Search results for: determinate structure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7648

Search results for: determinate structure

5788 Intelligent Control of Bioprocesses: A Software Application

Authors: Mihai Caramihai, Dan Vasilescu

Abstract:

The main research objective of the experimental bioprocess analyzed in this paper was to obtain large biomass quantities. The bioprocess is performed in 100 L Bioengineering bioreactor with 42 L cultivation medium made of peptone, meat extract and sodium chloride. The reactor was equipped with pH, temperature, dissolved oxygen, and agitation controllers. The operating parameters were 37 oC, 1.2 atm, 250 rpm and air flow rate of 15 L/min. The main objective of this paper is to present a case study to demonstrate that intelligent control, describing the complexity of the biological process in a qualitative and subjective manner as perceived by human operator, is an efficient control strategy for this kind of bioprocesses. In order to simulate the bioprocess evolution, an intelligent control structure, based on fuzzy logic has been designed. The specific objective is to present a fuzzy control approach, based on human expert’ rules vs. a modeling approach of the cells growth based on bioprocess experimental data. The kinetic modeling may represent only a small number of bioprocesses for overall biosystem behavior while fuzzy control system (FCS) can manipulate incomplete and uncertain information about the process assuring high control performance and provides an alternative solution to non-linear control as it is closer to the real world. Due to the high degree of non-linearity and time variance of bioprocesses, the need of control mechanism arises. BIOSIM, an original developed software package, implements such a control structure. The simulation study has showed that the fuzzy technique is quite appropriate for this non-linear, time-varying system vs. the classical control method based on a priori model.

Keywords: intelligent, control, fuzzy model, bioprocess optimization

Procedia PDF Downloads 305
5787 Revenue Management of Perishable Products Considering Freshness and Price Sensitive Customers

Authors: Onur Kaya, Halit Bayer

Abstract:

Global grocery and supermarket sales are among the largest markets in the world and perishable products such as fresh produce, dairy and meat constitute the biggest section of these markets. Due to their deterioration over time, the demand for these products depends highly on their freshness. They become totally obsolete after a certain amount of time causing a high amount of wastage and decreases in grocery profits. In addition, customers are asking for higher product variety in perishable product categories, leading to less predictable demand per product and to more out-dating. Effective management of these perishable products is an important issue since it is observed that billions of dollars’ worth of food is expired and wasted every month. We consider coordinated inventory and pricing decisions for perishable products with a time and price dependent random demand function. We use stochastic dynamic programming to model this system for both periodically-reviewed and continuously-reviewed inventory systems and prove certain structural characteristics of the optimal solution. We prove that the optimal ordering decision scenario has a monotone structure and the optimal price value decreases by time. However, the optimal price changes in a non-monotonic structure with respect to inventory size. We also analyze the effect of 1 different parameters on the optimal solution through numerical experiments. In addition, we analyze simple-to-implement heuristics, investigate their effectiveness and extract managerial insights. This study gives valuable insights about the management of perishable products in order to decrease wastage and increase profits.

Keywords: age-dependent demand, dynamic programming, perishable inventory, pricing

Procedia PDF Downloads 238
5786 Study on Hydrogen Isotope Permeability of High Entropy Alloy Coating

Authors: Long Wang, Yongjin Feng, Xiaofang Luo

Abstract:

Tritium permeation through structural materials is a significant issue for fusion demonstration (DEMO) reactor blankets in terms of fuel cycle efficiency and radiological safety. Reduced activation ferritic (RAFM) steel CLF-1 is a prime candidate for the China’s CFETR blanket structural material, facing high permeability of hydrogen isotopes at reactor operational temperature. To confine tritium as much as possible in the reactor, surface modification of the steels including fabrication of tritium permeation barrier (TPB) attracts much attention. As a new alloy system, high entropy alloy (HEA) contains at least five principal elements, each of which ranges from 5 at% to 35 at%. This high mixing effect entitles HEA extraordinary comprehensive performance. So it is attractive to lead HEA into surface alloying for protective use. At present, studies on the hydrogen isotope permeability of HEA coatings is still insufficient and corresponding mechanism isn’t clear. In our study, we prepared three kinds of HEA coatings, including AlCrTaTiZr, (AlCrTaTiZr)N and (AlCrTaTiZr)O. After comprehensive characterization of SEM, XPS, AFM, XRD and TEM, the structure and composition of the HEA coatings were obtained. Deuterium permeation tests were conducted to evaluate the hydrogen isotope permeability of AlCrTaTiZr, (AlCrTaTiZr)N and (AlCrTaTiZr)O HEA coatings. Results proved that the (AlCrTaTiZr)N and (AlCrTaTiZr)O HEA coatings had better hydrogen isotope permeation resistance. Through analyzing and characterizing the hydrogen isotope permeation results of the corroded samples, an internal link between hydrogen isotope permeation behavior and structure of HEA coatings was established. The results provide valuable reference in engineering design of structural and TPB materials for future fusion device.

