Search results for: innovation maturity models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8587

Search results for: innovation maturity models

6727 Digital Transformation in Fashion System Design: Tools and Opportunities

Authors: Margherita Tufarelli, Leonardo Giliberti, Elena Pucci

Abstract:

The fashion industry's interest in virtuality is linked, on the one hand, to the emotional and immersive possibilities of digital resources and the resulting languages and, on the other, to the greater efficiency that can be achieved throughout the value chain. The interaction between digital innovation and deep-rooted manufacturing traditions today translates into a paradigm shift for the entire fashion industry where, for example, the traditional values of industrial secrecy and know-how give way to experimentation in an open as well as participatory way, and the complete emancipation of virtual reality from actual 'reality'. The contribution aims to investigate the theme of digitisation in the Italian fashion industry, analysing its opportunities and the criticalities that have hindered its diffusion. There are two reasons why the most common approach in the fashion sector is still analogue: (i) the fashion product lives in close contact with the human body, so the sensory perception of materials plays a central role in both the use and the design of the product, but current technology is not able to restore the sense of touch; (ii) volumes are obtained by stitching flat surfaces that once assembled, given the flexibility of the material, can assume almost infinite configurations. Managing the fit and styling of virtual garments involves a wide range of factors, including mechanical simulation, collision detection, and user interface techniques for garment creation. After briefly reviewing some of the salient historical milestones in the resolution of problems related to the digital simulation of deformable materials and the user interface for the procedures for the realisation of the clothing system, the paper will describe the operation and possibilities offered today by the latest generation of specialised software. Parametric avatars and digital sartorial approach; drawing tools optimised for pattern making; materials both from the point of view of simulated physical behaviour and of aesthetic performance, tools for checking wearability, renderings, but also tools and procedures useful to companies both for dialogue with prototyping software and machinery and for managing the archive and the variants to be made. The article demonstrates how developments in technology and digital procedures now make it possible to intervene in different stages of design in the fashion industry. An integrated and additive process in which the constructed 3D models are usable both in the prototyping and communication of physical products and in the possible exclusively digital uses of 3D models in the new generation of virtual spaces. Mastering such tools requires the acquisition of specific digital skills and, at the same time, traditional skills for the design of the clothing system, but the benefits are manifold and applicable to different business dimensions. We are only at the beginning of the global digital transformation: the emergence of new professional figures and design dynamics leaves room for imagination, but in addition to applying digital tools to traditional procedures, traditional fashion know-how needs to be transferred into emerging digital practices to ensure the continuity of the technical-cultural heritage beyond the transformation.

Keywords: digital fashion, digital technology and couture, digital fashion communication, 3D garment simulation

Procedia PDF Downloads 72
6726 Making Food Science Education and Research Activities More Attractive for University Students and Food Enterprises by Utilizing Open Innovative Space-Approach

Authors: Anna-Maria Saarela

Abstract:

At the Savonia University of Applied Sciences (UAS), curriculum and studies have been improved by applying an Open Innovation Space approach (OIS). It is based on multidisciplinary action learning. The key elements of OIS-ideology are work-life orientation, and student-centric communal learning. In this approach, every participant can learn from each other and innovations will be created. In this social innovation educational approach, all practices are carried out in close collaboration with enterprises in real-life settings, not in classrooms. As an example, in this paper, Savonia UAS’s Future Food RDI hub (FF) shows how OIS practices are implemented by providing food product development and consumer research services for enterprises in close collaboration with academicians, students and consumers. In particular one example of OIS experimentation in the field is provided by a consumer research carried out utilizing verbal analysis protocol combined with audio-visual observation (VAP-WAVO). In this case, all co-learners were acting together in supermarket settings to collect the relevant data for a product development and the marketing department of a company. The company benefitted from the results obtained, students were more satisfied with their studies, educators and academicians were able to obtain good evidence for further collaboration as well as renewing curriculum contents based on the requirements of working life. In addition, society will benefit over time as young university adults find careers more easily through their OIS related food science studies. Also this knowledge interaction model re-news education practices and brings working-life closer to educational research institutes.

Keywords: collaboration, education, food science, industry, knowledge transfer, RDI, student

Procedia PDF Downloads 373
6725 Machine Learning Models for the Prediction of Heating and Cooling Loads of a Residential Building

Authors: Aaditya U. Jhamb

Abstract:

Due to the current energy crisis that many countries are battling, energy-efficient buildings are the subject of extensive research in the modern technological era because of growing worries about energy consumption and its effects on the environment. The paper explores 8 factors that help determine energy efficiency for a building: (relative compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and glazing area distribution), with Tsanas and Xifara providing a dataset. The data set employed 768 different residential building models to anticipate heating and cooling loads with a low mean squared error. By optimizing these characteristics, machine learning algorithms may assess and properly forecast a building's heating and cooling loads, lowering energy usage while increasing the quality of people's lives. As a result, the paper studied the magnitude of the correlation between these input factors and the two output variables using various statistical methods of analysis after determining which input variable was most closely associated with the output loads. The most conclusive model was the Decision Tree Regressor, which had a mean squared error of 0.258, whilst the least definitive model was the Isotonic Regressor, which had a mean squared error of 21.68. This paper also investigated the KNN Regressor and the Linear Regression, which had to mean squared errors of 3.349 and 18.141, respectively. In conclusion, the model, given the 8 input variables, was able to predict the heating and cooling loads of a residential building accurately and precisely.

