based learning, students’ motivation, and instructional designing, instructional material motivational survey

Procedia PDF Downloads 418
5706 An Ideational Grammatical Metaphor of Narrative History in Chinua Achebe's 'There Was a Country'

Authors: Muhammed-Badar Salihu Jibrin, Chibabi Makedono Darlington

Abstract:

This paper studied Ideational Grammatical Metaphor (IGM) of Narrative History in Chinua Achebe’s There Was a Country. It started with a narrative historical style as a recent genre out of the conventional historical writings. In order to explore the linguistic phenomenon using a particular lexico-grammatical tool of IGM, the theoretical background was examined based on Hallidayan Systemic Functional Linguistics. Furthermore, the study considered the possibility of applying IGM to the Part 4 of Achebe’s historical text with recourse to the concept of congruence in IGM and research questions before formulating a working methodology. The analysis of Achebe’s memoir was, thus, presented in tabular forms to account for the quantitative content analysis with qualitative research technique, as well as the metaphorical and congruent wording through nominalization and process types with samples. The frequencies and percentage were given appropriately with respect to each subheadings of the text. To this end, the findings showed that material and relational types indicated dominance. The discussion and implications were that the findings confirmed earlier study by MAK Halliday and C.I.M.I.M. Matthiessen’s suggestion that IGM should show dominance of material type process. The implication is that IGM can be an effective tool for the analysis of a narrative historical text. In conclusion, it was observed that IGM does not only carry grammatical function but also an ideological role in shaping the historical discourse within the narrative mode between writers and readers.

Keywords: ideational grammatical metaphor, nominalization, narrative history, memoire, dominance

Procedia PDF Downloads 218
5705 Microstructure and Tribological Properties of AlSi5Cu2/SiC Composite

Authors: Magdalena Suśniak, Joanna Karwan-Baczewska

Abstract:

Microstructure and tribological properties of AlSi5Cu2 matrix composite reinforced with SiC have been studied by microscopic examination and basic tribological properties. Composite material was produced by the mechanical alloying and spark plasma sintering (SPS) technique. The mixture of AlSi5Cu2 chips with 0, 10, 15 wt. % of SiC powder were placed in 250 ml mixing jar and milled 40 hours. To prevent the extreme cold welding the 1 wt. % of stearic acid was added to the powder mixture as a process control agent. Mechanical alloying provide to obtain composites powder with uniform distribution of SiC in matrix. Composite powders were poured into a graphite and a pulsed electric current was passed through powder under vacuum to consolidate material. Processing conditions were: sintering temperature 450°C, uniaxial pressure 32MPa, time of sintering 5 minutes. After SPS process composite samples indicate higher hardness values, lower weight loss, and lower coefficient of friction as compared with the unreinforced alloy. Light microscope micrograph of the worn surfaces and wear debris revealed that in the unreinforced alloy the prominent wear mechanism was the adhesive wear. In the AlSi5Cu2/SiC composites, by increasing of SiC the wear mechanism changed from adhesive and micro-cutting to abrasive and delamination for composite with 20 SiC wt. %. In all the AlSi5Cu2/SiC composites, abrasive wear was the main wear mechanism.

Keywords: aluminum matrix composite, mechanical alloying, spark plasma sintering, AlSi5Cu2/SiC composite

Procedia PDF Downloads 385
5704 Selective Solvent Extraction of Co from Ni and Mn through Outer-Sphere Interactions

Authors: Korban Oosthuizen, Robert C. Luckay

Abstract:

Due to the growing popularity of electric vehicles and the importance of cobalt as part of the cathode material for lithium-ion batteries, demand for this metal is on the rise. Recycling of the cathode materials by means of solvent extraction is an attractive means of recovering cobalt and easing the pressure on limited natural resources. In this study, a series of straight chain and macrocyclic diamine ligands were developed for the selective recovery of cobalt from the solution containing nickel and manganese by means of solvent extraction. This combination of metals is the major cathode material used in electric vehicle batteries. The ligands can be protonated and function as ion-pairing ligands targeting the anionic [CoCl₄]²⁻, a species which is not observed for Ni or Mn. Selectivity for Co was found to be good at very high chloride concentrations and low pH. Longer chains or larger macrocycles were found to enhance selectivity, and linear chains on the amide side groups also resulted in greater selectivity over the branched groups. The cation of the chloride salt used for adjusting chloride concentrations seems to play a major role in extraction through salting-out effects. The ligands developed in this study show good selectivity for Co over Ni and Mn but require very high chloride concentrations to function. This research does, however, open the door for further investigations into using diamines as solvent extraction ligands for the recovery of cobalt from spent lithium-ion batteries.

