Search results for: hybrid working models
9339 Understanding the Role of Gas Hydrate Morphology on the Producibility of a Hydrate-Bearing Reservoir
Authors: David Lall, Vikram Vishal, P. G. Ranjith
Abstract:
Numerical modeling of gas production from hydrate-bearing reservoirs requires the solution of various thermal, hydrological, chemical, and mechanical phenomena in a coupled manner. Among the various reservoir properties that influence gas production estimates, the distribution of permeability across the domain is one of the most crucial parameters since it determines both heat transfer and mass transfer. The aspect of permeability in hydrate-bearing reservoirs is particularly complex compared to conventional reservoirs since it depends on the saturation of gas hydrates and hence, is dynamic during production. The dependence of permeability on hydrate saturation is mathematically represented using permeability-reduction models, which are specific to the expected morphology of hydrate accumulations (such as grain-coating or pore-filling hydrates). In this study, we demonstrate the impact of various permeability-reduction models, and consequently, different morphologies of hydrate deposits on the estimates of gas production using depressurization at the reservoir scale. We observe significant differences in produced water volumes and cumulative mass of produced gas between the models, thereby highlighting the uncertainty in production behavior arising from the ambiguity in the prevalent gas hydrate morphology.Keywords: gas hydrate morphology, multi-scale modeling, THMC, fluid flow in porous media
Procedia PDF Downloads 2209338 Analysis of Key Factors Influencing Muslim Women’s Buying Intentions of Clothes: A Study of UK’s Ethnic Minorities and Modest Fashion Industry
Authors: Nargis Ali
Abstract:
Since the modest fashion market is growing in the UK, there is still little understanding and more concerns found among researchers and marketers about Muslim consumers. Therefore, the present study is designed to explore critical factors influencing Muslim women’s intention to purchase clothing and to identify the differences in the purchase intention of ethnic minority groups in the UK. The conceptual framework is designed using the theory of planned behavior and social identity theory. In order to satisfy the research objectives, a structured online questionnaire was published on Facebook from 20 November to 21 March. As a result, 1087 usable questionnaires were received and used to assess the proposed model fit through structural equation modeling. Results revealed that social media does influence the purchase intention of Muslim women. Muslim women search for stylish clothes that provide comfort during summer while they prefer soft and subdued colors. Furthermore, religious knowledge and religious practice, and fashion uniqueness strongly influence their purchase intention, while hybrid identity is negatively related to the purchase intention of Muslim women. This research contributes to the literature linked to Muslim consumers at a time when the UK's large retailers were seeking to attract Muslim consumers through modestly designed outfits. Besides, it will be helpful to formulate or revise product and marketing strategies according to UK’s Muslim women’s tastes and needs.Keywords: fashion uniqueness, hybrid identity, religiosity, social media, social identity theory, structural equation modeling, theory of planned behavior
Procedia PDF Downloads 2269337 Integrated Design in Additive Manufacturing Based on Design for Manufacturing
Authors: E. Asadollahi-Yazdi, J. Gardan, P. Lafon
Abstract:
Nowadays, manufactures are encountered with production of different version of products due to quality, cost and time constraints. On the other hand, Additive Manufacturing (AM) as a production method based on CAD model disrupts the design and manufacturing cycle with new parameters. To consider these issues, the researchers utilized Design For Manufacturing (DFM) approach for AM but until now there is no integrated approach for design and manufacturing of product through the AM. So, this paper aims to provide a general methodology for managing the different production issues, as well as, support the interoperability with AM process and different Product Life Cycle Management tools. The problem is that the models of System Engineering which is used for managing complex systems cannot support the product evolution and its impact on the product life cycle. Therefore, it seems necessary to provide a general methodology for managing the product’s diversities which is created by using AM. This methodology must consider manufacture and assembly during product design as early as possible in the design stage. The latest approach of DFM, as a methodology to analyze the system comprehensively, integrates manufacturing constraints in the numerical model in upstream. So, DFM for AM is used to import the characteristics of AM into the design and manufacturing process of a hybrid product to manage the criteria coming from AM. Also, the research presents an integrated design method in order to take into account the knowledge of layers manufacturing technologies. For this purpose, the interface model based on the skin and skeleton concepts is provided, the usage and manufacturing skins are used to show the functional surface of the product. Also, the material flow and link between the skins are demonstrated by usage and manufacturing skeletons. Therefore, this integrated approach is a helpful methodology for designer and manufacturer in different decisions like material and process selection as well as, evaluation of product manufacturability.Keywords: additive manufacturing, 3D printing, design for manufacturing, integrated design, interoperability
Procedia PDF Downloads 3169336 Ambient Notifications and the Interruption Effect
Authors: Trapond Hiransalee
Abstract:
The technology of mobile devices has changed our daily lives. Since smartphone have become a multi-functional device, many people spend unnecessary time on them, and could be interrupted by inappropriate notifications such as unimportant messages from social media. Notifications from smartphone could draw people’s attention and distract them from their priorities and current tasks. This research investigated that if the users were notified by their surroundings instead of smartphone, would it create less distraction and keep their focus on the present task. The experiment was a simulation of a lamp and door notification. Notifications related to work will be embedded in the lamp such as an email from a colleague. A notification that is useful when going outside such as weather information, traffic information, and schedule reminder will be embedded in the door. The experiment was conducted by sending notifications to the participant while he or she was working on a primary task and the working performance was measured. The results show that the lamp notification had fewer interruption effects than the smartphone. For the door notification, it was simulated in order to gain opinions and insights on ambient notifications from participants. Many participants agreed that the ambient notifications are useful and being informed by them could lessen the usage of their smartphone. The results and insights from this research could be used to guide the design process of ambient notifications.Keywords: HCI, interaction, interaction design, usability testing
Procedia PDF Downloads 4059335 Aggregate Production Planning Framework in a Multi-Product Factory: A Case Study
Authors: Ignatio Madanhire, Charles Mbohwa
Abstract:
This study looks at the best model of aggregate planning activity in an industrial entity and uses the trial and error method on spreadsheets to solve aggregate production planning problems. Also linear programming model is introduced to optimize the aggregate production planning problem. Application of the models in a furniture production firm is evaluated to demonstrate that practical and beneficial solutions can be obtained from the models. Finally some benchmarking of other furniture manufacturing industries was undertaken to assess relevance and level of use in other furniture firmsKeywords: aggregate production planning, trial and error, linear programming, furniture industry
Procedia PDF Downloads 5569334 Machine Learning Techniques for Estimating Ground Motion Parameters
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine
Procedia PDF Downloads 1229333 Attitude, Practice, and Prevalence of Injuries among Building Construction Workers in Lagos State
Authors: O. J. Makinde, O. A. Abiola
Abstract:
Background: Hazards and injuries are two common phenomena that have been associated with the building construction profession. Apart from injuries, deaths from injuries sustained at work have been high in this profession. This study, therefore, attempts to determine the attitude, practice, and prevalence of injuries among this group of workers. Methods: This was a cross-sectional study with 285 respondents. The sampling was multi-staged. Interviewer-administered questionnaires were used to elicit information such as socio-demographic characteristics of the respondents, attitude and practice of occupational safety and prevalence of injuries among the workers. The data were analyzed using epi-info 3.5.1 statistical software. Result: The modal age group is 25-34yrs which made up 40% of the respondents. Most of the respondents were male (86.3%). Most of the respondent (52.3%) have their highest educational level as the secondary school. Most of the respondents (64.9%) had a poor attitude to occupational safety while 91.6% had poor occupational safety practices. The prevalence of occupational injury was very high (64.9%). Particles in the eyes have the highest prevalence (52.3%) while electric shock has the least prevalence (19.6%).None of the respondent working at a height used safety belt while working. Conclusion: Attitude and practice of occupational safety are poor among this group of workers and prevalence of injuries was high.Keywords: building, construction, Hazard, injury, workers
Procedia PDF Downloads 3719332 Changes in When and Where People Are Spending Time in Response to COVID-19
Authors: Nicholas Reinicke, Brennan Borlaug, Matthew Moniot
Abstract:
The COVID-19 pandemic has resulted in a significant change in driving behavior as people respond to the new environment. However, existing methods for analyzing driver behavior, such as travel surveys and travel demand models, are not suited for incorporating abrupt environmental disruptions. To address this, we analyze a set of high-resolution trip data and introduce two new metrics for quantifying driving behavioral shifts as a function of time, allowing us to compare the time periods before and after the pandemic began. We apply these metrics to the Denver, Colorado metropolitan statistical area (MSA) to demonstrate the utility of the metrics. Then, we present a case study for comparing two distinct MSAs, Louisville, Kentucky, and Des Moines, Iowa, which exhibit significant differences in the makeup of their labor markets. The results indicate that although the regions of study exhibit certain unique driving behavioral shifts, emerging trends can be seen when comparing between seemingly distinct regions. For instance, drivers in all three MSAs are generally shown to have spent more time at residential locations and less time in workplaces in the time period after the pandemic started. In addition, workplaces that may be incompatible with remote working, such as hospitals and certain retail locations, generally retained much of their pre-pandemic travel activity.Keywords: COVID-19, driver behavior, GPS data, signal analysis, telework
Procedia PDF Downloads 1119331 Comparison of Methods of Estimation for Use in Goodness of Fit Tests for Binary Multilevel Models
Authors: I. V. Pinto, M. R. Sooriyarachchi
Abstract:
It can be frequently observed that the data arising in our environment have a hierarchical or a nested structure attached with the data. Multilevel modelling is a modern approach to handle this kind of data. When multilevel modelling is combined with a binary response, the estimation methods get complex in nature and the usual techniques are derived from quasi-likelihood method. The estimation methods which are compared in this study are, marginal quasi-likelihood (order 1 & order 2) (MQL1, MQL2) and penalized quasi-likelihood (order 1 & order 2) (PQL1, PQL2). A statistical model is of no use if it does not reflect the given dataset. Therefore, checking the adequacy of the fitted model through a goodness-of-fit (GOF) test is an essential stage in any modelling procedure. However, prior to usage, it is also equally important to confirm that the GOF test performs well and is suitable for the given model. This study assesses the suitability of the GOF test developed for binary response multilevel models with respect to the method used in model estimation. An extensive set of simulations was conducted using MLwiN (v 2.19) with varying number of clusters, cluster sizes and intra cluster correlations. The test maintained the desirable Type-I error for models estimated using PQL2 and it failed for almost all the combinations of MQL. Power of the test was adequate for most of the combinations in all estimation methods except MQL1. Moreover, models were fitted using the four methods to a real-life dataset and performance of the test was compared for each model.Keywords: goodness-of-fit test, marginal quasi-likelihood, multilevel modelling, penalized quasi-likelihood, power, quasi-likelihood, type-I error
Procedia PDF Downloads 1429330 Using Machine Learning to Classify Different Body Parts and Determine Healthiness
Authors: Zachary Pan
Abstract:
Our general mission is to solve the problem of classifying images into different body part types and deciding if each of them is healthy or not. However, for now, we will determine healthiness for only one-sixth of the body parts, specifically the chest. We will detect pneumonia in X-ray scans of those chest images. With this type of AI, doctors can use it as a second opinion when they are taking CT or X-ray scans of their patients. Another ad-vantage of using this machine learning classifier is that it has no human weaknesses like fatigue. The overall ap-proach to this problem is to split the problem into two parts: first, classify the image, then determine if it is healthy. In order to classify the image into a specific body part class, the body parts dataset must be split into test and training sets. We can then use many models, like neural networks or logistic regression models, and fit them using the training set. Now, using the test set, we can obtain a realistic accuracy the models will have on images in the real world since these testing images have never been seen by the models before. In order to increase this testing accuracy, we can also apply many complex algorithms to the models, like multiplicative weight update. For the second part of the problem, to determine if the body part is healthy, we can have another dataset consisting of healthy and non-healthy images of the specific body part and once again split that into the test and training sets. We then use another neural network to train on those training set images and use the testing set to figure out its accuracy. We will do this process only for the chest images. A major conclusion reached is that convolutional neural networks are the most reliable and accurate at image classification. In classifying the images, the logistic regression model, the neural network, neural networks with multiplicative weight update, neural networks with the black box algorithm, and the convolutional neural network achieved 96.83 percent accuracy, 97.33 percent accuracy, 97.83 percent accuracy, 96.67 percent accuracy, and 98.83 percent accuracy, respectively. On the other hand, the overall accuracy of the model that de-termines if the images are healthy or not is around 78.37 percent accuracy.Keywords: body part, healthcare, machine learning, neural networks
Procedia PDF Downloads 1039329 Review of Hydrologic Applications of Conceptual Models for Precipitation-Runoff Process
Authors: Oluwatosin Olofintoye, Josiah Adeyemo, Gbemileke Shomade
Abstract:
The relationship between rainfall and runoff is an important issue in surface water hydrology therefore the understanding and development of accurate rainfall-runoff models and their applications in water resources planning, management and operation are of paramount importance in hydrological studies. This paper reviews some of the previous works on the rainfall-runoff process modeling. The hydrologic applications of conceptual models and artificial neural networks (ANNs) for the precipitation-runoff process modeling were studied. Gradient training methods such as error back-propagation (BP) and evolutionary algorithms (EAs) are discussed in relation to the training of artificial neural networks and it is shown that application of EAs to artificial neural networks training could be an alternative to other training methods. Therefore, further research interest to exploit the abundant expert knowledge in the area of artificial intelligence for the solution of hydrologic and water resources planning and management problems is needed.Keywords: artificial intelligence, artificial neural networks, evolutionary algorithms, gradient training method, rainfall-runoff model
Procedia PDF Downloads 4549328 The Effect of Symmetry on the Perception of Happiness and Boredom in Design Products
Authors: Michele Sinico
Abstract:
The present research investigates the effect of symmetry on the perception of happiness and boredom in design products. Three experiments were carried out in order to verify the degree of the visual expressive value on different models of bookcases, wall clocks, and chairs. 60 participants directly indicated the degree of happiness and boredom using 7-point rating scales. The findings show that the participants acknowledged a different value of expressive quality in the different product models. Results show also that symmetry is not a significant constraint for an emotional design project.Keywords: product experience, emotional design, symmetry, expressive qualities