Keywords: energy efficient buildings, heating load, cooling load, machine learning models

Procedia PDF Downloads 96
6724 Comparative Study of Ecological City Criteria in Traditional Iranian Cities

Authors: Zahra Yazdani Paraii, Zohreh Yazdani Paraei

Abstract:

Many urban designers and planners have been involved in the design of environmentally friendly or nature adaptable urban development models due to increase in urban populations in the recent century, limitation on natural resources, climate change, and lack of enough water and food. Ecological city is one of the latest models proposed to accomplish the latter goal. In this work, the existing establishing indicators of the ecological city are used regarding energy, water, land use and transportation issues. The model is used to compare the function of traditional settlements of Iran. The result of investigation shows that the specifications and functions of the traditional settlements of Iran fit well into the ecological city model. It is found that the inhabitants of the old cities and villages in Iran had founded ecological cities based on their knowledge of the environment and its natural opportunities and limitations.

Keywords: ecological city, traditional city, urban design, environment

Procedia PDF Downloads 253
6723 Numerical Simulation of Structural Behavior of NSM CFRP Strengthened RC Beams Using Finite Element Analysis

Authors: Faruk Ortes, Baris Sayin, Tarik Serhat Bozkurt, Cemil Akcay

Abstract:

The technique using near-surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) composites has proved to be an reliable strengthening technique. However, the effects of different parameters for the use of NSM CFRP are not fully developed yet. This study focuses on the development of a numerical modeling that can predict the behavior of reinforced concrete (RC) beams strengthened with NSM FRP rods exposed to bending loading and the efficiency of various parameters such as CFRP rod size and filling material type are evaluated by using prepared models. For this purpose, three different models are developed and implemented in the ANSYS® software using Finite Element Analysis (FEA). The numerical results indicate that CFRP rod size and filling material type are significant factors in the behavior of the analyzed RC beams.

Keywords: numerical model, FEA, RC beam, NSM technique, CFRP rod, filling material

Procedia PDF Downloads 602
6722 Performances of Two-Segment Crash Box with Holes under Oblique Load

Authors: Moch Agus Choiron

Abstract:

Crash box design has been developed to obtain optimum energy absorption. In this study, two-segment crash box design with holes is investigated under oblique load. The deformation behavior and crash energy absorption are observed. The analysis was performed using finite element method. The crash test components were impactor, crash box, and fixed rigid base. Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. The models consist of 2 and 4 holes laid within ¼, ½ and ¾ from first segment length. 100 mm aluminum crash box and frontal crash velocity of 16 km/jam were selected. Based on simulation results, it can be concluded that 2 holes located at ¾ has the largest crash energy absorption. This behavior associated with deformation pattern, which produces higher number of folding than other models.

Keywords: crash Box, two-segments, holes configuration, oblique load, deformation pattern

Procedia PDF Downloads 360
6721 Neuron Dynamics of Single-Compartment Traub Model for Hardware Implementations

Authors: J. C. Moctezuma, V. Breña-Medina, Jose Luis Nunez-Yanez, Joseph P. McGeehan

Abstract:

In this work we make a bifurcation analysis for a single compartment representation of Traub model, one of the most important conductance-based models. The analysis focus in two principal parameters: current and leakage conductance. Study of stable and unstable solutions are explored; also Hop-bifurcation and frequency interpretation when current varies is examined. This study allows having control of neuron dynamics and neuron response when these parameters change. Analysis like this is particularly important for several applications such as: tuning parameters in learning process, neuron excitability tests, measure bursting properties of the neuron, etc. Finally, a hardware implementation results were developed to corroborate these results.

Keywords: Traub model, Pinsky-Rinzel model, Hopf bifurcation, single-compartment models, bifurcation analysis, neuron modeling

Procedia PDF Downloads 323
6720 Microchip-Integrated Computational Models for Studying Gait and Motor Control Deficits in Autism

Authors: Noah Odion, Honest Jimu, Blessing Atinuke Afuape

Abstract:

Introduction: Motor control and gait abnormalities are commonly observed in individuals with autism spectrum disorder (ASD), affecting their mobility and coordination. Understanding the underlying neurological and biomechanical factors is essential for designing effective interventions. This study focuses on developing microchip-integrated wearable devices to capture real-time movement data from individuals with autism. By applying computational models to the collected data, we aim to analyze motor control patterns and gait abnormalities, bridging a crucial knowledge gap in autism-related motor dysfunction. Methods: We designed microchip-enabled wearable devices capable of capturing precise kinematic data, including joint angles, acceleration, and velocity during movement. A cross-sectional study was conducted on individuals with ASD and a control group to collect comparative data. Computational modelling was applied using machine learning algorithms to analyse motor control patterns, focusing on gait variability, balance, and coordination. Finite element models were also used to simulate muscle and joint dynamics. The study employed descriptive and analytical methods to interpret the motor data. Results: The wearable devices effectively captured detailed movement data, revealing significant gait variability in the ASD group. For example, gait cycle time was 25% longer, and stride length was reduced by 15% compared to the control group. Motor control analysis showed a 30% reduction in balance stability in individuals with autism. Computational models successfully predicted movement irregularities and helped identify motor control deficits, particularly in the lower limbs. Conclusions: The integration of microchip-based wearable devices with computational models offers a powerful tool for diagnosing and treating motor control deficits in autism. These results have significant implications for patient care, providing objective data to guide personalized therapeutic interventions. The findings also contribute to the broader field of neuroscience by improving our understanding of the motor dysfunctions associated with ASD and other neurodevelopmental disorders.

