Search results for: forest soil
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3806

Search results for: forest soil

1946 Assessing and Managing the Risk of Inland Acid Sulfate Soil Drainage via Column Leach Tests and 1D Modelling: A Case Study from South East Australia

Authors: Nicolaas Unland, John Webb

Abstract:

The acidification and mobilisation of metals during the oxidation of acid sulfate soils exposed during lake bed drying is an increasingly common phenomenon under climate scenarios with reduced rainfall. In order to assess the risk of generating high concentrations of acidity and dissolved metals, chromium suite analysis are fundamental, but sometimes limited in characterising the potential risks they pose. This study combines such fundamental test work, along with incubation tests and 1D modelling to investigate the risks associated with the drying of Third Reedy Lake in South East Australia. Core samples were collected from a variable depth of 0.5 m below the lake bed, at 19 locations across the lake’s footprint, using a boat platform. Samples were subjected to a chromium suite of analysis, including titratable actual acidity, chromium reducible sulfur and acid neutralising capacity. Concentrations of reduced sulfur up to 0.08 %S and net acidities up to 0.15 %S indicate that acid sulfate soils have formed on the lake bed during permanent inundation over the last century. A further sub-set of samples were prepared in 7 columns and subject to accelerated heating, drying and wetting over a period of 64 days in laboratory. Results from the incubation trial indicate that while pyrite oxidation proceeded, minimal change to soil pH or the acidity of leachate occurred, suggesting that the internal buffering capacity of lake bed sediments was sufficient to neutralise a large proportion of the acidity produced. A 1D mass balance model was developed to assess potential changes in lake water quality during drying based on the results of chromium suite and incubation tests. Results from the above test work and modelling suggest that acid sulfate soils pose a moderate to low risk to the Third Reedy Lake system. Further, the risks can be effectively managed during the initial stages of lake drying via flushing with available mildly alkaline water. The study finds that while test work such as chromium suite analysis are fundamental in characterizing acid sulfate soil environments, they can the overestimate risks associated with the soils. Subsequent incubation test work may more accurately characterise such soils and lead to better-informed management strategies.

Keywords: acid sulfate soil, incubation, management, model, risk

Procedia PDF Downloads 360
1945 The Distribution and Environmental Behavior of Heavy Metals in Jajarm Bauxite Mine, Northeast Iran

Authors: Hossein Hassani, Ali Rezaei

Abstract:

Heavy metals are naturally occurring elements that have a high atomic weight and a density at least five times greater than that of water. Their multiple industrial, domestic, agricultural, medical, and technological applications have led to their wide distribution in the environment, raising concerns over their potential effects on human health and the environment. Environmental protection against various pollutants, such as heavy metals formed by industries, mines and modern technologies, is a concern for researchers and industry. In order to assess the contamination of soils the distribution and environmental behavior have been investigated. Jajarm bauxite mine, the most important deposits have been discovered in Iran, which is about 22 million tons of reserve, and is the main mineral of the Diaspora. With a view to estimate the heavy metals ratio of the Jajarm bauxite mine area and to evaluate the pollution level, 50 samples have been collected and have been analyzed for the heavy metals of As, Cd, Cu, Hg, Ni and Pb with the help of Inductively Coupled Plasma-Mass Spectrometer (ICP- MS). In this study, we have dealt with determining evaluation criteria including contamination factor (CF), average concentration (AV), enrichment factor (EF) and geoaccumulation index (GI) to assess the risk of pollution from heavy metals(As, Cd, Cu, Hg, Ni and Pb) in Jajarm bauxite mine. In the samples of the studied, the average of recorded concentration of elements for Arsenic, Cadmium, Copper, Mercury, Nickel and Lead are 18, 0.11, 12, 0.07, 58 and 51 (mg/kg) respectively. The comparison of the heavy metals concentration average and the toxic potential in the samples has shown that an average with respect to the world average of the uncontaminated soil amounts. The average of Pb and As elements shows a higher quantity with respect to the world average quantity. The pollution factor for the study elements has been calculated on the basis of the soil background concentration and has been categorized on the basis of the uncontaminated world soil average with respect to the Hakanson classification. The calculation of the corrected pollutant degree shows the degree of the bulk intermediate pollutant (1.55-2.0) for the average soil sampling of the study area which is on the basis of the background quantity and the world average quantity of the uncontaminated soils. The provided conclusion from calculation of the concentrated factor, for some of the samples show that the average of the lead and arsenic elements stations are more than the background values and the unnatural metal concentration are covered under the study area, That's because the process of mining and mineral extraction. Given conclusion from the calculation of Geoaccumulation index of the soil sampling can explain that the copper, nickel, cadmium, arsenic, lead and mercury elements are Uncontamination. In general, the results indicate that the Jajarm bauxite mine of heavy metal pollution is uncontaminated area and extract the mineral from the mine, not create environmental hazards in the region.

Keywords: enrichment factor, geoaccumulation index, heavy metals, Jajarm bauxite mine, pollution

Procedia PDF Downloads 295
1944 Effect of Type of Pile and Its Installation Method on Pile Bearing Capacity by Physical Modelling in Frustum Confining Vessel

Authors: Seyed Abolhasan Naeini, M. Mortezaee

Abstract:

Various factors such as the method of installation, the pile type, the pile material and the pile shape, can affect the final bearing capacity of a pile executed in the soil; among them, the method of installation is of special importance. The physical modeling is among the best options in the laboratory study of the piles behavior. Therefore, the current paper first presents and reviews the frustum confining vesel (FCV) as a suitable tool for physical modeling of deep foundations. Then, by describing the loading tests of two open-ended and closed-end steel piles, each of which has been performed in two methods, “with displacement" and "without displacement", the effect of end conditions and installation method on the final bearing capacity of the pile is investigated. The soil used in the current paper is silty sand of Firoozkooh. The results of the experiments show that in general the without displacement installation method has a larger bearing capacity in both piles, and in a specific method of installation the closed ended pile shows a slightly higher bearing capacity.