Procedia PDF Downloads 1479327 Airliner-UAV Flight Formation in Climb Regime
Authors: Pavel Zikmund, Robert Popela
Abstract:
Extreme formation is a theoretical concept of self-sustain flight when a big Airliner is followed by a small UAV glider flying in airliner’s wake vortex. The paper presents results of climb analysis with a goal to lift the gliding UAV to airliner’s cruise altitude. Wake vortex models, the UAV drag polar and basic parameters and airliner’s climb profile are introduced at first. Then, flight performance of the UAV in the wake vortex is evaluated by analytical methods. Time history of optimal distance between the airliner and the UAV during the climb is determined. The results are encouraging, therefore available UAV drag margin for electricity generation is figured out for different vortex models.Keywords: flight in formation, self-sustained flight, UAV, wake vortex
Procedia PDF Downloads 4419326 Quince Seed Mucilage (QSD)/ Multiwall Carbonano Tube Hybrid Hydrogels as Novel Controlled Drug Delivery Systems
Authors: Raouf Alizadeh, Kadijeh Hemmati
Abstract:
The aim of this study is to synthesize several series of hydrogels from combination of a natural based polymer (Quince seed mucilage QSD), a synthetic copolymer contained methoxy poly ethylene glycol -polycaprolactone (mPEG-PCL) in the presence of different amount of multi-walled carbon nanotube (f-MWNT). Mono epoxide functionalized mPEG (mP EG-EP) was synthesized and reacted with sodium azide in the presence of NH4Cl to afford mPEG- N3(-OH). Then ring opening polymerization (ROP) of ε–caprolactone (CL) in the presence of mPEG- N3(-OH) as initiator and Sn(Oct)2 as catalyst led to preparation of mPEG-PCL- N3(-OH ) which was grafted onto propagylated f-MWNT by the click reaction to obtain mPEG-PCL- f-MWNT (-OH ). In the presence of mPEG- N3(-Br) and mixture of NHS/DCC/ QSD, hybrid hydrogels were successfully synthesized. The copolymers and hydrogels were characterized using different techniques such as, scanning electron microscope (SEM) and thermogravimetric analysis (TGA). The gel content of hydrogels showed dependence on the weight ratio of QSD:mPEG-PCL:f-MWNT. The swelling behavior of the prepared hydrogels was also studied under variation of pH, immersion time, and temperature. According to the results, the swelling behavior of the prepared hydrogels showed significant dependence in the gel content, pH, immersion time and temperature. The highest swelling was observed at room temperature, in 60 min and at pH 8. The loading and in-vitro release of quercetin as a model drug were investigated at pH of 2.2 and 7.4, and the results showed that release rate at pH 7.4 was faster than that at pH 2.2. The total loading and release showed dependence on the network structure of hydrogels and were in the range of 65- 91%. In addition, the cytotoxicity and release kinetics of the prepared hydrogels were also investigated.Keywords: antioxidant, drug delivery, Quince Seed Mucilage(QSD), swelling behavior
Procedia PDF Downloads 3209325 Theoretical Investigations and Simulation of Electromagnetic Ion Cyclotron Waves in the Earth’s Magnetosphere Through Magnetospheric Multiscale Mission
Authors: A. A. Abid
Abstract:
Wave-particle interactions are considered to be the paramount in the transmission of energy in collisionless space plasmas, where electromagnetic fields confined the charged particles movement. One of the distinct features of energy transfer in collisionless plasma is wave-particle interaction which is ubiquitous in space plasmas. The three essential populations of the inner magnetosphere are cold plasmaspheric plasmas, ring-currents, and radiation belts high energy particles. The transition region amid such populations initiates wave-particle interactions among distinct plasmas and the wave mode perceived in the magnetosphere is the electromagnetic ion cyclotron (EMIC) wave. These waves can interact with numerous particle species resonantly, accompanied by plasma particle heating is still in debate. In this work we paid particular attention to how EMIC waves impact plasma species, specifically how they affect the heating of electrons and ions during storm and substorm in the Magnetosphere. Using Magnetospheric Multiscale (MMS) mission and electromagnetic hybrid simulation, this project will investigate the energy transfer mechanism (e.g., Landau interactions, bounce resonance interaction, cyclotron resonance interaction, etc.) between EMIC waves and cold-warm plasma populations. Other features such as the production of EMIC waves and the importance of cold plasma particles in EMIC wave-particle interactions will also be worth exploring. Wave particle interactions, electromagnetic hybrid simulation, electromagnetic ion cyclotron (EMIC) waves, Magnetospheric Multiscale (MMS) mission, space plasmas, inner magnetosphereKeywords: MMS, magnetosphere, wave particle interraction, non-maxwellian distribution
Procedia PDF Downloads 629324 A Hybrid Simulation Approach to Evaluate Cooling Energy Consumption for Public Housings of Subtropics
Authors: Kwok W. Mui, Ling T. Wong, Chi T. Cheung
Abstract:
Cooling energy consumption in the residential sector, different from shopping mall, office or commercial buildings, is significantly subject to occupant decisions where in-depth investigations are found limited. It shows that energy consumptions could be associated with housing types. Surveys have been conducted in existing Hong Kong public housings to understand the housing characteristics, apartment electricity demands, occupant’s thermal expectations, and air–conditioning usage patterns for further cooling energy-saving assessments. The aim of this study is to develop a hybrid cooling energy prediction model, which integrated by EnergyPlus (EP) and artificial neural network (ANN) to estimate cooling energy consumption in public residential sector. Sensitivity tests are conducted to find out the energy impacts with changing building parameters regarding to external wall and window material selection, window size reduction, shading extension, building orientation and apartment size control respectively. Assessments are performed to investigate the relationships between cooling demands and occupant behavior on thermal environment criteria and air-conditioning operation patterns. The results are summarized into a cooling energy calculator for layman use to enhance the cooling energy saving awareness in their own living environment. The findings can be used as a directory framework for future cooling energy evaluation in residential buildings, especially focus on the occupant behavioral air–conditioning operation and criteria of energy-saving incentives.Keywords: artificial neural network, cooling energy, occupant behavior, residential buildings, thermal environment