Keywords: motor control, gait abnormalities, autism, wearable devices, microchips, computational modeling, kinematic analysis, neurodevelopmental disorders

Procedia PDF Downloads 24
6719 Horizontal Cooperative Game Theory in Hotel Revenue Management

Authors: Ririh Rahma Ratinghayu, Jayu Pramudya, Nur Aini Masruroh, Shi-Woei Lin

Abstract:

This research studies pricing strategy in cooperative setting of hotel duopoly selling perishable product under fixed capacity constraint by using the perspective of managers. In hotel revenue management, competitor’s average room rate and occupancy rate should be taken into manager’s consideration in determining pricing strategy to generate optimum revenue. This information is not provided by business intelligence or available in competitor’s website. Thus, Information Sharing (IS) among players might result in improved performance of pricing strategy. IS is widely adopted in the logistics industry, but IS within hospitality industry has not been well-studied. This research put IS as one of cooperative game schemes, besides Mutual Price Setting (MPS) scheme. In off-peak season, hotel manager arranges pricing strategy to offer promotion package and various kinds of discounts up to 60% of full-price to attract customers. Competitor selling homogenous product will react the same, then triggers a price war. Price war which generates lower revenue may be avoided by creating collaboration in pricing strategy to optimize payoff for both players. In MPS cooperative game, players collaborate to set a room rate applied for both players. Cooperative game may avoid unfavorable players’ payoff caused by price war. Researches on horizontal cooperative game in logistics show better performance and payoff for the players, however, horizontal cooperative game in hotel revenue management has not been demonstrated. This paper aims to develop hotel revenue management models under duopoly cooperative schemes (IS & MPS), which are compared to models under non-cooperative scheme too. Each scheme has five models, Capacity Allocation Model; Demand Model; Revenue Model; Optimal Price Model; and Equilibrium Price Model. Capacity Allocation Model and Demand Model employs self-hotel and competitor’s full and discount price as predictors under non-linear relation. Optimal price is obtained by assuming revenue maximization motive. Equilibrium price is observed by interacting self-hotel’s and competitor’s optimal price under reaction equation. Equilibrium is analyzed using game theory approach. The sequence applies for three schemes. MPS Scheme differently aims to optimize total players’ payoff. The case study in which theoretical models are applied observes two hotels offering homogenous product in Indonesia during a year. The Capacity Allocation, Demand, and Revenue Models are built using multiple regression and statistically tested for validation. Case study data confirms that price behaves within demand model in a non-linear manner. IS Models can represent the actual demand and revenue data better than Non-IS Models. Furthermore, IS enables hotels to earn significantly higher revenue. Thus, duopoly hotel players in general, might have reasonable incentives to share information horizontally. During off-peak season, MPS Models are able to predict the optimal equal price for both hotels. However, Nash equilibrium may not always exist depending on actual payoff of adhering or betraying mutual agreement. To optimize performance, horizontal cooperative game may be chosen over non-cooperative game. Mathematical models can be used to detect collusion among business players. Empirical testing can be used as policy input for market regulator in preventing unethical business practices potentially harming society welfare.

Keywords: horizontal cooperative game theory, hotel revenue management, information sharing, mutual price setting

Procedia PDF Downloads 289
6718 Regional Dynamics of Innovation and Entrepreneurship in the Optics and Photonics Industry

Authors: Mustafa İlhan Akbaş, Özlem Garibay, Ivan Garibay

Abstract:

The economic entities in innovation ecosystems form various industry clusters, in which they compete and cooperate to survive and grow. Within a successful and stable industry cluster, the entities acquire different roles that complement each other in the system. The universities and research centers have been accepted to have a critical role in these systems for the creation and development of innovations. However, the real effect of research institutions on regional economic growth is difficult to assess. In this paper, we present our approach for the identification of the impact of research activities on the regional entrepreneurship for a specific high-tech industry: optics and photonics. The optics and photonics has been defined as an enabling industry, which combines the high-tech photonics technology with the developing optics industry. The recent literature suggests that the growth of optics and photonics firms depends on three important factors: the embedded regional specializations in the labor market, the research and development infrastructure, and a dynamic small firm network capable of absorbing new technologies, products and processes. Therefore, the role of each factor and the dynamics among them must be understood to identify the requirements of the entrepreneurship activities in optics and photonics industry. There are three main contributions of our approach. The recent studies show that the innovation in optics and photonics industry is mostly located around metropolitan areas. There are also studies mentioning the importance of research center locations and universities in the regional development of optics and photonics industry. These studies are mostly limited with the number of patents received within a short period of time or some limited survey results. Therefore the first contribution of our approach is conducting a comprehensive analysis for the state and recent history of the photonics and optics research in the US. For this purpose, both the research centers specialized in optics and photonics and the related research groups in various departments of institutions (e.g. Electrical Engineering, Materials Science) are identified and a geographical study of their locations is presented. The second contribution of the paper is the analysis of regional entrepreneurship activities in optics and photonics in recent years. We use the membership data of the International Society for Optics and Photonics (SPIE) and the regional photonics clusters to identify the optics and photonics companies in the US. Then the profiles and activities of these companies are gathered by extracting and integrating the related data from the National Establishment Time Series (NETS) database, ES-202 database and the data sets from the regional photonics clusters. The number of start-ups, their employee numbers and sales are some examples of the extracted data for the industry. Our third contribution is the utilization of collected data to investigate the impact of research institutions on the regional optics and photonics industry growth and entrepreneurship. In this analysis, the regional and periodical conditions of the overall market are taken into consideration while discovering and quantifying the statistical correlations.