Keywords: physical modeling, frustum confining vessel, pile, bearing capacity, installation method

Procedia PDF Downloads 155
1943 Soil Mixed Constructed Permeable Reactive Barrier for Groundwater Remediation: Field Observation

Authors: Ziyda Abunada

Abstract:

In-situ remediation of contaminated land with deep mixing can deliver a multi-technique remedial strategy. A field trail includes permeable reactive barrier (PRB) took place at a severely contaminated site in Yorkshire to the north of the UK through the SMiRT (Soil Mix Remediation Technology) project in May 2011. SMiRT involved the execution of the largest research field trials in the UK to provide field validation. Innovative modified bentonite materials in combination with zeolite and organoclay were used to construct six different walls of a hexagonal PRB. Field monitoring, testing and site cores were collected from the PRB twice: once 2 months after the construction and again in March 2014 (almost 34 months later).This paper presents an overview of the results of the PRB materials’ relative performance with some initial 3-year time-related assessment. Results from the monitoring program and the site cores are presented. Some good correlations are seen together with some clear difference among the materials’ efficiency. These preliminary observations represent a potential for further investigations and highlighted the main lessons learned in a filed scale.

Keywords: in-situ remediation, groundwater, permeable reactive barrier, site cores

Procedia PDF Downloads 207
1942 Assimilating Multi-Mission Satellites Data into a Hydrological Model

Authors: Mehdi Khaki, Ehsan Forootan, Joseph Awange, Michael Kuhn

Abstract:

Terrestrial water storage, as a source of freshwater, plays an important role in human lives. Hydrological models offer important tools for simulating and predicting water storages at global and regional scales. However, their comparisons with 'reality' are imperfect mainly due to a high level of uncertainty in input data and limitations in accounting for all complex water cycle processes, uncertainties of (unknown) empirical model parameters, as well as the absence of high resolution (both spatially and temporally) data. Data assimilation can mitigate this drawback by incorporating new sets of observations into models. In this effort, we use multi-mission satellite-derived remotely sensed observations to improve the performance of World-Wide Water Resources Assessment system (W3RA) hydrological model for estimating terrestrial water storages. For this purpose, we assimilate total water storage (TWS) data from the Gravity Recovery And Climate Experiment (GRACE) and surface soil moisture data from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) into W3RA. This is done to (i) improve model estimations of water stored in ground and soil moisture, and (ii) assess the impacts of each satellite of data (from GRACE and AMSR-E) and their combination on the final terrestrial water storage estimations. These data are assimilated into W3RA using the Ensemble Square-Root Filter (EnSRF) filtering technique over Mississippi Basin (the United States) and Murray-Darling Basin (Australia) between 2002 and 2013. In order to evaluate the results, independent ground-based groundwater and soil moisture measurements within each basin are used.

Keywords: data assimilation, GRACE, AMSR-E, hydrological model, EnSRF

Procedia PDF Downloads 291
1941 Extraction of Urban Land Features from TM Landsat Image Using the Land Features Index and Tasseled Cap Transformation

Authors: R. Bouhennache, T. Bouden, A. A. Taleb, A. Chaddad

Abstract:

In this paper we propose a method to map the urban areas. The method uses an arithmetic calculation processed from the land features indexes and Tasseled cap transformation TC of multi spectral Thematic Mapper Landsat TM image. For this purpose the derived indexes image from the original image such SAVI the soil adjusted vegetation index, UI the urban Index, and EBBI the enhanced built up and bareness index were staked to form a new image and the bands were uncorrelated, also the Spectral Angle Mapper (SAM) and Spectral Information Divergence (SID) supervised classification approaches were first applied on the new image TM data using the reference spectra of the spectral library and subsequently the four urban, vegetation, water and soil land cover categories were extracted with their accuracy assessment.The urban features were represented using a logic calculation applied to the brightness, UI-SAVI, NDBI-greenness and EBBI- brightness data sets. The study applied to Blida and mentioned that the urban features can be mapped with an accuracy ranging from 92 % to 95%.

Keywords: EBBI, SAVI, Tasseled Cap Transformation, UI

Procedia PDF Downloads 487
1940 Biofungicides in Nursery Production

Authors: Miroslava Markovic, Snezana Rajkovic, Ljubinko Rakonjac, Aleksandar Lucic

Abstract:

Oak powdery mildew is a serious problem on seedlings in nurseries as well as on naturally and artificially introduced progeny. The experiments were set on oak seedlings in two nurseries located in Central Serbia, where control of oak powdery mildew Microsphaera alphitoides Griff. et Maubl. had been conducted through alternative protection measures by means of various dosages of AQ-10 biofungicide, with and without added polymer (which has so far never been used in this country for control of oak powdery mildew). Simultaneous testing was conducted on the efficiency of a chemical sulphur-based preparation (used in this area for many years as a measure of suppression of powdery mildews, without the possibility of developing resistance of the pathogen to the active matter). To date, the Republic of Serbia has registered no fungicides for suppression of pathogens in the forest ecosystems. In order to introduce proper use of new disease-fighting agents into a country, certain relevant principles, requirements and criteria prescribed by the Forest Stewardship Council (FSC) must be observed, primarily with respect to measures of assessment and mitigation of risks, the list of dangerous and highly dangerous pesticides with the possibility of alternative protection. One of the main goals of the research was adjustment of the protective measures to the FSC policy through selection of eco-toxicologically favourable fungicides, given the fact that only preparations named on the list of permitted active matters are approved for use in certified forests. The results of the research have demonstrated that AQ-10 biofungicide can be used as a part of integrated disease management programmes as an alternative, through application of several treatments during vegetation and combination with other active matters registered for these purposes, so as to curtail the use of standard fungicides for control of powdery mildews on oak seedlings in nurseries. The best results in suppression of oak powdery mildew were attained through use of AQ-10 biofungicide (dose 50 or 70g/ha) with added polymer Nu Film-17 (dose 1.0 or 1.5 l/ha). If the treatment is applied at the appropriate time, even fewer number of treatments and smaller doses will be just as efficient.

