Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15590

Search results for: partial order theory

15590 Stochastic Prioritization of Dependent Actuarial Risks: Preferences among Prospects

Authors: Ezgi Nevruz, Kasirga Yildirak, Ashis SenGupta


Comparing or ranking risks is the main motivating factor behind the human trait of making choices. Cumulative prospect theory (CPT) is a preference theory approach that evaluates perception and bias in decision making under risk and uncertainty. We aim to investigate the aggregate claims of different risk classes in terms of their comparability and amenability to ordering when the impact of risk perception is considered. For this aim, we prioritize the aggregate claims taken as actuarial risks by using various stochastic ordering relations. In order to prioritize actuarial risks, we use stochastic relations such as stochastic dominance and stop-loss dominance that are proposed in the frame of partial order theory. We take into account the dependency of the individual claims exposed to similar environmental risks. At first, we modify the zero-utility premium principle in order to obtain a solution for the stop-loss premium under CPT. Then, we propose a stochastic stop-loss dominance of the aggregate claims and find a relation between the stop-loss dominance and the first-order stochastic dominance under the dependence assumption by using properties of the familiar as well as some emerging multivariate claim distributions.

Keywords: cumulative prospect theory, partial order theory, risk perception, stochastic dominance, stop-loss dominance

Procedia PDF Downloads 235
15589 Nadler's Fixed Point Theorem on Partial Metric Spaces and its Application to a Homotopy Result

Authors: Hemant Kumar Pathak


In 1994, Matthews (S.G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci., vol. 728, 1994, pp. 183-197) introduced the concept of a partial metric as a part of the study of denotational semantics of data flow networks. He gave a modified version of the Banach contraction principle, more suitable in this context. In fact, (complete) partial metric spaces constitute a suitable framework to model several distinguished examples of the theory of computation and also to model metric spaces via domain theory. In this paper, we introduce the concept of almost partial Hausdorff metric. We prove a fixed point theorem for multi-valued mappings on partial metric space using the concept of almost partial Hausdorff metric and prove an analogous to the well-known Nadler’s fixed point theorem. In the sequel, we derive a homotopy result as an application of our main result.

Keywords: fixed point, partial metric space, homotopy, physical sciences

Procedia PDF Downloads 355
15588 An Efficient Collocation Method for Solving the Variable-Order Time-Fractional Partial Differential Equations Arising from the Physical Phenomenon

Authors: Haniye Dehestani, Yadollah Ordokhani


In this work, we present an efficient approach for solving variable-order time-fractional partial differential equations, which are based on Legendre and Laguerre polynomials. First, we introduced the pseudo-operational matrices of integer and variable fractional order of integration by use of some properties of Riemann-Liouville fractional integral. Then, applied together with collocation method and Legendre-Laguerre functions for solving variable-order time-fractional partial differential equations. Also, an estimation of the error is presented. At last, we investigate numerical examples which arise in physics to demonstrate the accuracy of the present method. In comparison results obtained by the present method with the exact solution and the other methods reveals that the method is very effective.

Keywords: collocation method, fractional partial differential equations, legendre-laguerre functions, pseudo-operational matrix of integration

Procedia PDF Downloads 90
15587 Tax Competition and Partial Tax Coordination under Fiscal Decentralization

Authors: Patricia Sanz-Cordoba, Bernd Theilen


This article analyzes the conditions where decentralization and partial tax harmonization in a coalition of asymmetric jurisdictions plays a role in the fight of fiscal competition (i.e. the race to bottom). Starting from a centralized economies, we use the ZM-W model to analyze the fiscal competition and coordination among three countries. We find that the asymmetry of jurisdictions facilitates partial tax harmonization between jurisdictions when these asymmetries are not too large. Furthermore, when the asymmetries are large enough, the level of labor tax plays an important role in the decision of decentralize capital tax. Accordingly, decentralization is achievable when labor tax is low. This result indicates that decentralization and partial tax harmonization between jurisdictions can be possible results in order to fight the negative externalities from fiscal competition, and more in the European Union countries where the asymmetries are substantial.