Keywords: hydrometallurgy, solvent extraction, cobalt, lithium-ion batteries

Procedia PDF Downloads 76
5703 Green Synthesis of Magnetic, Silica Nanocomposite and Its Adsorptive Performance against Organochlorine Pesticides

Authors: Waleed A. El-Said, Dina M. Fouad, Mohamed H. Aly, Mohamed A. El-Gahami

Abstract:

Green synthesis of nanomaterials has received increasing attention as an eco-friendly technology in materials science. Here, we have used two types of extractions from green tea leaf (i.e. total extraction and tannin extraction) as reducing agents for a rapid, simple and one step synthesis method of mesoporous silica nanoparticles (MSNPs)/iron oxide (Fe3O4) nanocomposite based on deposition of Fe3O4 onto MSNPs. MSNPs/Fe3O4 nanocomposite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray, vibrating sample magnetometer, N2 adsorption, and high-resolution transmission electron microscopy. The average mesoporous silica particle diameter was found to be around 30 nm with high surface area (818 m2/gm). MSNPs/Fe3O4 nanocomposite was used for removing lindane pesticide (an environmental hazard material) from aqueous solutions. Fourier transform infrared, UV-vis, High-performance liquid chromatography and gas chromatography techniques were used to confirm the high ability of MSNPs/Fe3O4 nanocomposite for sensing and capture of lindane molecules with high sorption capacity (more than 89%) that could develop a new eco-friendly strategy for detection and removing of pesticide and as a promising material for water treatment application.

Keywords: green synthesis, mesoporous silica, magnetic iron oxide NPs, adsorption Lindane

Procedia PDF Downloads 435
5702 Layouting for Phase II of New Priok Project Using Adaptive Port Planning Frameworks

Authors: Mustarakh Gelfi, Poonam Taneja, Tiedo Vellinga, Delon Hamonangan

Abstract:

The initial masterplan of New Priok in the Port of Tanjung Priok was developed in 2012 is being updated to cater to new developments and new demands. In the new masterplan (2017), Phase II of development will start from 2035-onwards, depending on the future conditions. This study is about creating a robust masterplan for Phase II, which will remain functional under future uncertainties. The methodology applied in this study is scenario-based planning in the framework of Adaptive Port Planning (APP). Scenario-based planning helps to open up the perspective of the future as a horizon of possibilities. The scenarios are built around two major uncertainties in a 2x2 matrix approach. The two major uncertainties for New Priok port are economics and sustainability awareness. The outcome is four plausible scenarios: Green Port, Business As Usual, Moderate Expansion, and No Expansion. Terminal needs in each scenario are analyzed through traffic analysis and identifying the key cargos and commodities. In conclusion, this study gives the wide perspective for Port of Tanjung Priok for the planning Phase II of the development. The port has to realize that uncertainties persevere and are very likely to influence the decision making as to the future layouts. Instead of ignoring uncertainty, the port needs to make the action plans to deal with these uncertainties.

Keywords: Indonesia Port, port's layout, port planning, scenario-based planning

Procedia PDF Downloads 533
5701 The Role of Financial Literacy and Personal Non-Cognitive Attributes in Household Financial Fragility

Authors: Ivana Bulog, Ana Rimac Smiljanić, Sandra Pepur

Abstract:

The financial fragility of households has received increased attention following the recent health crisis, which has created uncertainty and caused increased levels of stress and consequently impaired individual and family well-being. Job losses and/or reduced wages and insecurity increased the number of people that were unable to meet unexpected expenses, which, in many cases, led to increased household debt levels. This presents a threat to the stability of the financial system and the whole economy; therefore, reducing financial fragility and improving financial literacy present challenges for academicians, practitioners, and policymakers. Concerning financial fragility, significant research attention has been devoted to financial knowledge and financial literacy. However, apart from specific knowledge, personal characteristics are of great importance in making financial decisions in the household. Self-efficacy is one of the personal non-cognitive attributes that is a valuable framework for understanding how household financial decisions are made. Thus, this research proposes that individual levels of financial literacy and self-efficacy are related to the indebtedness and financial instability of the household. The primary data were collected using a structured, self-administered online questionnaire, and a snowball sampling method was applied to reach the participants. Preliminary results confirm our assumptions on the influence of financial literacy and self-efficacy on household financial stability.