Keywords: oak powdery mildew, biofungicides, polymers, Microsphaera alphitoides

Procedia PDF Downloads 377
1939 Vitamin C Enhances Growth and Productivity of Sunflower Plants Grown under Newly-Reclaimed Saline Soil Conditions

Authors: Saad M. Howladar, Mostafa M. Rady, Wael M. Semida

Abstract:

A field experiment was conducted during the two successive seasons of 2012 and 2013 in the Experimental Farm (newly-reclaimed saline soil; EC = 7.8 dS m-1), Faculty of Agriculture, Fayoum University, Fayoum, Egypt to investigate the effect of vitamin C foliar application at the rates of 1, 2, 3 and 4 mM on the possibility of improving growth, seed and oil yields, and some chemical constituents of Helianthus annuus L. plants under the adverse conditions of the selected soil. Significant positive influences of all vitamin C treatments were observed on growth, seed and oil yields and some chemical constituents in both seasons. Compared to unsprayed plants (control), spraying plants with various rates of vitamin C significantly increased vegetative growth traits (i.e. plant height, No. of leaves plant-1, leaf area leaf-1, total leaves area plant-1, and dry weights of leaves and shoot plant-1) and seed and oil yields and their components (i.e. head diameter, seed weight head-1, 100-seed weight, seed yield feddan-1 and oil yield feddan-1). In addition, the concentrations of chlorophyll a, chlorophyll b, total chlorophylls, total carotenoids and total phenols in fresh leaves, and total carbohydrates, total soluble sugars, free proline and some nutrients (i.e. N, P, K, Fe, Mn, and Zn) in dry leaves were also increased significantly with all vitamin C applications. Vitamin C treatment at the rate of 3 mM was generated the best results. These results are important as the potential of vitamin C to alleviate the harmful effects of salt stress offer an opportunity to increase the resistance of sunflower plants to grow under saline conditions of the newly-reclaimed soils.

Keywords: sunflower, Helianthus annuus L., ascorbic acid, salinity, growth, seed yield, oil content, chemical composition

Procedia PDF Downloads 462
1938 Effect of Several Soil Amendments on Water Quality in Mine Soils: Leaching Columns

Authors: Carmela Monterroso, Marc Romero-Estonllo, Carlos Pascual, Beatriz Rodríguez-Garrido

Abstract:

The mobilization of heavy metals from polluted soils causes their transfer to natural waters, with consequences for ecosystems and human health. Phytostabilization techniques are applied to reduce this mobility, through the establishment of a vegetal cover and the application of soil amendments. In this work, the capacity of different organic amendments to improve water quality and reduce the mobility of metals in mine-tailings was evaluated. A field pilot test was carried out with leaching columns installed on an old Cu mine ore (NW of Spain) which forms part of the PhytoSUDOE network of phytomanaged contaminated field sites (PhytoSUDOE/ Phy2SUDOE Projects (SOE1/P5/E0189 and SOE4/P5/E1021)). Ten columns (1 meter high by 25 cm in diameter) were packed with untreated mine tailings (control) or those treated with organic amendments. Applied amendments were based on different combinations of municipal wastes, bark chippings, biomass fly ash, and nanoparticles like aluminum oxides or ferrihydrite-type iron oxides. During the packing of the columns, rhizon-samplers were installed at different heights (10, 20, and 50 cm) from the top, and pore water samples were obtained by suction. Additionally, in each column, a bottom leachate sample was collected through a valve installed at the bottom of the column. After packing, the columns were sown with grasses. Water samples were analyzed for: pH and redox potential, using combined electrodes; salinity by conductivity meter: bicarbonate by titration, sulfate, nitrate, and chloride, by ion chromatography (Dionex 2000); phosphate by colorimetry with ammonium molybdate/ascorbic acid; Ca, Mg, Fe, Al, Mn, Zn, Cu, Cd, and Pb by flame atomic absorption/emission spectrometry (Perkin Elmer). Porewater and leachate from the control columns (packed with unamended mine tailings) were extremely acidic and had a high concentration of Al, Fe, and Cu. In these columns, no plant development was observed. The application of organic amendments improved soil conditions, which allowed the establishment of a dense cover of grasses in the rest of the columns. The combined effect of soil amendment and plant growth had a positive impact on water quality and reduced mobility of aluminum and heavy metals.