Procedia PDF Downloads 1689323 Critically Sampled Hybrid Trigonometry Generalized Discrete Fourier Transform for Multistandard Receiver Platform
Authors: Temidayo Otunniyi
Abstract:
This paper presents a low computational channelization algorithm for the multi-standards platform using poly phase implementation of a critically sampled hybrid Trigonometry generalized Discrete Fourier Transform, (HGDFT). An HGDFT channelization algorithm exploits the orthogonality of two trigonometry Fourier functions, together with the properties of Quadrature Mirror Filter Bank (QMFB) and Exponential Modulated filter Bank (EMFB), respectively. HGDFT shows improvement in its implementation in terms of high reconfigurability, lower filter length, parallelism, and medium computational activities. Type 1 and type 111 poly phase structures are derived for real-valued HGDFT modulation. The design specifications are decimated critically and over-sampled for both single and multi standards receiver platforms. Evaluating the performance of oversampled single standard receiver channels, the HGDFT algorithm achieved 40% complexity reduction, compared to 34% and 38% reduction in the Discrete Fourier Transform (DFT) and tree quadrature mirror filter (TQMF) algorithm. The parallel generalized discrete Fourier transform (PGDFT) and recombined generalized discrete Fourier transform (RGDFT) had 41% complexity reduction and HGDFT had a 46% reduction in oversampling multi-standards mode. While in the critically sampled multi-standard receiver channels, HGDFT had complexity reduction of 70% while both PGDFT and RGDFT had a 34% reduction.Keywords: software defined radio, channelization, critical sample rate, over-sample rate
Procedia PDF Downloads 1489322 Analyzing the Impact of Code Commenting on Software Quality
Authors: Thulya Premathilake, Tharushi Perera, Hansi Thathsarani, Tharushi Nethmini, Dilshan De Silva, Piyumika Samarasekara
Abstract:
One of the most efficient ways to assist developers in grasping the source code is to make use of comments, which can be found throughout the code. When working in fields such as software development, having comments in your code that are of good quality is a fundamental requirement. Tackling software problems while making use of programs that have already been built. It is essential for the intention of the source code to be made crystal apparent in the comments that are added to the code. This assists programmers in better comprehending the programs they are working on and enables them to complete software maintenance jobs in a more timely manner. In spite of the fact that comments and documentation are meant to improve readability and maintainability, the vast majority of programmers place the majority of their focus on the actual code that is being written. This study provides a complete and comprehensive overview of the previous research that has been conducted on the topic of code comments. The study focuses on four main topics, including automated comment production, comment consistency, comment classification, and comment quality rating. One is able to get the knowledge that is more complete for use in following inquiries if they conduct an analysis of the proper approaches that were used in this study issue.Keywords: code commenting, source code, software quality, quality assurance
Procedia PDF Downloads 859321 Simulation, Optimization, and Analysis Approach of Microgrid Systems
Authors: Saqib Ali
Abstract:
Sources are classified into two depending upon the factor of reviving. These sources, which cannot be revived into their original shape once they are consumed, are considered as nonrenewable energy resources, i.e., (coal, fuel) Moreover, those energy resources which are revivable to the original condition even after being consumed are known as renewable energy resources, i.e., (wind, solar, hydel) Renewable energy is a cost-effective way to generate clean and green electrical energy Now a day’s majority of the countries are paying heed to energy generation from RES Pakistan is mostly relying on conventional energy resources which are mostly nonrenewable in nature coal, fuel is one of the major resources, and with the advent of time their prices are increasing on the other hand RES have great potential in the country with the deployment of RES greater reliability and an effective power system can be obtained In this thesis, a similar concept is being used and a hybrid power system is proposed which is composed of intermixing of renewable and nonrenewable sources The Source side is composed of solar, wind, fuel cells which will be used in an optimal manner to serve load The goal is to provide an economical, reliable, uninterruptable power supply. This is achieved by optimal controller (PI, PD, PID, FOPID) Optimization techniques are applied to the controllers to achieve the desired results. Advanced algorithms (Particle swarm optimization, Flower Pollination Algorithm) will be used to extract the desired output from the controller Detailed comparison in the form of tables and results will be provided, which will highlight the efficiency of the proposed system.Keywords: distributed generation, demand-side management, hybrid power system, micro grid, renewable energy resources, supply-side management
Procedia PDF Downloads 979320 Obesity-Associated Vitamin D Insufficiency Among Women
Authors: Archana Surendran, Kalpana C. A.