Keywords: financial literacy, self-efficacy, household financial fragility, well-being

Procedia PDF Downloads 86
5700 Individualized Teaching Process for Pupils with Moderate Mental Disability

Authors: VojtěCh Gybas, Libor Klubal, KateřIna KostoláNyová

Abstract:

Individualized teaching process for pupils with moderate mental disabilities with the help of using mobile touch devices may be one of the forms of teaching to achieve better development of these students during the teaching process. Didactics of information and communication technology (ICT) for special primary schools, where within the Czech Republic pupils with moderate mental retardation are educated, is not precisely and clearly defined. Still, general educational program for elementary school contains a special educational area of information and communication technology, in which the work and content area are focused on work with the classic desktop, and it is not always acceptable in the case of students with moderate mental disabilities. Individualization of their schooling requires a fully elaborate content of teaching material corresponding with intellectual abilities and individuality of each pupil. After three years of daily use of mobile touch devices iPad and participant observation of 7 pupils in a class from special elementary school, we can say that these technologies can be a very useful tool, and in many ways, they even exceed, compensate and replace freely available printed educational material that is rather outdated. By working with mobile touch technology, a pupil gains responsibility, trains his will, learns to rely on himself. The first results obtained from the case studies suggest that this form of teaching may also be beneficial for pupils with moderate mental disabilities.

Keywords: individualized teaching, mobile touch technology, iPad, moderate mental disability, special education needs

Procedia PDF Downloads 328
5699 Risk Mitigation of Data Causality Analysis Requirements AI Act

Authors: Raphaël Weuts, Mykyta Petik, Anton Vedder

Abstract:

Artificial Intelligence has the potential to create and already creates enormous value in healthcare. Prescriptive systems might be able to make the use of healthcare capacity more efficient. Such systems might entail interpretations that exclude the effect of confounders that brings risks with it. Those risks might be mitigated by regulation that prevents systems entailing such risks to come to market. One modality of regulation is that of legislation, and the European AI Act is an example of such a regulatory instrument that might mitigate these risks. To assess the risk mitigation potential of the AI Act for those risks, this research focusses on a case study of a hypothetical application of medical device software that entails the aforementioned risks. The AI Act refers to the harmonised norms for already existing legislation, here being the European medical device regulation. The issue at hand is a causal link between a confounder and the value the algorithm optimises for by proxy. The research identifies where the AI Act already looks at confounders (i.a. feedback loops in systems that continue to learn after being placed on the market). The research identifies where the current proposal by parliament leaves legal uncertainty on the necessity to check for confounders that do not influence the input of the system, when the system does not continue to learn after being placed on the market. The authors propose an amendment to article 15 of the AI Act that would require high-risk systems to be developed in such a way as to mitigate risks from those aforementioned confounders.

Keywords: AI Act, healthcare, confounders, risks

Procedia PDF Downloads 259
5698 Research on the Effect of Accelerated Aging Illumination Mode on Bifacial Solar Modules

Authors: T. H. Huang, C. L. Fern, Y. K. Tseng

Abstract:

The design and reliability of solar photovoltaic modules are crucial to the development of solar energy, and efforts are still being made to extend the life of photovoltaic modules to improve their efficiency because natural aging is time-consuming and does not provide manufacturers and investors with timely information, accelerated aging is currently the best way to estimate the life of photovoltaic modules. Bifacial solar cells not only absorb light from the front side but also absorb light reflected from the ground on the back side, surpassing the performance of single-sided solar cells. Due to the asymmetry of the two sides of the light, in addition to the difference in photovoltaic conversion efficiency, there will also be differences in heat distribution, which will affect the electrical properties and material structure of the bifacial solar cell itself. In this study, there are two types of experimental samples: packaged and unpackaged and then irradiated with UVC light sources and halogen lamps for accelerated aging, as well as a control group without aging. After two weeks of accelerated aging, the bifacial solar cells were visual observation, and infrared thermal images were taken; then, the samples were subjected to IV measurement, and samples were taken for SEM, Raman, and XRD analyses in order to identify the defects that lead to failure and chemical changes, as well as to analyze the reasons for the degradation of their characteristics. From the results of the analysis, it is found that aging will cause carbonization of the polymer material on the surface of bifacial solar cells, and the crystal structure will be affected.

Keywords: bifacial solar cell, accelerated aging, temperature, characterization, electrical measurement

Procedia PDF Downloads 108