Keywords: leaching, organic amendments, phytostabilization, polluted soils

Procedia PDF Downloads 117
1937 Evaluation of the Construction of Terraces on a Family Farm in the Municipality of Jaboticabal (SP), Brazil

Authors: Anderson dos Santos Ananias, Matheus Yuji Shigueoka, Roberto Saverio Souza Costa

Abstract:

Soil and water conservation can be conceptualized as a combination of management and use methods, which have the function of protecting them against deterioration induced by anthropogenic or natural factors. Thus, the objective of this research was to evaluate the rural extension work in soil conservation carried out at Sítio do Alto in Jaboticabal-SP, through the analysis of planimetric data (latitude and longitude coordinates) and altimetric differences of the empirically constructed terraces by the rural producer and with technical guidance from CATI (Coordination of Integral Technical Assistance). A data collection procedure was carried out in the field, with GPS L1/L2, before the construction of five (5) terraces technically level and after their construction. The results showed that the greatest differences were found on terrace one (1), with a maximum latitude difference of 57 meters, the longitude of 23 m, and altitude of 2 m. These results corroborate the observations in the field, in which the presence of a great erosion caused by the incorrect construction of terrace 1 was verified rainwater to the side of the rural property, where the largest erosion furrows with the beginning of gully formation were found.

Keywords: GPS, mechanical pratice, surface runoff, erosion

Procedia PDF Downloads 119
1936 Selection of Indigenous Tree Species and Microbial Inoculation for the Restoration of Degraded Uplands

Authors: Nelly S. Aggangan, Julieta A. Anarna

Abstract:

Indigenous tree species are priority planting materials for the National Greening Program of the Department of Environment and Natural Resources. Areas for reforestation are marginal grasslands where plant growth is stunted and seedling survival is low. This experiment was conducted to compare growth rates and seedling survival of seven indigenous reforestation species. Narra (Pterocarpus indicus), salago (Wikstroemia lanceolata), kisubeng (Sapindus saponaria), tuai (Biscofia javanica), batino (Alstonia macrophylla), bani (Pongamina pinnata) and ipil (Intsia bijuga) were inoculated with Mykovam® (mycorrhizal fungi) and Bio-N® (N2-fixing bacteria) during pricking. After five months in the nursery, the treated seedlings were planted in degraded upland acidic red soil in Cavinti, Laguna (Luzon). During outplanting, all mycorrhiza inoculated seedlings had 50-80% mycorrhizal roots while the control ones had 5-10% mycorrhizal roots. Mykovam increased height of narra, salago and kisubeng. Stem diameter was bigger in mycorrhizal salago than the control. After two years in the field, Mykovam®+Bio-N® inoculated narra, salago and bani gave 95% survival while non-mycorrhizal tuai gave the lowest survival (25%). Inoculated seedlings grew faster than the control. Highest height increase was in batino (103%), followed by bani (95%), ipil (59%), narra (58%), tuai (53%) and kisubeng was the lowest (10%). Stem diameter was increased by Mykovam® from 13-39% over the control. Highest stem diameter was obtained from narra (50%), followed by bani (40%), batino (36%), ipil (33%), salago (28%), kisubeng and tuai (12%) had the lowest. In conclusion, Mykovam® inoculated batino, bani, narra, salago and ipil can be selected to restore degraded upland acidic red soil in the Philippines.

Keywords: Azospirillum spp., Bio-N®, Mykovam®, nitrogen fixing bacteria, acidic red soil

Procedia PDF Downloads 314
1935 Spatio-Temporal Land Cover Changes Monitoring Using Remotely Sensed Techniques in Riyadh Region, KSA

Authors: Abdelrahman Elsehsah

Abstract:

Land Use and Land Cover (LULC) dynamics in Riyadh over a decade were comprehensively analyzed using the Google Earth Engine (GEE) platform. By harnessing the Landsat 8 Image collection and night-time light image collection from May to August for the years 2013 and 2023, we were able to generate insightful datasets capturing the changing landscape of the region. Our approach involved a Random Forest (RF) classification model that consistently displayed commendable precision scores above 92% for both years. A notable discovery from the study was the pronounced urban expansion, particularly around Riyadh city. Within a mere ten-year span, urbanization surged noticeably, affecting the broader ecological environment of the region. Interestingly, the northeastern part of Riyadh emerged as a focal point of this growth, signaling rapid urban growth of urban sprawl and development. A comparison between the two years indicates a 21.51% increase in built-up areas, revealing the transformative pace of urban sprawl. Contrastingly, vegetation cover patterns presented a more nuanced picture. While our initial hypothesis predicted a decline in vegetation, the actual findings depicted both vegetation reduction in certain pockets and new growth in others, resulting in an overall 25.89% increase. This intricate pattern might be attributed to shifting agricultural practices, afforestation efforts, or even satellite image timings not aligning with seasonal vegetation growth. The bare soil, predominant in the desert landscape of Riyadh, saw a marginal reduction of 0.37% over the decade, challenging our initial expectations. Urban and agricultural advancements in Saudi Arabia appear to have slightly reduced the expanse of barren terrains. This study, underpinned by a rigorous methodological framework, reveals the multifaceted land cover changes in Riyadh in response to urban development and environmental factors. The precise, data-driven insights provided by our analysis serve as invaluable tools for understanding urban growth trajectories, guiding urban planning, policy formulation, and sustainable development endeavors in the region.