Keywords: centralization, decentralization, fiscal competition, partial tax harmonization

Procedia PDF Downloads 178
15586 Quintic Spline Solution of Fourth-Order Parabolic Equations Arising in Beam Theory

Authors: Reza Mohammadi, Mahdieh Sahebi


We develop a method based on polynomial quintic spline for numerical solution of fourth-order non-homogeneous parabolic partial differential equation with variable coefficient. By using polynomial quintic spline in off-step points in space and finite difference in time directions, we obtained two three level implicit methods. Stability analysis of the presented method has been carried out. We solve four test problems numerically to validate the derived method. Numerical comparison with other methods shows the superiority of presented scheme.

Keywords: fourth-order parabolic equation, variable coefficient, polynomial quintic spline, off-step points

Procedia PDF Downloads 279
15585 Free Convection from a Perforated Spinning Cone with Heat Generation, Temperature-Dependent Viscosity and Partial Slip

Authors: Gilbert Makanda


The problem of free convection from a perforated spinning cone with viscous dissipation, temperature-dependent viscosity, and partial slip was studied. The boundary layer velocity and temperature profiles were numerically computed for different values of the spin, viscosity variation, inertia drag force, Eckert, suction/blowing parameters. The partial differential equations were transformed into a system of ordinary differential equations which were solved using the fourth-order Runge-Kutta method. This paper considered the effect of partial slip and spin parameters on the swirling velocity profiles which are rarely reported in the literature. The results obtained by this method was compared to those in the literature and found to be in agreement. Increasing the viscosity variation parameter, spin, partial slip, Eckert number, Darcian drag force parameters reduce swirling velocity profiles.

Keywords: free convection, suction/injection, partial slip, viscous dissipation

Procedia PDF Downloads 166
15584 Thermal Buckling Response of Cylindrical Panels with Higher Order Shear Deformation Theory—a Case Study with Angle-Ply Laminations

Authors: Humayun R. H. Kabir


An analytical solution before used for static and free-vibration response has been extended for thermal buckling response on cylindrical panel with anti-symmetric laminations. The partial differential equations that govern kinematic behavior of shells produce five coupled differential equations. The basic displacement and rotational unknowns are similar to first order shear deformation theory---three displacement in spatial space, and two rotations about in-plane axes. No drilling degree of freedom is considered. Boundary conditions are considered as complete hinge in all edges so that the panel respond on thermal inductions. Two sets of double Fourier series are considered in the analytical solution process. The sets are selected that satisfy mixed type of natural boundary conditions. Numerical results are presented for the first 10 eigenvalues, and first 10 mode shapes for Ux, Uy, and Uz components. The numerical results are compared with a finite element based solution.

Keywords: higher order shear deformation, composite, thermal buckling, angle-ply laminations

Procedia PDF Downloads 313
15583 On the Relation between λ-Symmetries and μ-Symmetries of Partial Differential Equations

Authors: Teoman Ozer, Ozlem Orhan


This study deals with symmetry group properties and conservation laws of partial differential equations. We give a geometrical interpretation of notion of μ-prolongations of vector fields and of the related concept of μ-symmetry for partial differential equations. We show that these are in providing symmetry reduction of partial differential equations and systems and invariant solutions.

Keywords: λ-symmetry, μ-symmetry, classification, invariant solution

Procedia PDF Downloads 210
15582 A Note on Decidability of the Theory of Natural Numbers

Authors: Zahra Sheikhaleslami


The additive theory or (the multiplication theory) of a set of natural numbers is the first theory of the structure of that set with the addition or (multiplication) operation that set is taken be additive(multiplicative),i.e., closed under addition or (multiplication). In this paper, decidability (i.e.,there exists an algorithm that decides whether a given sentence is derivable from the theory )of the structures of natural numbers study in different languages and introduce ways that it allows quantifier elimination (for the theory ) and review some classical theorems and will give new proofs for old results.