Keywords: high entropy alloy, hydrogen isotope permeability, tritium permeation barrier, fusion demonstration reactor

Procedia PDF Downloads 158
5785 Direct-Displacement Based Design for Buildings with Non-Linear Viscous Dampers

Authors: Kelly F. Delgado-De Agrela, Sonia E. Ruiz, Marco A. Santos-Santiago

Abstract:

An approach is proposed for the design of regular buildings equipped with non-linear viscous dissipating devices. The approach is based on a direct-displacement seismic design method which satisfies seismic performance objectives. The global system involved is formed by structural regular moment frames capable of supporting gravity and lateral loads with elastic response behavior plus a set of non-linear viscous dissipating devices which reduce the structural seismic response. The dampers are characterized by two design parameters: (1) a positive real exponent α which represents the non-linearity of the damper, and (2) the damping coefficient C of the device, whose constitutive force-velocity law is given by F=Cvᵃ, where v is the velocity between the ends of the damper. The procedure is carried out using a substitute structure. Two limits states are verified: serviceability and near collapse. The reduction of the spectral ordinates by the additional damping assumed in the design process and introduced to the structure by the viscous non-linear dampers is performed according to a damping reduction factor. For the design of the non-linear damper system, the real velocity is considered instead of the pseudo-velocity. The proposed design methodology is applied to an 8-story steel moment frame building equipped with non-linear viscous dampers, located in intermediate soil zone of Mexico City, with a dominant period Tₛ = 1s. In order to validate the approach, nonlinear static analyses and nonlinear time history analyses are performed.

Keywords: based design, direct-displacement based design, non-linear viscous dampers, performance design

Procedia PDF Downloads 182
5784 Aspects and Studies of Fractal Geometry in Automatic Breast Cancer Detection

Authors: Mrinal Kanti Bhowmik, Kakali Das Jr., Barin Kumar De, Debotosh Bhattacharjee

Abstract:

Breast cancer is the most common cancer and a leading cause of death for women in the 35 to 55 age group. Early detection of breast cancer can decrease the mortality rate of breast cancer. Mammography is considered as a ‘Gold Standard’ for breast cancer detection and a very popular modality, presently used for breast cancer screening and detection. The screening of digital mammograms often leads to over diagnosis and a consequence to unnecessary traumatic & painful biopsies. For that reason recent studies involving the use of thermal imaging as a screening technique have generated a growing interest especially in cases where the mammography is limited, as in young patients who have dense breast tissue. Tumor is a significant sign of breast cancer in both mammography and thermography. The tumors are complex in structure and they also exhibit a different statistical and textural features compared to the breast background tissue. Fractal geometry is a geometry which is used to describe this type of complex structure as per their main characteristic, where traditional Euclidean geometry fails. Over the last few years, fractal geometrics have been applied mostly in many medical image (1D, 2D, or 3D) analysis applications. In breast cancer detection using digital mammogram images, also it plays a significant role. Fractal is also used in thermography for early detection of the masses using the thermal texture. This paper presents an overview of the recent aspects and initiatives of fractals in breast cancer detection in both mammography and thermography. The scope of fractal geometry in automatic breast cancer detection using digital mammogram and thermogram images are analysed, which forms a foundation for further study on application of fractal geometry in medical imaging for improving the efficiency of automatic detection.