Keywords: remote sensing, KSA, ArcGIS, spatio-temporal

Procedia PDF Downloads 42
1934 Effect of Climate Change Rate in Indonesia against the Shrinking Dimensions of Granules and Plasticity Index of Soils

Authors: Muhammad Rasyid Angkotasan

Abstract:

The soil is a dense granules and arrangement of the pores that are related to each other, so that the water can flow from one point which has higher energy to a point that has lower energy. The flow of water through the pores of the porous ground is urgently needed in water seepage estimates in ground water pumping problems, investigate for underground construction, as well as analyzing the stability of the construction of Weirs. Climate change resulted in long-term changes in the distribution of weather patterns are statistically throughout the period start time of decades to millions of years. In other words, changes in the average weather circumstances or a change in the distribution of weather events, on average, for example, the number of extreme weather events that increasingly a lot or a little. Climate change is limited to a particular regional or can occur in all regions of the Earth. Geographical location between two continents and two oceans and is located around the equator is klimatologis factor is the cause of flooding and drought in Indonesia. This caused Indonesia' geographical position is on a hemisphere with a tropical monsoon climate is very sensitive to climatic anomaly El Nino Southern Oscillation (ENSO). ENSO causes drought occurrence in sea surface temperature conditions in the Pacific Equator warms up to the middle part of the East (El Nino). Based on the analysis of the climate of the last 30 years show that there is a tendency, the formation of a new pattern of climate causes the onset of climate change. The impact of climate change on the occurrence of the agricultural sector is the bergesernya beginning of the dry season which led to the above-mentioned pattern planting due to drought. The impact of climate change (drought) which is very extreme in Indonesia affect the shrinkage dimensions grain land and reduced the value of a percentage of the soil Plasticity Index caused by climate change.

Keywords: climate change, soil shrinkage, plasticity index, shrinking dimensions

Procedia PDF Downloads 240
1933 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning

Authors: Pei Yi Lin

Abstract:

Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.

Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model

Procedia PDF Downloads 80
1932 Developing a New Relationship between Undrained Shear Strength and Over-Consolidation Ratio

Authors: Wael M Albadri, Hassnen M Jafer, Ehab H Sfoog

Abstract:

Relationship between undrained shear strength (Su) and over consolidation ratio (OCR) of clay soil (marine clay) is very important in the field of geotechnical engineering to estimate the settlement behaviour of clay and to prepare a small scale physical modelling test. In this study, a relationship between shear strength and OCR parameters was determined using the laboratory vane shear apparatus and the fully automatic consolidated apparatus. The main objective was to establish non-linear correlation formula between shear strength and OCR and comparing it with previous studies. Therefore, in order to achieve this objective, three points were chosen to obtain 18 undisturbed samples which were collected with an increasing depth of 1.0 m to 3.5 m each 0.5 m. Clay samples were prepared under undrained condition for both tests. It was found that the OCR and shear strength are inversely proportional at similar depth and at same undrained conditions. However, a good correlation was obtained from the relationships where the R2 values were very close to 1.0 using polynomial equations. The comparison between the experimental result and previous equation from other researchers produced a non-linear correlation which has a similar pattern with this study.

Keywords: shear strength, over-consolidation ratio, vane shear test, clayey soil

Procedia PDF Downloads 286
1931 Effect of a new Released Bio Organic-Fertilizer in Improving Tomato Growth in Hydroponic System and Under Greenhouse

Authors: Zayneb Kthiri, Walid Hamada

Abstract:

The application of organic fertilizers is generally known to be useful to sustain soil fertility and plant growth, especially in poor soils, with less than 1% of organic matter, as it is very common in our Tunisian fields. Therefore, we focused on evaluating the effect of a new released liquid organic fertilizer named Solorga (with 5% of organic matter) compared to a reference product (Espartan: Kimitec, Spain) on tomato plant growth and physiology. Both fertilizers, derived from plant decomposition, were applied at an early stage in hydroponic system and under greenhouse. In hydroponic system, after 14 days of their application by root feeding, a significant difference was observed between treatments. Indeed, Solorga improved shoots and roots length, as well as the biomass respectively, by 45%, 27%, and 27.8% increase rate, while compared to control plants. However, Espartan induced less the measured parameters while compared to untreated control. Moreover, Solorga significantly increased the chlorophyll content by 42% compared to control and by 32% compared to Espartan. In the greenhouse, after 20 days of treatments, the results showed a significant effect of both fertilizers on SPAD index and the number of flowers blossom. Solorga increased the amount of chlorophyll present in the leaf by 7% compared to Espartan as well as the plant height under greenhouse. Moreover, the number of flowers blossom increased by 15% in plants treated with Solorga while compared to Espartan. Whereas, there is no notable difference between both organic fertilizers on the fruits blossom and the number of fruits per blossom. In conclusion, even though there is a difference in the organic matter between both fertilizers, Solorga improved better the plant growth in controlled conditions in hydroponic system while compared to Espartan. Altogether the obtained results are encouraging for the use of Solorga as a soil enriching source of organic matter to help plants to boost their growth and help them to overcome abiotic stresses linked to soil fertility.

Keywords: tomato, plant growth, organic fertilizer, hydroponic system, greenhouse

Procedia PDF Downloads 141
1930 Shear Strength and Consolidation Behavior of Clayey Soil with Vertical and Radial Drainage

Authors: R. Pillai Aparna, S. R. Gandhi

Abstract:

Soft clay deposits having low strength and high compressibility are found all over the world. Preloading with vertical drains is a widely used method for improving such type of soils. The coefficient of consolidation, irrespective of the drainage type, plays an important role in the design of vertical drains and it controls accurate prediction of the rate of consolidation of soil. Also, the increase in shear strength of soil with consolidation is another important factor considered in preloading or staged construction. To our best knowledge no clear guidelines are available to estimate the increase in shear strength for a particular degree of consolidation (U) at various stages during the construction. Various methods are available for finding out the consolidation coefficient. This study mainly focuses on the variation of, consolidation coefficient which was found out using different methods and shear strength with pressure intensity. The variation of shear strength with the degree of consolidation was also studied. The consolidation test was done using two types of highly compressible clays with vertical, radial and a few with combined drainage. The test was carried out at different pressures intensities and for each pressure intensity, once the target degree of consolidation is achieved, vane shear test was done at different locations in the sample, in order to determine the shear strength. The shear strength of clayey soils under the application of vertical stress with vertical and radial drainage with target U value of 70% and 90% was studied. It was found that there is not much variation in cv or cr value beyond 80kPa pressure intensity. Correlations were developed between shear strength ratio and consolidation pressure based on laboratory testing under controlled condition. It was observed that the shear strength of sample with target U value of 90% is about 1.4 to 2 times than that of 70% consolidated sample. Settlement analysis was done using Asaoka’s and hyperbolic method. The variation of strength with respect to the depth of sample was also studied, using large-scale consolidation test. It was found, based on the present study that the gain in strength is more on the top half of the clay layer, and also the shear strength of the sample ensuring radial drainage is slightly higher than that of the vertical drainage.