Keywords: Decidability, Incompleteness, Number Structure, First Order Logic

Procedia PDF Downloads 75
15581 The Fit of the Partial Pair Distribution Functions of BaMnFeF7 Fluoride Glass Using the Buckingham Potential by the Hybrid RMC Simulation

Authors: Sidi Mohamed Mesli, Mohamed Habchi, Arslane Boudghene Stambouli, Rafik Benallal


The BaMnMF7 (M=Fe,V, transition metal fluoride glass, assuming isomorphous replacement) have been structurally studied through the simultaneous simulation of their neutron diffraction patterns by reverse Monte Carlo (RMC) and by the Hybrid Reverse Monte Carlo (HRMC) analysis. This last is applied to remedy the problem of the artificial satellite peaks that appear in the partial pair distribution functions (PDFs) by the RMC simulation. The HRMC simulation is an extension of the RMC algorithm, which introduces an energy penalty term (potential) in acceptance criteria. The idea of this work is to apply the Buckingham potential at the title glass by ignoring the van der Waals terms, in order to make a fit of the partial pair distribution functions and give the most possible realistic features. When displaying the partial PDFs, we suggest that the Buckingham potential is useful to describe average correlations especially in similar interactions.

Keywords: fluoride glasses, RMC simulation, hybrid RMC simulation, Buckingham potential, partial pair distribution functions

Procedia PDF Downloads 422
15580 Contested Visions of Exploration in IR: Theoretical Engagements, Reflections and New Agendas on the Dynamics of Global Order

Authors: Ananya Sharma


International Relations is a discipline of paradoxes. The State is the dominant political institution, with mainstream analysis theorizing the State, but theory remains at best a reactionary monolith. Critical Theorists have been pushing the envelope and to that extent, there has been a clear shift in the dominant discourse away from State-centrism to individuals and group-level behaviour. This paradigm shift has been accompanied with more nuanced conceptualizations of other variables at play–power, security, and trust, to name a few. Yet, the ambit of “what is discussed” remains primarily embedded in realist conceptualizations. With this background in mind, this paper will attempt to understand, juxtapose and evaluate how “order” has been conceptualized in International Relations theory. This paper is a tentative attempt to present a “state of the art” and in the process, set the stage for a deeper study to draw attention to what the author feels is a gaping lacuna in IR theory. The paper looks at how different branches of international relations theory envisage world order and the silences embedded therein. Further, by locating order and disorder inhabiting the same reality along a continuum, alternative readings of world orders are drawn from the critical theoretical traditions, in which various articulations of justice impart the key normative pillar to the world order.

Keywords: global justice, international relations theory, legitimacy, world order

Procedia PDF Downloads 285
15579 Design Fractional-Order Terminal Sliding Mode Control for Synchronization of a Class of Fractional-Order Chaotic Systems with Uncertainty and External Disturbances

Authors: Shabnam Pashaei, Mohammadali Badamchizadeh


This paper presents a new fractional-order terminal sliding mode control for synchronization of two different fractional-order chaotic systems with uncertainty and external disturbances. A fractional-order integral type nonlinear switching surface is presented. Then, using the Lyapunov stability theory and sliding mode theory, a fractional-order control law is designed to synchronize two different fractional-order chaotic systems. Finally, a simulation example is presented to illustrate the performance and applicability of the proposed method. Based on numerical results, the proposed controller ensures that the states of the controlled fractional-order chaotic response system are asymptotically synchronized with the states of the drive system.

Keywords: terminal sliding mode control, fractional-order calculus, chaotic systems, synchronization

Procedia PDF Downloads 230
15578 Quintic Spline Method for Variable Coefficient Fourth-Order Parabolic Partial Differential Equations

Authors: Reza Mohammadi, Mahdieh Sahebi


We develop a method based on polynomial quintic spline for numerical solution of fourth-order non-homogeneous parabolic partial differential equation with variable coefficient. By using polynomial quintic spline in off-step points in space and finite difference in time directions, we obtained two three level implicit methods. Stability analysis of the presented method has been carried out. We solve four test problems numerically to validate the proposed derived method. Numerical comparison with other existence methods shows the superiority of our presented scheme.