Abstract:
Vitamin D insufficiency is highly prevalent in women. Vitamin D bioavailability could be reduced in obesity due to increased sequestration by white adipose tissue. Increased sun exposure due to more frequent outdoor physical activity as well as a diet rich in vitamin D could be the common cause of both higher levels of 25(OH)D and a more favorable lipid profile. The study was conducted with the aim to assess the obesity status among selected working women in Coimbatore, determine their lifestyle and physical activity pattern, study their dietary intake, estimate the vitamin D and lipid profile of selected women and associate the relationship between Vitamin D and obesity among the selected women. A total of 100 working women (non pregnant, non lactating) working in IT sector, hotels and teaching staff were selected for the study. Anthropometric measurements and dietary recall were conducted for all. The women were further categorized as obese and non-obese based on their BMI. Fifteen obese and 15 non-obese women were selected and their fasting blood glucose level, serum Vitamin D and lipid profile were measured. Association between serum vitamin D, lipid profile, anthropometric measurements, food intake and sun exposure was correlated. Fifty six percent of women in the age group between 25-39 years and 44 percent of women in the age group between 40-45 years were obese. Waist and hip circumference of women in the age group between 40-45 years (89.7 and 107.4 cm) were higher than that of obese women in the age group between 25-39 years (88.6 and 102.8 cm). There were no women with sufficient vitamin D levels. In the age group between 40-45 years (obese women), serum Vitamin D was inversely proportional to waist-hip ratio and LDL cholesterol. There was an inverse relationship between body fat percentage and Total cholesterol with serum vitamin D among the women of the age group between 25-39 years. Consumption of milk and milk products were low among women. Intake of calcium was deficit among the women in both the age groups and showed a negative correlation. Sun exposure was less for all the women. Findings from the study revealed that obese women with a higher consumption of fat and less intake of calcium-rich foods have low serum Vitamin D levels than the non-obese women. Thus, it can be concluded that there is an association between Vitamin D status and obesity among adult women.Keywords: obesity, sun exposure, vitamin D, women
Procedia PDF Downloads 1349319 Investigation of Vibration in Diesel-Fueled Motoblocks in the Case of Supplying Different Types of Fuel Mixture
Authors: Merab Mamuladze, Mixeil Lejava, Fadiko Abuselidze
Abstract:
At present, where most of the soils of Georgia have a small contour, the demand for small-capacity technical means, in particular motoblocks, has increased. Motoblocks perform agricultural work for various purposes, where the work process is performed by the operator, who experiences various magnitudes of vibration, impact, noise, and in general, as a result of long-term work production, causes body damage, dynamic load, and respiratory diseases in people. In the scientific paper, the dependence on the vibration of different types of diesel fuel is investigated in the case of five different revolutions in the internal combustion engine. Studies have shown that fuel and engine speed are the only risk factors that contradict the ISO 5349-2(2004) international standard. The experience of four years of work studies showed that 10% of operators received various types of injuries as a result of working with motoblocks. Experiments also showed that the amount of vibration decreases when the number of revolutions of the engine increases, and in the case of using biodiesel fuel, the damage risk factor is 5-10%, and in the case of using conventional diesel, this indicator has gone up to 20%.Keywords: engine, vibration, biodiesel, high risk factor, working conditions
Procedia PDF Downloads 809318 Probing Syntax Information in Word Representations with Deep Metric Learning
Authors: Bowen Ding, Yihao Kuang
Abstract:
In recent years, with the development of large-scale pre-trained lan-guage models, building vector representations of text through deep neural network models has become a standard practice for natural language processing tasks. From the performance on downstream tasks, we can know that the text representation constructed by these models contains linguistic information, but its encoding mode and extent are unclear. In this work, a structural probe is proposed to detect whether the vector representation produced by a deep neural network is embedded with a syntax tree. The probe is trained with the deep metric learning method, so that the distance between word vectors in the metric space it defines encodes the distance of words on the syntax tree, and the norm of word vectors encodes the depth of words on the syntax tree. The experiment results on ELMo and BERT show that the syntax tree is encoded in their parameters and the word representations they produce.Keywords: deep metric learning, syntax tree probing, natural language processing, word representations
Procedia PDF Downloads 689317 Teacher Professional Development in Saudi Arabia: Challenges and Possibilities
Authors: Ohood Alshammary
Abstract:
This study explores the current situation of teacher professional development, focusing on challenges experienced by English language teachers at a Saudi Arabian university. The study examines the current context of English language department (ELD) teachers in relation to PD activities available and the nature of the challenges they face in their attempts to engage in PD. The study adopted an interpretive approach to understanding the current situation of teachers working at the English language department (ELD) at one Saudi Arabian university. The study's findings reveal that participating teachers were aware of the significance of PD but were disappointed that the voices of teachers were not heard. The research reveals many challenges; lack of autonomy, insufficient time, heavy workloads, unsupportive working environments, and PD activities that were not considered necessary by the participants. Teachers viewed PD as subject to a top-down system, causing them to feel professionally undermined, lacking autonomy, and forced to comply with university rules. The study makes several recommendations for improving the PD experience and helping raise institutional awareness of the need to encourage teacher engagement and recommend enhancements to ELD teachers' professional development based on teachers' perspectives.Keywords: adult learning., professional development, PD challenge, teacher perspective
Procedia PDF Downloads 739316 Prediction of Bodyweight of Cattle by Artificial Neural Networks Using Digital Images
Authors: Yalçın Bozkurt
Abstract:
Prediction models were developed for accurate prediction of bodyweight (BW) by using Digital Images of beef cattle body dimensions by Artificial Neural Networks (ANN). For this purpose, the animal data were collected at a private slaughter house and the digital images and the weights of each live animal were taken just before they were slaughtered and the body dimensions such as digital wither height (DJWH), digital body length (DJBL), digital body depth (DJBD), digital hip width (DJHW), digital hip height (DJHH) and digital pin bone length (DJPL) were determined from the images, using the data with 1069 observations for each traits. Then, prediction models were developed by ANN. Digital body measurements were analysed by ANN for body prediction and R2 values of DJBL, DJWH, DJHW, DJBD, DJHH and DJPL were approximately 94.32, 91.31, 80.70, 83.61, 89.45 and 70.56 % respectively. It can be concluded that in management situations where BW cannot be measured it can be predicted accurately by measuring DJBL and DJWH alone or both DJBD and even DJHH and different models may be needed to predict BW in different feeding and environmental conditions and breedsKeywords: artificial neural networks, bodyweight, cattle, digital body measurements
Procedia PDF Downloads 3729315 Forecasting Equity Premium Out-of-Sample with Sophisticated Regression Training Techniques
Authors: Jonathan Iworiso
Abstract:
Forecasting the equity premium out-of-sample is a major concern to researchers in finance and emerging markets. The quest for a superior model that can forecast the equity premium with significant economic gains has resulted in several controversies on the choice of variables and suitable techniques among scholars. This research focuses mainly on the application of Regression Training (RT) techniques to forecast monthly equity premium out-of-sample recursively with an expanding window method. A broad category of sophisticated regression models involving model complexity was employed. The RT models include Ridge, Forward-Backward (FOBA) Ridge, Least Absolute Shrinkage and Selection Operator (LASSO), Relaxed LASSO, Elastic Net, and Least Angle Regression were trained and used to forecast the equity premium out-of-sample. In this study, the empirical investigation of the RT models demonstrates significant evidence of equity premium predictability both statistically and economically relative to the benchmark historical average, delivering significant utility gains. They seek to provide meaningful economic information on mean-variance portfolio investment for investors who are timing the market to earn future gains at minimal risk. Thus, the forecasting models appeared to guarantee an investor in a market setting who optimally reallocates a monthly portfolio between equities and risk-free treasury bills using equity premium forecasts at minimal risk.Keywords: regression training, out-of-sample forecasts, expanding window, statistical predictability, economic significance, utility gains
Procedia PDF Downloads 1079314 Structure of Turbulence Flow in the Wire-Wrappes Fuel Assemblies of BREST-OD-300
Authors: Dmitry V. Fomichev, Vladimir I. Solonin
Abstract:
In this paper, experimental and numerical study of hydrodynamic characteristics of the air coolant flow in the test wire-wrapped assembly is presented. The test assembly has 37 rods, which are similar to the real fuel pins of the BREST-OD-300 fuel assemblies geometrically. Air open loop test facility installed at the “Nuclear Power Plants and Installations” department of BMSTU was used to obtain the experimental data. The obtaining altitudinal distribution of static pressure in the near-wall test assembly as well as velocity and temperature distribution of coolant flow in the test sections can give us some new knowledge about the mechanism of formation of the turbulence flow structure in the wire wrapped fuel assemblies. Numerical simulations of the turbulence flow has been accomplished using ANSYS Fluent 14.5. Different non-local turbulence models have been considered, such as standard and RNG k-e models and k-w SST model. Results of numerical simulations of the flow based on the considered turbulence models give the best agreement with the experimental data and help us to carry out strong analysis of flow characteristics.Keywords: wire-spaces fuel assembly, turbulent flow structure, computation fluid dynamics
Procedia PDF Downloads 4599313 Participation in the Decision Making and Job Satisfaction in Greek Fish Farms
Authors: S. Anastasiou, C. Nathanailides
Abstract:
There is considerable evidence to suggest that employees participation in the decision-making process of an organisation, has a positive effect on job satisfaction and work performance of the employees. The purpose of the present work was to examine the HRM practices, demographics and the level of job satisfaction of employees in Greek Aquaculture fish farms. A survey of employees (n=86) in 6 Greek Aquaculture Firms was carried out. The results indicate that HRM practices such as recruitment of the personnel and communication between the departments did not vary between different firms. The most frequent method of recruitment was through the professional network or the personal network of the managers. The preferred method of HRM communication was through the line managers and through group meeting. The level of job satisfaction increased with work experience participation and participation in the decision making process. A high percentage of the employees (81,3%±8.39) felt that they frequently participated in the decision making process. The Aquaculture employees exhibited high level of job satisfaction (88,1±6.95). The level of job satisfaction was related with participation in the decision making process (-0.633, P<0.05) but was not related with as age or gender. In terms of the working conditions, employees were mostly satisfied with their work itself, their colleagues and mostly dissatisfied with working hours, salary issues and low prospects of pay rises.Keywords: aquaculture, human resources, job satisfaction
Procedia PDF Downloads 4689312 An Interpretive Study of Entrepreneurial Experience towards Achieving Business Growth Using the Theory of Planned Behaviour as a Lens
Authors: Akunna Agunwah, Kevin Gallimore, Kathryn Kinmond
Abstract:
Entrepreneurship is widely associated and seen as a vehicle for economic growth; however, different scholars have studied entrepreneurship from various perspectives, resulting in multiple definitions. It is surprising to know most entrepreneurship definition does not incorporate growth as part of their definition of entrepreneurship. Economic growth is engineered by the activities of the entrepreneurs. The purpose of the present theoretical study is to explore the working practices of the successful entrepreneurs towards achieving business growth by understanding the experiences of the entrepreneur using the Theory of Planned Behaviour (TPB) as a lens. Ten successful entrepreneurs in the North West of England in various business sectors were interviewed using semi-structured interview method. The recorded audio interviews transcribed and subsequently evaluated using the thematic deductive technique (qualitative approach). The themes were examined using Theory of Planned Behaviour to ascertain the presence of the three intentional antecedents (attitude, subjective norms, and perceived behavioural control). The