Keywords: consolidation coefficient, degree of consolidation, PVDs, shear strength

Procedia PDF Downloads 242
1929 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation

Authors: Fidelia A. Orji, Julita Vassileva

Abstract:

This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.

Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning

Procedia PDF Downloads 135
1928 The Evaluation of the Safety Coefficient of Soil Slope Stability by Group Pile

Authors: Seyed Abolhassan Naeini, Hamed Yekehdehghan

Abstract:

One of the factors that affect the constructions adjacent to a slope is stability. There are various methods for the stability of the slopes, one of which is the use of concrete group piles. This study, using FLAC3D software, has tried to investigate the changes in safety coefficient because of the use of concrete group piles. In this research, furthermore, the optimal position of the piles has been investigated and the results show that the group pile does not affect the toe of the slope. In addition, the effect of the piles' burial depth on the slope has been studied. Results show that by increasing the piles burial depth on a slope, the level of stability and as a result the safety coefficient increases. In the investigation of reducing the distance between the piles and increasing the depth of underground water, it was observed that the obtained safety coefficient increased. Finally, the effect of the resistance of the lower stabilizing layer of the slope on stabilization was investigated by the pile group. The results showed that due to the behavior of the pile as a deep foundation, the stronger the soil layers are in the stable part of a stronger slope (in terms of resistance parameters), the more influential the piles are in enhancing the coefficient of safety.

Keywords: safety coefficient, group pile, slope, stability, FLAC3D software

Procedia PDF Downloads 99
1927 Production and Application of Organic Waste Compost for Urban Agriculture in Emerging Cities

Authors: Alemayehu Agizew Woldeamanuel, Mekonnen Maschal Tarekegn, Raj Mohan Balakrishina

Abstract:

Composting is one of the conventional techniques adopted for organic waste management, but the practice is very limited in emerging cities despite the most of the waste generated is organic. This paper aims to examine the viability of composting for organic waste management in the emerging city of Addis Ababa, Ethiopia, by addressing the composting practice, quality of compost, and application of compost in urban agriculture. The study collects data using compost laboratory testing and urban farm households’ survey and uses descriptive analysis on the state of compost production and application, physicochemical analysis of the compost samples, and regression analysis on the urban farmer’s willingness to pay for compost. The findings of the study indicated that there is composting practice at a small scale, most of the producers use unsorted feedstock materials, aerobic composting is dominantly used, and the maturation period ranged from four to ten weeks. The carbon content of the compost ranges from 30.8 to 277.1 due to the type of feedstock applied, and this surpasses the ideal proportions for C:N ratio. The total nitrogen, pH, organic matter, and moisture content are relatively optimal. The levels of heavy metals measured for Mn, Cu, Pb, Cd and Cr⁶⁺ in the compost samples are also insignificant. In the urban agriculture sector, chemical fertilizer is the dominant type of soil input in crop productions but vegetable producers use a combination of both fertilizer and other organic inputs, including compost. The willingness to pay for compost depends on income, household size, gender, type of soil inputs, monitoring soil fertility, the main product of the farm, farming method and farm ownership. Finally, this study recommends the need for collaboration among stakeholders’ along the value chain of waste, awareness creation on the benefits of composting and addressing challenges faced by both compost producers and users.

Keywords: composting, emerging city, organic waste management, urban agriculture

Procedia PDF Downloads 315
1926 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study

Authors: Kasim Görenekli, Ali Gülbağ

Abstract:

This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.

Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management

Procedia PDF Downloads 21
1925 Stabilizing a Failed Slope in Islamabad, Pakistan

Authors: Muhammad Umer Zubair, Kamran Akhtar, Muhammad Arsalan Khan

Abstract:

This paper is based on a research carried out on a failed slope in Defence Housing Authority (DHA) Phase I, Islamabad. The research included determination of Soil parameters, Site Surveying and Cost Estimation. Apart from these, the use of three dimensional (3D) slope stability analysis in conjunction with two dimensional (2D) analysis was used determination of slope conditions. In addition collection of soil reports, a detailed survey was carried out to create a 3D model in Surfer 8 software. 2D cross-sections that needed to be analyzed for stability were generated from 3D model. Slope stability softwares, Rocscience Slide 6.0 and Clara-W were employed for 2D and 3D Analyses respectively which have the ability to solve complex mathematical functions. Results of the analyses were used to confirm site conditions and the threats were identified to recommend suitable remedies.The most effective remedy was suggested for slope stability after analyzing all remedies in software Slide 6 and its feasibility was determined through cost benefit analysis. This paper should be helpful to Geotechnical engineers, design engineers and the organizations working with slope stability.