Keywords: entrepreneurship, industrial clusters, optics, photonics, emerging industries, research centers

Procedia PDF Downloads 407
6717 Generation of Quasi-Measurement Data for On-Line Process Data Analysis

Authors: Hyun-Woo Cho

Abstract:

For ensuring the safety of a manufacturing process one should quickly identify an assignable cause of a fault in an on-line basis. To this end, many statistical techniques including linear and nonlinear methods have been frequently utilized. However, such methods possessed a major problem of small sample size, which is mostly attributed to the characteristics of empirical models used for reference models. This work presents a new method to overcome the insufficiency of measurement data in the monitoring and diagnosis tasks. Some quasi-measurement data are generated from existing data based on the two indices of similarity and importance. The performance of the method is demonstrated using a real data set. The results turn out that the presented methods are able to handle the insufficiency problem successfully. In addition, it is shown to be quite efficient in terms of computational speed and memory usage, and thus on-line implementation of the method is straightforward for monitoring and diagnosis purposes.

Keywords: data analysis, diagnosis, monitoring, process data, quality control

Procedia PDF Downloads 482
6716 Simulation Analysis of a Full-Scale Five-Story Building with Vibration Control Dampers

Authors: Naohiro Nakamura

Abstract:

Analysis methods to accurately estimate the behavior of buildings when earthquakes occur is very important for improving the seismic safety of such buildings. Recently, the use of damping devices has increased significantly and there is a particular need to appropriately evaluate the behavior of buildings with such devices during earthquakes in the design stage. At present, however, the accuracy of the analysis evaluations is not sufficient. One reason is that the accuracy of current analysis methods has not been appropriately verified because there is very limited data on the behavior of actual buildings during earthquakes. Many types of shaking table test of large structures are performed at the '3-Dimensional Full-Scale Earthquake Testing Facility' (nicknamed 'E-Defense') operated by the National Research Institute of Earth Science and Disaster Prevention (NIED). In this study, simulations using 3- dimensional analysis models were conducted on shaking table test of a 5-story steel-frame structure with dampers. The results of the analysis correspond favorably to the test results announced afterward by the committee. However, the suitability of the parameters and models used in the analysis and the influence they had on the responses remain unclear. Hence, we conducted additional analysis and studies on these models and parameters. In this paper, outlines of the test are shown and the utilized analysis model is explained. Next, the analysis results are compared with the test results. Then, the additional analyses, concerning with the hysteresis curve of the dampers and the beam-end stiffness of the frame, are investigated.

Keywords: three-dimensional analysis, E-defense, full-scale experimen, vibration control damper

Procedia PDF Downloads 190
6715 Porcelain Paste Processing by Robocasting 3D: Parameters Tuning

Authors: A. S. V. Carvalho, J. Luis, L. S. O. Pires, J. M. Oliveira

Abstract:

Additive manufacturing technologies (AM) experienced a remarkable growth in the latest years due to the development and diffusion of a wide range of three-dimensional (3D) printing techniques. Nowadays we can find techniques available for non-industrial users, like fused filament fabrication, but techniques like 3D printing, polyjet, selective laser sintering and stereolithography are mainly spread in the industry. Robocasting (R3D) shows a great potential due to its ability to shape materials with a wide range of viscosity. Industrial porcelain compositions showing different rheological behaviour can be prepared and used as candidate materials to be processed by R3D. The use of this AM technique in industry is very residual. In this work, a specific porcelain composition with suitable rheological properties will be processed by R3D, and a systematic study of the printing parameters tuning will be shown. The porcelain composition was formulated based on an industrial spray dried porcelain powder. The powder particle size and morphology was analysed. The powders were mixed with water and an organic binder on a ball mill at 200 rpm/min for 24 hours. The batch viscosity was adjusted by the addition of an acid solution and mixed again. The paste density, viscosity, zeta potential, particle size distribution and pH were determined. In a R3D system, different speed and pressure settings were studied to access their impact on the fabrication of porcelain models. These models were dried at 80 °C, during 24 hours and sintered in air at 1350 °C for 2 hours. The stability of the models, its walls and surface quality were studied and their physical properties were accessed. The microstructure and layer adhesion were observed by SEM. The studied processing parameters have a high impact on the models quality. Moreover, they have a high impact on the stacking of the filaments. The adequate tuning of the parameters has a huge influence on the final properties of the porcelain models. This work contributes to a better assimilation of AM technologies in ceramic industry. Acknowledgments: The RoboCer3D project – project of additive rapid manufacturing through 3D printing ceramic material (POCI-01-0247-FEDER-003350) financed by Compete 2020, PT 2020, European Regional Development Fund – FEDER through the International and Competitive Operational Program (POCI) under the PT2020 partnership agreement.