Keywords: fourth-order parabolic equation, variable coefficient, polynomial quintic spline, off-step points, stability analysis

Procedia PDF Downloads 288
15577 Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP) for Recovering Signal

Authors: Israa Sh. Tawfic, Sema Koc Kayhan


Given a large sparse signal, great wishes are to reconstruct the signal precisely and accurately from lease number of measurements as possible as it could. Although this seems possible by theory, the difficulty is in built an algorithm to perform the accuracy and efficiency of reconstructing. This paper proposes a new proved method to reconstruct sparse signal depend on using new method called Least Support Matching Pursuit (LS-OMP) merge it with the theory of Partial Knowing Support (PSK) given new method called Partially Knowing of Least Support Orthogonal Matching Pursuit (PKLS-OMP). The new methods depend on the greedy algorithm to compute the support which depends on the number of iterations. So to make it faster, the PKLS-OMP adds the idea of partial knowing support of its algorithm. It shows the efficiency, simplicity, and accuracy to get back the original signal if the sampling matrix satisfies the Restricted Isometry Property (RIP). Simulation results also show that it outperforms many algorithms especially for compressible signals.

Keywords: compressed sensing, lest support orthogonal matching pursuit, partial knowing support, restricted isometry property, signal reconstruction

Procedia PDF Downloads 172
15576 Order vs. Justice: The Cases of Libya and Syria from the Perspective of the English School Theory

Authors: A. Gün Güneş


This study aims to explicate the functionality of the responsibility to protect (R2P) in terms of order and justice within the context of the main traditions of the English School theory. The conflicts in Libya and Syria and the response of the international society to these crises are analyzed in the pluralism-solidarism dichotomy of the English School. In this regard, the intervention under R2P in Libya exemplifies the solidaristic side emphasizing justice, while the non-intervention in Syria exemplifies the pluralistic side emphasizing order. This study discusses the cases of Libya and Syria on the basis of Great Powers.

Keywords: English school theory, international society, order, justice, responsibility to protect

Procedia PDF Downloads 318
15575 Characteristics of Different Solar PV Modules under Partial Shading

Authors: Hla Hla Khaing, Yit Jian Liang, Nant Nyein Moe Htay, Jiang Fan


Partial shadowing is one of the problems that are always faced in terrestrial applications of solar photovoltaic (PV). The effects of partial shadow on the energy yield of conventional mono-crystalline and multi-crystalline PV modules have been researched for a long time. With deployment of new thin-film solar PV modules in the market, it is important to understand the performance of new PV modules operating under the partial shadow in the tropical zone. This paper addresses the impacts of different partial shadowing on the operating characteristics of four different types of solar PV modules that include multi-crystalline, amorphous thin-film, CdTe thin-film and CIGS thin-film PV modules.

Keywords: partial shade, CdTe, CIGS, multi-crystalline (mc-Si), amorphous silicon (a-Si), bypass diode

Procedia PDF Downloads 352
15574 Application of Wavelet Based Approximation for the Solution of Partial Integro-Differential Equation Arising from Viscoelasticity

Authors: Somveer Singh, Vineet Kumar Singh


This work contributes a numerical method based on Legendre wavelet approximation for the treatment of partial integro-differential equation (PIDE). Operational matrices of Legendre wavelets reduce the solution of PIDE into the system of algebraic equations. Some useful results concerning the computational order of convergence and error estimates associated to the suggested scheme are presented. Illustrative examples are provided to show the effectiveness and accuracy of proposed numerical method.