Keywords: slope stability, Rocscience, Clara W., 2d analysis, 3D analysis, sensitivity analysis

Procedia PDF Downloads 527
1924 An Overview of the SIAFIM Connected Resources

Authors: Tiberiu Boros, Angela Ionita, Maria Visan

Abstract:

Wildfires are one of the frequent and uncontrollable phenomena that currently affect large areas of the world where the climate, geographic and social conditions make it impossible to prevent and control such events. In this paper we introduce the ground concepts that lie behind the SIAFIM (Satellite Image Analysis for Fire Monitoring) project in order to create a context and we introduce a set of newly created tools that are external to the project but inherently in interventions and complex decision making based on geospatial information and spatial data infrastructures.

Keywords: wildfire, forest fire, natural language processing, mobile applications, communication, GPS

Procedia PDF Downloads 585
1923 Water Detection in Aerial Images Using Fuzzy Sets

Authors: Caio Marcelo Nunes, Anderson da Silva Soares, Gustavo Teodoro Laureano, Clarimar Jose Coelho

Abstract:

This paper presents a methodology to pixel recognition in aerial images using fuzzy $c$-means algorithm. This algorithm is a alternative to recognize areas considering uncertainties and inaccuracies. Traditional clustering technics are used in recognizing of multispectral images of earth's surface. This technics recognize well-defined borders that can be easily discretized. However, in the real world there are many areas with uncertainties and inaccuracies which can be mapped by clustering algorithms that use fuzzy sets. The methodology presents in this work is applied to multispectral images obtained from Landsat-5/TM satellite. The pixels are joined using the $c$-means algorithm. After, a classification process identify the types of surface according the patterns obtained from spectral response of image surface. The classes considered are, exposed soil, moist soil, vegetation, turbid water and clean water. The results obtained shows that the fuzzy clustering identify the real type of the earth's surface.

Keywords: aerial images, fuzzy clustering, image processing, pattern recognition

Procedia PDF Downloads 485
1922 Landslide Susceptibility Mapping Using Soft Computing in Amhara Saint

Authors: Semachew M. Kassa, Africa M Geremew, Tezera F. Azmatch, Nandyala Darga Kumar

Abstract:

Frequency ratio (FR) and analytical hierarchy process (AHP) methods are developed based on past landslide failure points to identify the landslide susceptibility mapping because landslides can seriously harm both the environment and society. However, it is still difficult to select the most efficient method and correctly identify the main driving factors for particular regions. In this study, we used fourteen landslide conditioning factors (LCFs) and five soft computing algorithms, including Random Forest (RF), Support Vector Machine (SVM), Logistic Regression (LR), Artificial Neural Network (ANN), and Naïve Bayes (NB), to predict the landslide susceptibility at 12.5 m spatial scale. The performance of the RF (F1-score: 0.88, AUC: 0.94), ANN (F1-score: 0.85, AUC: 0.92), and SVM (F1-score: 0.82, AUC: 0.86) methods was significantly better than the LR (F1-score: 0.75, AUC: 0.76) and NB (F1-score: 0.73, AUC: 0.75) method, according to the classification results based on inventory landslide points. The findings also showed that around 35% of the study region was made up of places with high and very high landslide risk (susceptibility greater than 0.5). The very high-risk locations were primarily found in the western and southeastern regions, and all five models showed good agreement and similar geographic distribution patterns in landslide susceptibility. The towns with the highest landslide risk include Amhara Saint Town's western part, the Northern part, and St. Gebreal Church villages, with mean susceptibility values greater than 0.5. However, rainfall, distance to road, and slope were typically among the top leading factors for most villages. The primary contributing factors to landslide vulnerability were slightly varied for the five models. Decision-makers and policy planners can use the information from our study to make informed decisions and establish policies. It also suggests that various places should take different safeguards to reduce or prevent serious damage from landslide events.

Keywords: artificial neural network, logistic regression, landslide susceptibility, naïve Bayes, random forest, support vector machine

Procedia PDF Downloads 87
1921 Stock Prediction and Portfolio Optimization Thesis

Authors: Deniz Peksen

Abstract:

This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.

Keywords: stock prediction, portfolio optimization, data science, machine learning

Procedia PDF Downloads 84
1920 A Plant-Insect Association for Enhancing Survival of an Ecosystem Engineer Termite Species in a Semi-Arid Savanna

Authors: G. Nampa, M. Ndlovu

Abstract:

Mutualistic relationships amongst organisms drive diversity in terrestrial ecosystems. Yet, few mutual associations have been documented in the semi-arid savannas of Africa. The levels and benefits of association between Carissa bispinosa, a medium-sized evergreen thorny shrub, and Trinervitermes trinervoides, an ecosystem engineer termite species, were studied at a semi-arid savanna setting in Nylsvley nature reserve, South Africa. It was hypothesized that there would be a close plant-insect association since termite mounds provide nutrients for plant growth and, in return, the thorny shrubs protect mounds from predation and also provide a temperature buffer. Comparative plant and mounds measurements were taken from associated and isolated occurrences seasonally. Soil particle size, macro- and micronutrients were also evaluated from mounds and the adjacent topsoil matrix General Additive Mixed Models were used to assess internal mound temperatures in relation to prevailing ambient and plant shade temperatures. Findings revealed that plants growing on mounds were significantly taller with a wider canopy and remained greener in the dry season with more fruits. On the other hand, termite mounds under plants were less prone to be damaged by aardvarks and pangolins and had a significantly wider diameter than exposed mounds. All soil macronutrients except for calcium and phosphorous were enriched in mounds relative to the matrix. Only Manganese was enriched in mounds while the other micronutrients (Cu, Fe, Zn and B) were not. Termite mounds under plants maintained a better constant and higher mean internal temperature during winter compared to exposed mounds. To our best knowledge, the study has revealed a previously undocumented survival mechanism that termites use to escape extreme temperatures and predation in semi-arid savannas.