findings categorised in two folds, firstly, it was observed that the three intentional antecedents, which make up Theory of Planned Behaviour were evident in the transcript. Secondly, the entrepreneurs are most concerned with achieving a state of freedom and realising their visions and ambitions. Nevertheless, the entrepreneur employed these intentional antecedents to enhance business growth. In conclusion, the work presented here showed a novel way of understanding the working practices and experiences of the entrepreneur using the theory of planned behaviour in qualitative approach towards enhancing business growth. There exist few qualitative studies in entrepreneurship research. In addition, this work applies a novel approach to studying the experience of the entrepreneurs by examining the working practices of the successful entrepreneurs in the North-West England through the lens of the theory of planned behaviour. Given the findings regarding TPB as a lens in the study, the entrepreneur does not differentiate between the categories of the antecedents reasonably sees them as processes that can be utilised to enhance business growth.Keywords: business growth, experience, interpretive, theory of planned behaviour
Procedia PDF Downloads 2159311 Nationalization of the Social Life in Argentina: Accumulation of Capital, State Intervention, Labor Market, and System of Rights in the Last Decades
Authors: Mauro Cristeche
Abstract:
This work begins with a very simple question: How does the State spend? Argentina is witnessing a process of growing nationalization of social life, so it is necessary to find out the explanations of the phenomenon on the specific dynamic of the capitalist mode of production in Argentina and its transformations in the last decades. Then the new question is: what happened in Argentina that could explain this phenomenon? Since the seventies, the capital growth in Argentina faces deep competitive problems. Until that moment the agrarian wealth had worked as a compensation mechanism, but it began to find its limits. In the meantime, some important demographical and structural changes had happened. The strategy of the capitalist class had to become to seek in the cheapness of the labor force the main source of compensation of its weakness. As a result, a tendency to worsen the living conditions and fragmentation of the working class started to develop, manifested by unemployment, underemployment, and the fall of the purchasing power of the salary as a highlighted fact. As a consequence, it is suggested that the role of the State became stronger and public expenditure increased, as a historical trend, because it has to intervene to face the contradictions and constant growth problems posed by the development of capitalism in Argentina. On the one hand, the State has to guarantee the process of buying the cheapened workforce and at the same time the process of reproduction of the working class. On the other hand, it has to help to reproduce the individual capitals but needs to ‘attack’ them in different ways. This is why the role of the State is said to be the general political representative to the national portion of the total social capital. What will be studied is the dynamic of the intervention of the Argentine State in the context of the particular national process of capital growth, and its dynamics in the last decades. What this paper wants to show are the main general causes that could explain the phenomenon of nationalization of the social life and how it has impacted the life conditions of the working class and the system of rights.Keywords: Argentina, nationalization, public policies, rights, state
Procedia PDF Downloads 1369310 The Impact of an Improved Strategic Partnership Programme on Organisational Performance and Growth of Firms in the Internet Protocol Television and Hybrid Fibre-Coaxial Broadband Industry
Authors: Collen T. Masilo, Brane Semolic, Pieter Steyn
Abstract:
The Internet Protocol Television (IPTV) and Hybrid Fibre-Coaxial (HFC) Broadband industrial sector landscape are rapidly changing and organisations within the industry need to stay competitive by exploring new business models so that they can be able to offer new services and products to customers. The business challenge in this industrial sector is meeting or exceeding high customer expectations across multiple content delivery modes. The increasing challenges in the IPTV and HFC broadband industrial sector encourage service providers to form strategic partnerships with key suppliers, marketing partners, advertisers, and technology partners. The need to form enterprise collaborative networks poses a challenge for any organisation in this sector, in selecting the right strategic partners who will ensure that the organisation’s services and products are marketed in new markets. Partners who will ensure that customers are efficiently supported by meeting and exceeding their expectations. Lastly, selecting cooperation partners who will represent the organisation in a positive manner, and contribute to improving the performance of the organisation. Companies in the IPTV and HFC broadband industrial sector tend to form informal partnerships with suppliers, vendors, system integrators and technology partners. Generally, partnerships are formed without thorough analysis of the real reason a company is forming collaborations, without proper evaluations of prospective partners using specific selection criteria, and with ineffective performance monitoring of partners to ensure that a firm gains real long term benefits from its partners and gains competitive advantage. Similar tendencies are illustrated in the research case study and are based on Skyline Communications, a global leader in end-to-end, multi-vendor network management and operational support systems (OSS) solutions. The organisation’s flagship product is the DataMiner network management platform used by many operators across multiple industries and can be referred to as a smart system that intelligently manages complex technology ecosystems for its customers in the IPTV and HFC broadband industry. The approach of the research is to develop the most efficient business model that can be deployed to improve a strategic partnership programme in order to significantly improve the performance and growth of organisations participating in a collaborative network in the IPTV and HFC broadband industrial sector. This involves proposing and implementing a new strategic partnership model and its main features within the industry which should bring about significant benefits for all involved companies to achieve value add and an optimal growth strategy. The proposed business model has been developed based on the research of existing relationships, value chains and business requirements in this industrial sector and validated in 'Skyline Communications'. The outputs of the business model have been demonstrated and evaluated in the research business case study the IPTV and HFC broadband service provider 'Skyline Communications'.Keywords: growth, partnership, selection criteria, value chain
Procedia PDF Downloads 133