Keywords: legendre wavelets, operational matrices, partial integro-differential equation, viscoelasticity

Procedia PDF Downloads 308
15573 A Proof of the N. Davydov Theorem for Douglis Algebra Valued Functions

Authors: Jean-Marie Vilaire, Ricardo Abreu-Blaya, Juan Bory-Reyes


The classical Beltrami system of elliptic equations generalizes the Cauchy Riemann equation in the complex plane and offers the possibility to consider homogeneous system with no terms of zero order. The theory of Douglis-valued functions, called Hyper-analytic functions, is special case of the above situation. In this note, we prove an analogue of the N. Davydov theorem in the framework of the theory of hyperanalytic functions. The used methodology contemplates characteristic methods of the hypercomplex analysis as well as the singular integral operators and elliptic systems of the partial differential equations theories.

Keywords: Beltrami equation, Douglis algebra-valued function, Hypercomplex Cauchy type integral, Sokhotski-Plemelj formulae

Procedia PDF Downloads 127
15572 Free Vibration of Functionally Graded Smart Beams Based on the First Order Shear Deformation Theory

Authors: A. R. Nezamabadi, M. Veiskarami


This paper studies free vibration of simply supported functionally graded beams with piezoelectric layers based on the first order shear deformation theory. The Young's modulus of beam is assumed to be graded continuously across the beam thickness. The governing equation is established. Resulting equation is solved using the Euler's equation. The effects of the constituent volume fractions, the influences of applied voltage on the vibration frequency are presented. To investigate the accuracy of the present analysis, a compression study is carried out with a known data.

Keywords: mechanical buckling, functionally graded beam, first order shear deformation theory, free vibration

Procedia PDF Downloads 400
15571 Partial Differential Equation-Based Modeling of Brain Response to Stimuli

Authors: Razieh Khalafi


The brain is the information processing centre of the human body. Stimuli in the form of information are transferred to the brain and then brain makes the decision on how to respond to them. In this research, we propose a new partial differential equation which analyses the EEG signals and make a relationship between the incoming stimuli and the brain response to them. In order to test the proposed model, a set of external stimuli applied to the model and the model’s outputs were checked versus the real EEG data. The results show that this model can model the EEG signal well. The proposed model is useful not only for modelling of EEG signal in case external stimuli but it can be used for modelling of brain response in case of internal stimuli.

Keywords: brain, stimuli, partial differential equation, response, EEG signal

Procedia PDF Downloads 480
15570 A Study on the Solutions of the 2-Dimensional and Forth-Order Partial Differential Equations

Authors: O. Acan, Y. Keskin


In this study, we will carry out a comparative study between the reduced differential transform method, the adomian decomposition method, the variational iteration method and the homotopy analysis method. These methods are used in many fields of engineering. This is been achieved by handling a kind of 2-Dimensional and forth-order partial differential equations called the Kuramoto–Sivashinsky equations. Three numerical examples have also been carried out to validate and demonstrate efficiency of the four methods. Furthermost, it is shown that the reduced differential transform method has advantage over other methods. This method is very effective and simple and could be applied for nonlinear problems which used in engineering.

Keywords: reduced differential transform method, adomian decomposition method, variational iteration method, homotopy analysis method

Procedia PDF Downloads 338
15569 Thermal Buckling Analysis of Functionally Graded Beams with Various Boundary Conditions

Authors: Gholamreza Koochaki


This paper presents the buckling analysis of functionally graded beams with various boundary conditions. The first order shear deformation beam theory (Timoshenko beam theory) and the classical theory (Euler-Bernoulli beam theory) of Reddy have been applied to the functionally graded beams buckling analysis The material property gradient is assumed to be in thickness direction. The equilibrium and stability equations are derived using the total potential energy equations, classical theory and first order shear deformation theory assumption. The temperature difference and applied voltage are assumed to be constant. The critical buckling temperature of FG beams are upper than the isotropic ones. Also, the critical temperature is different for various boundary conditions.