Keywords: mound, mutualism, soil nutrients, termites, thermoregulation

Procedia PDF Downloads 128
1919 Determination and Qsar Modelling of Partitioning Coefficients for Some Xenobiotics in Soils and Sediments

Authors: Alaa El-Din Rezk

Abstract:

For organic xenobiotics, sorption to Aldrich humic acid is a key process controlling their mobility, bioavailability, toxicity and fate in the soil. Hydrophobic organic compounds possessing either acid or basic groups can be partially ionized (deprotonated or protonated) within the range of natural soil pH. For neutral and ionogenicxenobiotics including (neutral, acids and bases) sorption coefficients normalized to organic carbon content, Koc, have measured at different pH values. To this end, the batch equilibrium technique has been used, employing SPME combined with GC-MSD as an analytical tool. For most ionogenic compounds, sorption has been affected by both pH and pKa and can be explained through Henderson-Hasselbalch equation. The results demonstrate that when assessing the environmental fate of ionogenic compounds, their pKa and speciation under natural conditions should be taken into account. A new model has developed to predict the relationship between log Koc and pH with full statistical evaluation against other existing predictive models. Neutral solutes have displayed a good fit with the classical model using log Kow as log Koc predictor, whereas acidic and basic compounds have displayed a good fit with the LSER approach and the new proposed model. Measurement limitations of the Batch technique and SPME-GC-MSD have been found with ionic compounds.

Keywords: humic acid, log Koc, pH, pKa, SPME-GCMSD

Procedia PDF Downloads 267
1918 Seismic Hazard Response of Bhairabi-Sairang Tunnel Due to the Effect of Faulting

Authors: Tauhidur Rahman, Subhrajit Pathak

Abstract:

In this study, structural response of Bhairabi-Sairang Tunnel due to presence of seismic faults has been thoroughly examined. There may be several active faults located in and around the project. Faults are the key seismic sources from where earthquakes are originated. The magnitude of earthquake will depend on the length of the fault. A long fault more than 200 km can produce earthquake of magnitude (Mw ) more than 8.0 and smaller length less than 10 km will produce small magnitude earthquake. Now-a-days it is very much essential to identify the distance and length of a fault from the project site. Based on this, in the present paper, a case study of the Bhairabi Sairang Tunnel of 1.73 Km length located in the North Eastern Region of India has been selected to calculate the seismic hazard from the surrounding effect of faults. A comparative study of seismic hazard at the tunnel site has been made based on the location of faults with the seismic hazard obtained from the Indian Standards code of Practice. In this paper, a practical problem of a tunnel has been analysed based on the available faults around the project site accounting the soil factor.

Keywords: seismic hazard, effect of fault, soil factor, Bhairabi Sairang tunnel

Procedia PDF Downloads 569
1917 Phytoremediation of Hydrocarbon-Polluted Soils: Assess the Potentialities of Six Tropical Plant Species

Authors: Pulcherie Matsodoum Nguemte, Adrien Wanko Ngnien, Guy Valerie Djumyom Wafo, Ives Magloire Kengne Noumsi, Pierre Francois Djocgoue

Abstract:

The identification of plant species with the capacity to grow on hydrocarbon-polluted soils is an essential step for phytoremediation. In view of developing phytoremediation in Cameroon, floristic surveys have been conducted in 4 cities (Douala, Yaounde, Limbe, and Kribi). In each city, 13 hydrocarbon-polluted, as well as unpolluted sites (control), have been investigated using quadrat method. 106 species belonging to 76 genera and 30 families have been identified on hydrocarbon-polluted sites, unlike the control sites where floristic diversity was much higher (166 species contained in 125 genera and 50 families). Poaceae, Cyperaceae, Asteraceae and Amaranthaceae have higher taxonomic richness on polluted sites (16, 15,10 and 8 taxa, respectively). Shannon diversity index of the hydrocarbon-polluted sites (1.6 to 2.7 bits/ind.) were significantly lower than the control sites (2.7 to 3.2 bits/ind.). Based on a relative frequency > 10% and abundance > 7%, this study highlights more than ten plants predisposed to be effective in the cleaning-up attempts of soils contaminated by hydrocarbons. Based on the floristic indicators, 6 species (Eleusine indica (L.) Gaertn., Cynodon dactylon (L.) Pers., Alternanthera sessilis (L.) R. Br. ex DC †, Commelinpa benghalensis L., Cleome ciliata Schum. & Thonn. and Asystasia gangetica (L.) T. Anderson) were selected for a study to determine their capacity to remediate a soil contaminated with fuel oil (82.5 ml/ kg of soil). The experiments lasting 150 days takes into account three modalities - Tn: uncontaminated soils planted (6) To contaminated soils unplanted (3) and Tp: contaminated soil planted (18) – randomized arranged. 3 on 6 species (Eleusine indica, Cynodon dactylon, and Alternanthera sessilis) survived the climatic and soil conditions. E. indica presents a significantly higher growth rate for density and leaf area while C. dactylon had a significantly higher growth rate for stem size and leaf numbers. A. sessilis showed stunted growth and development throughout the experimental period. The species Eleusine indica (L.) Gaertn. and Cynodon dactylon (L.) Pers. can be qualified as polluo-tolerant plant species; polluo-tolerance being the ability of a species to survive and develop in the midst subject to extreme physical and chemical disturbances.

Keywords: Cameroon, cleaning-up, floristic surveys, phytoremediation

Procedia PDF Downloads 248