Keywords: additive manufacturing, porcelain, robocasting, R3D

Procedia PDF Downloads 162
6714 Survey of the Literacy by Radio Project as an Innovation in Literacy Promotion in Nigeria

Authors: Stella Chioma Nwizu

Abstract:

The National Commission for Adult and Non Formal Education (NMEC) in Nigeria is charged with the reduction of illiteracy rate through the development, monitoring, and supervision of literacy programmes in Nigeria. In spite of various efforts by NMEC to reduce illiteracy, literature still shows that the illiteracy rate is still high. According to NMEC/UNICEF, about 60 million Nigerians are non-literate, and nearly two thirds of them are women. This situation forced the government to search for innovative and better approaches to literacy promotion and delivery. The literacy by radio project was adopted as an innovative intervention to literacy delivery in Nigeria because the radio is the cheapest and most easily affordable medium for non-literates. The project aimed at widening access to literacy programmes for the non-literate marginalized and disadvantaged groups in Nigeria by taking literacy programmes to their door steps. The literacy by radio has worked perfectly well in non-literacy reduction in Cuba. This innovative intervention of literacy by radio is anchored on the diffusion of innovation theory by Rogers. The literacy by radio has been going on for fifteen years and the efficacy and contributions of this innovation need to be investigated. Thus, the purpose of this research is to review the contributions of the literacy by radio in Nigeria. The researcher adopted the survey research design for the study. The population for the study consisted of 2,706 participants and 47 facilitators of the literacy by radio programme in the 10 pilot states in Nigeria. A sample of four states made up of 302 participants and eight facilitators were used for the study. Information was collected through Focus Group Discussion (FGD), interviews and content analysis of official documents. The data were analysed qualitatively to review the contributions of literacy by radio project and determine the efficacy of this innovative approach in facilitating literacy in Nigeria. Results from the field experience showed, among others, that more non-literates have better access to literacy programmes through this innovative approach. The pilot project was 88% successful; not less than 2,110 adults were made literate through the literacy by radio project in 2017. However, lack of enthusiasm and commitment on the part of the technical committee and facilitators due to non-payment of honorarium, poor signals from radio stations, interruption of lectures with adverts, low community involvement in decision making in the project are challenges to the success rate of the project. The researcher acknowledges the need to customize all materials and broadcasts in all the dialects of the participants and the inclusion of more civil rights, environmental protection and agricultural skills into the project. The study recommends among others, improved and timely funding of the project by the Federal Government to enable NMEC to fulfill her obligations towards the greater success of the programme, setting up of independent radio stations for airing the programmes and proper monitoring and evaluation of the project by NMEC and State Agencies for greater effectiveness. In an era of the knowledge-driven economy, no one should be allowed to get saddled with the weight of illiteracy.

Keywords: innovative approach, literacy, project, radio, survey

Procedia PDF Downloads 66
6713 Computational Fluid Dynamics Design and Analysis of Aerodynamic Drag Reduction Devices for a Mazda T3500 Truck

Authors: Basil Nkosilathi Dube, Wilson R. Nyemba, Panashe Mandevu

Abstract:

In highway driving, over 50 percent of the power produced by the engine is used to overcome aerodynamic drag, which is a force that opposes a body’s motion through the air. Aerodynamic drag and thus fuel consumption increase rapidly at speeds above 90kph. It is desirable to minimize fuel consumption. Aerodynamic drag reduction in highway driving is the best approach to minimize fuel consumption and to reduce the negative impacts of greenhouse gas emissions on the natural environment. Fuel economy is the ultimate concern of automotive development. This study aims to design and analyze drag-reducing devices for a Mazda T3500 truck, namely, the cab roof and rear (trailer tail) fairings. The aerodynamic effects of adding these append devices were subsequently investigated. To accomplish this, two 3D CAD models of the Mazda truck were designed using the Design Modeler. One, with these, append devices and the other without. The models were exported to ANSYS Fluent for computational fluid dynamics analysis, no wind tunnel tests were performed. A fine mesh with more than 10 million cells was applied in the discretization of the models. The realizable k-ε turbulence model with enhanced wall treatment was used to solve the Reynold’s Averaged Navier-Stokes (RANS) equation. In order to simulate the highway driving conditions, the tests were simulated with a speed of 100 km/h. The effects of these devices were also investigated for low-speed driving. The drag coefficients for both models were obtained from the numerical calculations. By adding the cab roof and rear (trailer tail) fairings, the simulations show a significant reduction in aerodynamic drag at a higher speed. The results show that the greatest drag reduction is obtained when both devices are used. Visuals from post-processing show that the rear fairing minimized the low-pressure region at the rear of the trailer when moving at highway speed. The rear fairing achieved this by streamlining the turbulent airflow, thereby delaying airflow separation. For lower speeds, there were no significant differences in drag coefficients for both models (original and modified). The results show that these devices can be adopted for improving the aerodynamic efficiency of the Mazda T3500 truck at highway speeds.