Keywords: buckling, functionally graded beams, Hamilton's principle, Euler-Bernoulli beam

Procedia PDF Downloads 304
15568 Assessment of Solid Insulating Material Using Partial Discharge Characteristics

Authors: Qasim Khan, Furkan Ahmad, Asfar A. Khan, M. Saad Alam, Faiz Ahmad


In this paper, partial discharge analysis is performed in cavities artificially created in insulation. The setup is according with Cigre-II Method. Circular Samples created from Perspex Sheet with different configuration with changing number of cavities. Assessment of insulation health can be performed by Partial Discharge measurement as this has been found to be important means of condition monitoring. The experiments are done using MPD 540, which is a modern partial discharge measurement system. By analyzing the PD activity obtained for various voids/cavities, it is observed that the PD voltages show variation for cavity’s diameter, depth even for its ratios. This can be employed for scrutiny of insulation system.

Keywords: partial discharges, condition monitoring, insulation defects, degradation and corrosion, PMMA

Procedia PDF Downloads 348
15567 Analysis of Evolution of Higher Order Solitons by Numerical Simulation

Authors: K. Khadidja


Solitons are stable solution of nonlinear Schrodinger equation. Their stability is due to the exact combination between nonlinearity and dispersion which causes pulse broadening. Higher order solitons are born when nonlinear length is N multiple of dispersive length. Soliton order is determined by the number N itself. In this paper, evolution of higher order solitons is illustrated by simulation using Matlab. Results show that higher order solitons change their shape periodically, the reason why they are bad for transmission comparing to fundamental solitons which are constant. Partial analysis of a soliton of higher order explains that the periodic shape is due to the interplay between nonlinearity and dispersion which are not equal during a period. This class of solitons has many applications such as generation of supercontinuum and the impulse compression on the Femtosecond scale. As a conclusion, the periodicity which is harmful to transmission can be beneficial in other applications.

Keywords: dispersion, nonlinearity, optical fiber, soliton

Procedia PDF Downloads 101
15566 The Influence of Marxism Theory in Malaka's Perspective in Indonesia

Authors: Farhan Alam Farhan Alam, Fatah Nugroho, Setyawan Wahyu Pradana


Tan Malaka was a great Indonesian Marxism thinker. His idea of Marxism give encouragement to the struggle for Indonesian independence. Furthermore, it refers to what Marx said as the flexibility of a Marxist. Tan Malaka developed the Marxist theory against what have already existed so that Marxism can be harmonized and compatible with the context of Indonesia. For example, Tan Malaka initiated the cooperation between the Marxist movement and Pan-Islamism. The collaboration of Islam with Marxism which is so contradictive at that time was seen by Tan Malaka as a necessity in order to against capitalism. By using study literature and historiography methods, this paper attempts to analyze the application of the Marxism theory in the Tan Malaka’s perspective in Indonesia today in order to counter capitalism currently. His perspective combines Marxism with Islam as a solid collaboration of ideology.

Keywords: Indonesia, Marxism, Islam, Marxist theory, Tan Malaka

Procedia PDF Downloads 235
15565 Inverse Matrix in the Theory of Dynamical Systems

Authors: Renata Masarova, Bohuslava Juhasova, Martin Juhas, Zuzana Sutova


In dynamic system theory a mathematical model is often used to describe their properties. In order to find a transfer matrix of a dynamic system we need to calculate an inverse matrix. The paper contains the fusion of the classical theory and the procedures used in the theory of automated control for calculating the inverse matrix. The final part of the paper models the given problem by the Matlab.

Keywords: dynamic system, transfer matrix, inverse matrix, modeling

Procedia PDF Downloads 398
15564 Algorithms Utilizing Wavelet to Solve Various Partial Differential Equations

Authors: K. P. Mredula, D. C. Vakaskar


The article traces developments and evolution of various algorithms developed for solving partial differential equations using the significant combination of wavelet with few already explored solution procedures. The approach depicts a study over a decade of traces and remarks on the modifications in implementing multi-resolution of wavelet, finite difference approach, finite element method and finite volume in dealing with a variety of partial differential equations in the areas like plasma physics, astrophysics, shallow water models, modified Burger equations used in optical fibers, biology, fluid dynamics, chemical kinetics etc.