Keywords: fractal, tumor, thermography, mammography

Procedia PDF Downloads 371
5783 Egyptian and Irish Female Protagonists: A Comparative Study of Al-Hakim's Song of Death and Synge's Riders to the Sea

Authors: Ahmed Mohammed Ghaleb, Ehab Saleh Alnuzaili

Abstract:

This paper attempts to generally examine Tawfiq Al-Hakim's Song of Death (1950) and John Millington Synge's Riders to the Sea (1904) by comparatively bringing the two plays under focus. Strikingly, the similarities between the two plays appear in the plot, picturization of the characters, tragic intensity, structural perfection, and the economy of language. Plot structure, albeit a simple one in both plays, is enriched by the playwrights' effective use of language, symbols, imagery, and tragic irony. Neither of the two plays has the traditional five-act structure; they are one-act plays. From a feminist point of view, the domination of female characters is observed in both plays. The female protagonists are the main focus of the two plays. Their brave characters and struggle are highly depicted. While Al-Hakim's protagonist is presented as a victim of tribal customs, Synge's protagonist is shown as a victim of nature. Both plays can be described as 'feminine tragedies' using the words of Oona Frwaley. Although the two plays appeared in totally different historical periods of time, both share considerable similarities, thematic as well as linguistic, which result in a concern to investigate them. The paper, basically, aims at asserting the commonalities between human beings and creating awareness of intercultural negotiations and connections. It attempts to bridge the cultural, intellectual, and social gap between Arab and Irish drama by exploring the common elements of the two plays. Thus, the paper presents a critical and comparative study of both plays highlighting the portrayal of the female protagonists.

Keywords: economy of language, imagery, protagonist, symbols, tragic intensity, tragic irony

Procedia PDF Downloads 199
5782 Gamification of eHealth Business Cases to Enhance Rich Learning Experience

Authors: Kari Björn

Abstract:

Introduction of games has expanded the application area of computer-aided learning tools to wide variety of age groups of learners. Serious games engage the learners into a real-world -type of simulation and potentially enrich the learning experience. Institutional background of a Bachelor’s level engineering program in Information and Communication Technology is introduced, with detailed focus on one of its majors, Health Technology. As part of a Customer Oriented Software Application thematic semester, one particular course of “eHealth Business and Solutions” is described and reflected in a gamified framework. Learning a consistent view into vast literature of business management, strategies, marketing and finance in a very limited time enforces selection of topics relevant to the industry. Health Technology is a novel and growing industry with a growing sector in consumer wearable devices and homecare applications. The business sector is attracting new entrepreneurs and impatient investor funds. From engineering education point of view the sector is driven by miniaturizing electronics, sensors and wireless applications. However, the market is highly consumer-driven and usability, safety and data integrity requirements are extremely high. When the same technology is used in analysis or treatment of patients, very strict regulatory measures are enforced. The paper introduces a course structure using gamification as a tool to learn the most essential in a new market: customer value proposition design, followed by a market entry game. Students analyze the existing market size and pricing structure of eHealth web-service market and enter the market as a steering group of their company, competing against the legacy players and with each other. The market is growing but has its rules of demand and supply balance. New products can be developed with an R&D-investment, and targeted to market with unique quality- and price-combinations. Product cost structure can be improved by investing to enhanced production capacity. Investments can be funded optionally by foreign capital. Students make management decisions and face the dynamics of the market competition in form of income statement and balance sheet after each decision cycle. The focus of the learning outcome is to understand customer value creation to be the source of cash flow. The benefit of gamification is to enrich the learning experience on structure and meaning of financial statements. The paper describes the gamification approach and discusses outcomes after two course implementations. Along the case description of learning challenges, some unexpected misconceptions are noted. Improvements of the game or the semi-gamified teaching pedagogy are discussed. The case description serves as an additional support to new game coordinator, as well as helps to improve the method. Overall, the gamified approach has helped to engage engineering student to business studies in an energizing way.