Keywords: aerodynamic drag, computation fluid dynamics, fluent, fuel consumption

Procedia PDF Downloads 138
6712 Millennial Teachers of Canada: Innovation within the Boxed-In Constraints of Tradition

Authors: Lena Shulyakovskaya

Abstract:

Every year, schools aim to develop and adopt new technology and pedagogy as a way to equip today's students with the needed 21st Century skills. However, the field of primary and secondary education may not be as open to embracing change in reality. Despite the drive to reform and innovation, the field of education in Canada is still very much steeped in tradition and uses many of the practices that came into effect over 50 years ago. Among those are employment and retention practices. Millennials are the youngest generation of professionals entering the workplace at this time and the ones leaving their jobs within just a few years. Almost half of new teachers leave Canadian schools within their first five years on the job. This paper discusses one of the contributing factors that lead Canadian millennial teachers to either leave or stay in the profession - standardized education system. Using an exploratory case study approach, in-depth interviews with former and current millennial teachers were conducted to learn about their experiences within the K-12 system. Among the findings were the young teachers' concerns about the constant changes to teaching practices and technological implementations that claimed to advance teaching and learning, and yet in reality only disguised and reiterated the same traditional, outdated, and standardized practices that already existed. Furthermore, while many millennial teachers aspired to be innovative with their curriculum and teaching practices, they felt trapped and helpless in the hands of school leaders who were very reluctant to change. While many new program ideas and technological advancements are being made openly available to teachers on a regular basis, it is important to consider the education field as a whole and how it plays into the teachers' ability to realistically implement changes. By the year 2025, millennials will make up approximately 75% of the North American workforce. It is important to examine generational differences among teachers and understand how millennial teachers may be shaping the future of primary and secondary schools, either by staying or leaving the profession.

Keywords: 21st century skills, millennials, teacher attrition, tradition

Procedia PDF Downloads 228
6711 Global Emission Inventories of Air Pollutants from Combustion Sources

Authors: Shu Tao

Abstract:

Based on a global fuel consumption data product (PKU-FUEL-2007) compiled recently and a series of databases for emission factors of various sources, global emission inventories of a number of greenhouse gases and air pollutants, including CO2, CO, SO2, NOx, primary particulate matter (total, PM 10, and PM 2.5), black carbon, organic carbon, mercury, volatile organic carbons, and polycyclic aromatic hydrocarbons, from combustion sources have been developed. The inventories feather high spatial and sectorial resolutions. The spatial resolution of the inventories are 0.1 by 0.1 degree, based on a sub-national disaggregation approach to reduce spatial bias due to uneven distribution of per person fuel consumption within countries. The finely resolved inventories provide critical information for chemical transport modeling and exposure modeling. Emissions from more than 60 sources in energy, industry, agriculture, residential, transportation, and wildfire sectors were quantified in this study. With the detailed sectorial information, the inventories become an important tool for policy makers. For residential sector, a set of models were developed to simulate temporal variation of fuel consumption, consequently pollutant emissions. The models can be used to characterize seasonal as well as inter-annual variations in the emissions in history and to predict future changes. The models can even be used to quantify net change of fuel consumption and pollutant emissions due to climate change. The inventories has been used for model ambient air quality, population exposure, and even health effects. A few examples of the applications are discussed.

Keywords: air pollutants, combustion, emission inventory, sectorial information

Procedia PDF Downloads 369
6710 Discrete Swarm with Passive Congregation for Cost Minimization of the Multiple Vehicle Routing Problem

Authors: Tarek Aboueldahab, Hanan Farag

Abstract:

Cost minimization of Multiple Vehicle Routing Problem becomes a critical issue in the field of transportation because it is NP-hard optimization problem and the search space is complex. Many researches use the hybridization of artificial intelligence (AI) models to solve this problem; however, it can not guarantee to reach the best solution due to the difficulty of searching the whole search space. To overcome this problem, we introduce the hybrid model of Discrete Particle Swarm Optimization (DPSO) with a passive congregation which enable searching the whole search space to compromise between both local and global search. The practical experiment shows that our model obviously outperforms other hybrid models in cost minimization.

Keywords: cost minimization, multi-vehicle routing problem, passive congregation, discrete swarm, passive congregation

Procedia PDF Downloads 98
6709 Long Memory and ARFIMA Modelling: The Case of CPI Inflation for Ghana and South Africa

Authors: A. Boateng, La Gil-Alana, M. Lesaoana; Hj. Siweya, A. Belete

Abstract:

This study examines long memory or long-range dependence in the CPI inflation rates of Ghana and South Africa using Whittle methods and autoregressive fractionally integrated moving average (ARFIMA) models. Standard I(0)/I(1) methods such as Augmented Dickey-Fuller (ADF), Philips-Perron (PP) and Kwiatkowski–Phillips–Schmidt–Shin (KPSS) tests were also employed. Our findings indicate that long memory exists in the CPI inflation rates of both countries. After processing fractional differencing and determining the short memory components, the models were specified as ARFIMA (4,0.35,2) and ARFIMA (3,0.49,3) respectively for Ghana and South Africa. Consequently, the CPI inflation rates of both countries are fractionally integrated and mean reverting. The implication of this result will assist in policy formulation and identification of inflationary pressures in an economy.

Keywords: Consumer Price Index (CPI) inflation rates, Whittle method, long memory, ARFIMA model

Procedia PDF Downloads 369
6708 Patient-Specific Modeling Algorithm for Medical Data Based on AUC

Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper

Abstract:

Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.