Keywords: multi-resolution, Haar Wavelet, partial differential equation, numerical methods

Procedia PDF Downloads 203
15563 Refined Procedures for Second Order Asymptotic Theory

Authors: Gubhinder Kundhi, Paul Rilstone


Refined procedures for higher-order asymptotic theory for non-linear models are developed. These include a new method for deriving stochastic expansions of arbitrary order, new methods for evaluating the moments of polynomials of sample averages, a new method for deriving the approximate moments of the stochastic expansions; an application of these techniques to gather improved inferences with the weak instruments problem is considered. It is well established that Instrumental Variable (IV) estimators in the presence of weak instruments can be poorly behaved, in particular, be quite biased in finite samples. In our application, finite sample approximations to the distributions of these estimators are obtained using Edgeworth and Saddlepoint expansions. Departures from normality of the distributions of these estimators are analyzed using higher order analytical corrections in these expansions. In a Monte-Carlo experiment, the performance of these expansions is compared to the first order approximation and other methods commonly used in finite samples such as the bootstrap.

Keywords: edgeworth expansions, higher order asymptotics, saddlepoint expansions, weak instruments

Procedia PDF Downloads 208
15562 A Modified Refined Higher Order Zigzag Theory for Stress Analysis of Hybrid Composite Laminates

Authors: Dhiraj Biswas, Chaitali Ray


A modified refined higher order zigzag theory has been developed in this paper in order to compute the accurate interlaminar stresses within hybrid laminates. Warping has significant effect on the mechanical behaviour of the laminates. To the best of author(s)’ knowledge the stress analysis of hybrid laminates is not reported in the published literature. The present paper aims to develop a new C0 continuous element based on the refined higher order zigzag theories considering warping effect in the formulation of hybrid laminates. The eight noded isoparametric plate bending element is used for the flexural analysis of laminated composite plates to study the performance of the proposed model. The transverse shear stresses are computed by using the differential equations of stress equilibrium in a simplified manner. A computer code has been developed using MATLAB software package. Several numerical examples are solved to assess the performance of the present finite element model based on the proposed higher order zigzag theory by comparing the present results with three-dimensional elasticity solutions. The present formulation is validated by comparing the results obtained from the relevant literature. An extensive parametric study has been carried out on the hybrid laminates with varying percentage of materials and angle of orientation of fibre content.

Keywords: hybrid laminate, Interlaminar stress, refined higher order zigzag theory, warping effect

Procedia PDF Downloads 151
15561 Effect of Temperature on the Binary Mixture of Imidazolium Ionic Liquid with Pyrrolidin-2-One: Volumetric and Ultrasonic Study

Authors: T. Srinivasa Krishna, K. Narendra, K. Thomas, S. S. Raju, B. Munibhadrayya


The densities, speeds of sound and refractive index of the binary mixture of ionic liquid (IL) 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Imide]) and Pyrrolidin-2-one(PY) was measured at atmospheric pressure, and over the range of temperatures T= (298.15 -323.15)K. The excess molar volume, excess isentropic compressibility, excess speed of sound, partial molar volumes, and isentropic partial molar compressibility were calculated from the values of the experimental density and speed of sound. From the experimental data excess thermal expansion coefficients and isothermal pressure coefficient of excess molar enthalpy at 298.15K were calculated. The results were analyzed and were discussed from the point of view of structural changes. Excess properties were calculated and correlated by the Redlich–Kister and the Legendre polynomial equation and binary coefficients were obtained. Values of excess partial volumes at infinite dilution for the binary system at different temperatures were calculated from the adjustable parameters obtained from Legendre polynomial and Redlich–Kister smoothing equation. Deviation in refractive indices ΔnD and deviation in molar refraction, ΔRm were calculated from the measured refractive index values. Equations of state and several mixing rules were used to predict refractive indices of the binary mixtures and compared with the experimental values by means of the standard deviation and found to be in excellent agreement. By using Prigogine–Flory–Patterson (PFP) theory, the above thermodynamic mixing functions have been calculated and the results obtained from this theory were compared with experimental results.

Keywords: density, refractive index, speeds of sound, Prigogine-Flory-Patterson theory

Procedia PDF Downloads 340