Keywords: engineering education, integrated curriculum, learning experience, learning outcomes

Procedia PDF Downloads 227
5781 Radiation Annealing of Radiation Embrittlement of the Reactor Pressure Vessel

Authors: E. A. Krasikov

Abstract:

Influence of neutron irradiation on RPV steel degradation are examined with reference to the possible reasons of the substantial experimental data scatter and furthermore – nonstandard (non-monotonous) and oscillatory embrittlement behavior. In our glance, this phenomenon may be explained by presence of the wavelike component in the embrittlement kinetics. We suppose that the main factor affecting steel anomalous embrittlement is fast neutron intensity (dose rate or flux), flux effect manifestation depends on state-of-the-art fluence level. At low fluencies, radiation degradation has to exceed normative value, then approaches to normative meaning and finally became sub normative. Data on radiation damage change including through the ex-service RPVs taking into account chemical factor, fast neutron fluence and neutron flux were obtained and analyzed. In our opinion, controversy in the estimation on neutron flux on radiation degradation impact may be explained by presence of the wavelike component in the embrittlement kinetics. Therefore, flux effect manifestation depends on fluence level. At low fluencies, radiation degradation has to exceed normative value, then approaches to normative meaning and finally became sub normative. Moreover as a hypothesis we suppose that at some stages of irradiation damaged metal have to be partially restored by irradiation i.e. neutron bombardment. Nascent during irradiation structure undergo occurring once or periodically transformation in a direction both degradation and recovery of the initial properties. According to our hypothesis, at some stage(s) of metal structure degradation neutron bombardment became recovering factor. As a result, oscillation arises that in turn leads to enhanced data scatter.

Keywords: annealing, embrittlement, radiation, RPV steel

Procedia PDF Downloads 327
5780 Rational Design and Synthesis of 2D/3D Conjugated Porous Polymers via Facile and 'Greener' Direct Arylation Polycondensation

Authors: Hassan Bohra, Mingfeng Wang

Abstract:

Conjugated porous polymers (CPPs) are amorphous, insoluble and highly robust organic semiconductors that have been largely synthesized by traditional transition-metal catalyzed reactions. The distinguishing feature of CPP materials is that they combine microporosity and high surface areas with extended conjugation, making them ideal for versatile applications such as separation, catalysis and energy storage. By applying a modular approach to synthesis, chemical and electronic properties of CPPs can be tailored for specific applications making these materials economical alternatives to inorganic semiconductors. Direct arylation - an environmentally benign alternative to traditional polymerization reactions – is one such reaction that extensively over the last decade for the synthesis of linear p-conjugated polymers. In this report, we present the synthesis and characterization of a new series of robust conjugated porous polymers synthesized by facile direct arylation polymerization of thiophene-flanked acceptor building blocks with multi-brominated aryls with different geometries. We observed that the porosities and morphologies of the polymers are determined by the chemical structure of the aryl bromide used. Moreover, good control of the optical bandgap in the range 2.53 - 1.3 eV could be obtained by using different building blocks. Structure-property relationships demonstrated in this study suggest that direct arylation polymerization is an attractive synthetic tool for the rational design of porous organic materials with tunable photo-physical properties for applications in photocatalysis, energy storage and conversion.

Keywords: direct arylation, conjugated porous polymers, triazine, photocatalysis

Procedia PDF Downloads 279
5779 Numerical Investigation of Multiphase Flow Structure for the Flue Gas Desulfurization

Authors: Cheng-Jui Li, Chien-Chou Tseng

Abstract:

This study adopts Computational Fluid Dynamics (CFD) technique to build the multiphase flow numerical model where the interface between the flue gas and desulfurization liquid can be traced by Eulerian-Eulerian model. Inside the tower, the contact of the desulfurization liquid flow from the spray nozzles and flue gas flow can trigger chemical reactions to remove the sulfur dioxide from the exhaust gas. From experimental observations of the industrial scale plant, the desulfurization mechanism depends on the mixing level between the flue gas and the desulfurization liquid. In order to significantly improve the desulfurization efficiency, the mixing efficiency and the residence time can be increased by perforated sieve trays. Hence, the purpose of this research is to investigate the flow structure of sieve trays for the flue gas desulfurization by numerical simulation. In this study, there is an outlet at the top of FGD tower to discharge the clean gas and the FGD tower has a deep tank at the bottom, which is used to collect the slurry liquid. In the major desulfurization zone, the desulfurization liquid and flue gas have a complex mixing flow. Because there are four perforated plates in the major desulfurization zone, which spaced 0.4m from each other, and the spray array is placed above the top sieve tray, which includes 33 nozzles. Each nozzle injects desulfurization liquid that consists of the Mg(OH)2 solution. On each sieve tray, the outside diameter, the hole diameter, and the porosity are 0.6m, 20 mm and 34.3%. The flue gas flows into the FGD tower from the space between the major desulfurization zone and the deep tank can finally become clean. The desulfurization liquid and the liquid slurry goes to the bottom tank and is discharged as waste. When the desulfurization solution flow impacts the sieve tray, the downward momentum will be converted to the upper surface of the sieve tray. As a result, a thin liquid layer can be developed above the sieve tray, which is the so-called the slurry layer. And the volume fraction value within the slurry layer is around 0.3~0.7. Therefore, the liquid phase can't be considered as a discrete phase under the Eulerian-Lagrangian framework. Besides, there is a liquid column through the sieve trays. The downward liquid column becomes narrow as it interacts with the upward gas flow. After the flue gas flows into the major desulfurization zone, the flow direction of the flue gas is upward (+y) in the tube between the liquid column and the solid boundary of the FGD tower. As a result, the flue gas near the liquid column may be rolled down to slurry layer, which developed a vortex or a circulation zone between any two sieve trays. The vortex structure between two sieve trays results in a sufficient large two-phase contact area. It also increases the number of times that the flue gas interacts with the desulfurization liquid. On the other hand, the sieve trays improve the two-phase mixing, which may improve the SO2 removal efficiency.

Keywords: Computational Fluid Dynamics (CFD), Eulerian-Eulerian Model, Flue Gas Desulfurization (FGD), perforated sieve tray

Procedia PDF Downloads 269
5778 Analysis of Kilistra (Gokyurt) Settlement within the Context of Traditional Residential Architecture

Authors: Esra Yaldız, Tugba Bulbul Bahtiyar, Dicle Aydın

Abstract:

Humans meet their need for shelter via housing which they structure in line with habits and necessities. In housing culture, traditional dwelling has an important role as a social and cultural transmitter. It provides concrete data by being planned in parallel with users’ life style and habits, having their own dynamics and components as well as their designs in harmony with nature, environment and the context they exist. Textures of traditional dwelling create a healthy and cozy living environment by means of adaptation to natural conditions, topography, climate, and context; utilization of construction materials found nearby and usage of traditional techniques and forms; and natural isolation of construction materials used. One of the examples of traditional settlements in Anatolia is Kilistra (Gökyurt) settlement of Konya province. Being among the important centers of Christianity in the past, besides having distinctive architecture, culture, natural features, and geographical differences (climate, geological structure, material), Kilistra can also be identified as a traditional settlement consisting of family, religious and economic structures as well as cultural interaction. The foundation of this study is the traditional residential texture of Kilistra with its unique features. The objective of this study is to assess the conformity of traditional residential texture of Kilistra with present topography, climatic data, and geographical values within the context of human scale construction, usage of green space, indigenous construction materials, construction form, building envelope, and space organization in housing.

Keywords: traditional residential architecture, Kilistra, Anatolia, Konya

Procedia PDF Downloads 391
5777 Voting Representation in Social Networks Using Rough Set Techniques

Authors: Yasser F. Hassan

Abstract:

Social networking involves use of an online platform or website that enables people to communicate, usually for a social purpose, through a variety of services, most of which are web-based and offer opportunities for people to interact over the internet, e.g. via e-mail and ‘instant messaging’, by analyzing the voting behavior and ratings of judges in a popular comments in social networks. While most of the party literature omits the electorate, this paper presents a model where elites and parties are emergent consequences of the behavior and preferences of voters. The research in artificial intelligence and psychology has provided powerful illustrations of the way in which the emergence of intelligent behavior depends on the development of representational structure. As opposed to the classical voting system (one person – one decision – one vote) a new voting system is designed where agents with opposed preferences are endowed with a given number of votes to freely distribute them among some issues. The paper uses ideas from machine learning, artificial intelligence and soft computing to provide a model of the development of voting system response in a simulated agent. The modeled development process involves (simulated) processes of evolution, learning and representation development. The main value of the model is that it provides an illustration of how simple learning processes may lead to the formation of structure. We employ agent-based computer simulation to demonstrate the formation and interaction of coalitions that arise from individual voter preferences. We are interested in coordinating the local behavior of individual agents to provide an appropriate system-level behavior.