Keywords: approach instance-based, area under the ROC curve, patient-specific decision path, clinical predictions

Procedia PDF Downloads 479
6707 General Mathematical Framework for Analysis of Cattle Farm System

Authors: Krzysztof Pomorski

Abstract:

In the given work we present universal mathematical framework for modeling of cattle farm system that can set and validate various hypothesis that can be tested against experimental data. The presented work is preliminary but it is expected to be valid tool for future deeper analysis that can result in new class of prediction methods allowing early detection of cow dieseaes as well as cow performance. Therefore the presented work shall have its meaning in agriculture models and in machine learning as well. It also opens the possibilities for incorporation of certain class of biological models necessary in modeling of cow behavior and farm performance that might include the impact of environment on the farm system. Particular attention is paid to the model of coupled oscillators that it the basic building hypothesis that can construct the model showing certain periodic or quasiperiodic behavior.

Keywords: coupled ordinary differential equations, cattle farm system, numerical methods, stochastic differential equations

Procedia PDF Downloads 145
6706 Fault Analysis of Induction Machine Using Finite Element Method (FEM)

Authors: Wiem Zaabi, Yemna Bensalem, Hafedh Trabelsi

Abstract:

The paper presents a finite element (FE) based efficient analysis procedure for induction machine (IM). The FE formulation approaches are proposed to achieve this goal: the magnetostatic and the non-linear transient time stepped formulations. The study based on finite element models offers much more information on the phenomena characterizing the operation of electrical machines than the classical analytical models. This explains the increase of the interest for the finite element investigations in electrical machines. Based on finite element models, this paper studies the influence of the stator and the rotor faults on the behavior of the IM. In this work, a simple dynamic model for an IM with inter-turn winding fault and a broken bar fault is presented. This fault model is used to study the IM under various fault conditions and severity. The simulation results are conducted to validate the fault model for different levels of fault severity. The comparison of the results obtained by simulation tests allowed verifying the precision of the proposed FEM model. This paper presents a technical method based on Fast Fourier Transform (FFT) analysis of stator current and electromagnetic torque to detect the faults of broken rotor bar. The technique used and the obtained results show clearly the possibility of extracting signatures to detect and locate faults.

Keywords: Finite element Method (FEM), Induction motor (IM), short-circuit fault, broken rotor bar, Fast Fourier Transform (FFT) analysis

Procedia PDF Downloads 301
6705 Influence of Building Orientation and Post Processing Materials on Mechanical Properties of 3D-Printed Parts

Authors: Raf E. Ul Shougat, Ezazul Haque Sabuz, G. M. Najmul Quader, Monon Mahboob

Abstract:

Since there are lots of ways for building and post processing of parts or models in 3D printing technology, the main objective of this research is to provide an understanding how mechanical characteristics of 3D printed parts get changed for different building orientations and infiltrates. Tensile, compressive, flexure, and hardness test were performed for the analysis of mechanical properties of those models. Specimens were designed in CAD software, printed on Z-printer 450 with five different build orientations and post processed with four different infiltrates. Results show that with the change of infiltrates or orientations each of the above mechanical property changes and for each infiltrate the highest tensile strength, flexural strength, and hardness are found for such orientation where there is the lowest number of layers while printing.

Keywords: 3D printing, building orientations, infiltrates, mechanical characteristics, number of layers

Procedia PDF Downloads 280
6704 An Investigation on Electric Field Distribution around 380 kV Transmission Line for Various Pylon Models

Authors: C. F. Kumru, C. Kocatepe, O. Arikan

Abstract:

In this study, electric field distribution analyses for three pylon models are carried out by a Finite Element Method (FEM) based software. Analyses are performed in both stationary and time domains to observe instantaneous values along with the effective ones. Considering the results of the study, different line geometries is considerably affecting the magnitude and distribution of electric field although the line voltages are the same. Furthermore, it is observed that maximum values of instantaneous electric field obtained in time domain analysis are quite higher than the effective ones in stationary mode. In consequence, electric field distribution analyses should be individually made for each different line model and the limit exposure values or distances to residential buildings should be defined according to the results obtained.

Keywords: electric field, energy transmission line, finite element method, pylon

Procedia PDF Downloads 728
6703 A Grey-Box Text Attack Framework Using Explainable AI

Authors: Esther Chiramal, Kelvin Soh Boon Kai

Abstract:

Explainable AI is a strong strategy implemented to understand complex black-box model predictions in a human-interpretable language. It provides the evidence required to execute the use of trustworthy and reliable AI systems. On the other hand, however, it also opens the door to locating possible vulnerabilities in an AI model. Traditional adversarial text attack uses word substitution, data augmentation techniques, and gradient-based attacks on powerful pre-trained Bidirectional Encoder Representations from Transformers (BERT) variants to generate adversarial sentences. These attacks are generally white-box in nature and not practical as they can be easily detected by humans e.g., Changing the word from “Poor” to “Rich”. We proposed a simple yet effective Grey-box cum Black-box approach that does not require the knowledge of the model while using a set of surrogate Transformer/BERT models to perform the attack using Explainable AI techniques. As Transformers are the current state-of-the-art models for almost all Natural Language Processing (NLP) tasks, an attack generated from BERT1 is transferable to BERT2. This transferability is made possible due to the attention mechanism in the transformer that allows the model to capture long-range dependencies in a sequence. Using the power of BERT generalisation via attention, we attempt to exploit how transformers learn by attacking a few surrogate transformer variants which are all based on a different architecture. We demonstrate that this approach is highly effective to generate semantically good sentences by changing as little as one word that is not detectable by humans while still fooling other BERT models.

Keywords: BERT, explainable AI, Grey-box text attack, transformer

Procedia PDF Downloads 137
6702 Exploring RQ-EQ Relatons among Psychology Majors

Authors: Maria T. Mamba, Febe Marl G. Paat

Abstract:

The illustrious estimation that psychology majors, psychologists and allied psychology practitioners as expert behavior analysts, if not, “life enthusiasts” spurred two essentially linked endeavors. First, the reconsideration of the time-honored ingenuity and expectations from psychologists such as the ability to perceive ways to undertake a range of difficulties, the ability to apply psychology in order to self-regulate and to display personal integrity, and among others. Second, is to ascertain solid support to uphold aforesaid expectations. This study achieved its goals by having explored how two burgeoning constructs- RQ and EQ play parts in the lives of psychology people. Having involved the total population of psychology majors in Cagayan State University along with the use of Emotional Quotient Test and Resilience Assessment Questionnaire, the study provides a précis of how perceived “champions” of psychological well-being respond emotionally to different situations and deal effectively with and even thrive on the demands of frequently changing environmental circumstances. Significant findings about how the major variables correlated with the population’s demographic profile (e.g. age, sex, and year level) were also accounted. To realize a more academic concept with the present study, significant connections between RQ (self-assurance, personal vision, flexible and adaptable, organized, problem solver, interpersonal competence, socially connected, and active) and EQ (e.g. emotional maturity, emotional sensitivity, and emotional competency) dimensions were uncovered.

Keywords: emotional quotient, resilience quotient, psychology majors, exploring

Procedia PDF Downloads 450
6701 Evaluation Metrics for Machine Learning Techniques: A Comprehensive Review and Comparative Analysis of Performance Measurement Approaches

Authors: Seyed-Ali Sadegh-Zadeh, Kaveh Kavianpour, Hamed Atashbar, Elham Heidari, Saeed Shiry Ghidary, Amir M. Hajiyavand

Abstract:

Evaluation metrics play a critical role in assessing the performance of machine learning models. In this review paper, we provide a comprehensive overview of performance measurement approaches for machine learning models. For each category, we discuss the most widely used metrics, including their mathematical formulations and interpretation. Additionally, we provide a comparative analysis of performance measurement approaches for metric combinations. Our review paper aims to provide researchers and practitioners with a better understanding of performance measurement approaches and to aid in the selection of appropriate evaluation metrics for their specific applications.

Keywords: evaluation metrics, performance measurement, supervised learning, unsupervised learning, reinforcement learning, model robustness and stability, comparative analysis

Procedia PDF Downloads 73
6700 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records

Authors: Sara ElElimy, Samir Moustafa

Abstract:

Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).

Keywords: big data analytics, machine learning, CDRs, 5G

Procedia PDF Downloads 139
6699 Effective Stacking of Deep Neural Models for Automated Object Recognition in Retail Stores

Authors: Ankit Sinha, Soham Banerjee, Pratik Chattopadhyay

Abstract:

Automated product recognition in retail stores is an important real-world application in the domain of Computer Vision and Pattern Recognition. In this paper, we consider the problem of automatically identifying the classes of the products placed on racks in retail stores from an image of the rack and information about the query/product images. We improve upon the existing approaches in terms of effectiveness and memory requirement by developing a two-stage object detection and recognition pipeline comprising of a Faster-RCNN-based object localizer that detects the object regions in the rack image and a ResNet-18-based image encoder that classifies the detected regions into the appropriate classes. Each of the models is fine-tuned using appropriate data sets for better prediction and data augmentation is performed on each query image to prepare an extensive gallery set for fine-tuning the ResNet-18-based product recognition model. This encoder is trained using a triplet loss function following the strategy of online-hard-negative-mining for improved prediction. The proposed models are lightweight and can be connected in an end-to-end manner during deployment to automatically identify each product object placed in a rack image. Extensive experiments using Grozi-32k and GP-180 data sets verify the effectiveness of the proposed model.

Keywords: retail stores, faster-RCNN, object localization, ResNet-18, triplet loss, data augmentation, product recognition

Procedia PDF Downloads 156
6698 A Multi-Release Software Reliability Growth Models Incorporating Imperfect Debugging and Change-Point under the Simulated Testing Environment and Software Release Time

Authors: Sujit Kumar Pradhan, Anil Kumar, Vijay Kumar

Abstract:

The testing process of the software during the software development time is a crucial step as it makes the software more efficient and dependable. To estimate software’s reliability through the mean value function, many software reliability growth models (SRGMs) were developed under the assumption that operating and testing environments are the same. Practically, it is not true because when the software works in a natural field environment, the reliability of the software differs. This article discussed an SRGM comprising change-point and imperfect debugging in a simulated testing environment. Later on, we extended it in a multi-release direction. Initially, the software was released to the market with few features. According to the market’s demand, the software company upgraded the current version by adding new features as time passed. Therefore, we have proposed a generalized multi-release SRGM where change-point and imperfect debugging concepts have been addressed in a simulated testing environment. The failure-increasing rate concept has been adopted to determine the change point for each software release. Based on nine goodness-of-fit criteria, the proposed model is validated on two real datasets. The results demonstrate that the proposed model fits the datasets better. We have also discussed the optimal release time of the software through a cost model by assuming that the testing and debugging costs are time-dependent.

Keywords: software reliability growth models, non-homogeneous Poisson process, multi-release software, mean value function, change-point, environmental factors

Procedia PDF Downloads 74