Keywords: voting system, rough sets, multi-agent, social networks, emergence, power indices

Procedia PDF Downloads 381
5776 Limitations of Recent National Enactments on International Crimes: The Case of Kenya, Uganda and Sudan

Authors: Emma Charlene Lubaale

Abstract:

The International Criminal Court (ICC) operates based on the principle of complementarity. On the basis of this principle, states enjoy the primary right to prosecute international crimes, with the ICC intervening only when a state with jurisdiction over an international crime is unable or unwilling to prosecute. To ably exercise their primary right to prosecute international crimes domestically, a number of states are taking steps to criminalise international crimes in their national laws. Significant to note, many of the laws enacted are not being applied in the prosecution of the international crimes allegedly committed. Kenya, Uganda and Sudan are some notable states where commission of international crimes is documented. All these states have recently enacted laws on international crimes. Kenya enacted the International Crimes Act in 2008, Uganda enacted the International Criminal Court Act in 2010 and in 2007, Sudan made provision for international crimes under its Armed Forces Act. However, in all these three states, the enacted national laws on international crimes have thus far not featured in any of the proceedings before these states’ courts. Instead, these states have either relied on ordinary crimes to prosecute international crimes or not prosecuted international crimes altogether. This paper underscores the limitations of the enacted laws, explaining why, even with efforts taken by these states to enact national laws on international crimes, these laws cannot be relied on to advance accountability for the international crimes. Notably, the laws in Kenya and Uganda do not have retroactive application. In Sudan, despite the 2007 reforms, the structure of military justice in Sudan has the effect of placing certain categories of individuals beyond the reach of international criminal justice. For Kenya and Uganda, it is concluded that the only benefit that flows from these enactments is reliance on them to prosecute future international crimes. For Sudan, the 2007 reforms will only have the desired impact if reforms are equally made to the structure of military justice.

Keywords: complementarity, national laws, Kenya, Sudan, Uganda, international crimes, limitations

Procedia PDF Downloads 266
5775 Characteristics of Double-Stator Inner-Rotor Axial Flux Permanent Magnet Machine with Rotor Eccentricity

Authors: Dawoon Choi, Jian Li, Yunhyun Cho

Abstract:

Axial Flux Permanent Magnet (AFPM) machines have been widely used in various applications due to their important merits, such as compact structure, high efficiency and high torque density. This paper presents one of the most important characteristics in the design process of the AFPM device, which is a recent issue. To design AFPM machine, the predicting electromagnetic forces between the permanent magnets and stator is important. Because of the magnitude of electromagnetic force affects many characteristics such as machine size, noise, vibration, and quality of output power. Theoretically, this force is canceled by the equilibrium of force when it is in the middle of the gap, but it is inevitable to deviate due to manufacturing problems in actual machine. Such as large scale wind generator, because of the huge attractive force between rotor and stator disks, this is more serious in getting large power applications such as large. This paper represents the characteristics of Double-Stator Inner –Rotor AFPM machines when it has rotor eccentricity. And, unbalanced air-gap and inclined air-gap condition which is caused by rotor offset and tilt in a double-stator single inner-rotor AFPM machine are each studied in electromagnetic and mechanical aspects. The output voltage and cogging torque under un-normal air-gap condition of AF machines are firstly calculated using a combined analytical and numerical methods, followed by a structure analysis to study the effect to mechanical stress, deformation and bending forces on bearings. Results and conclusions given in this paper are instructive for the successful development of AFPM machines.

Keywords: axial flux permanent magnet machine, inclined air gap, unbalanced air gap, rotor eccentricity

Procedia PDF Downloads 197
5774 Structure Clustering for Milestoning Applications of Complex Conformational Transitions

Authors: Amani Tahat, Serdal Kirmizialtin

Abstract:

Trajectory fragment methods such as Markov State Models (MSM), Milestoning (MS) and Transition Path sampling are the prime choice of extending the timescale of all atom Molecular Dynamics simulations. In these approaches, a set of structures that covers the accessible phase space has to be chosen a priori using cluster analysis. Structural clustering serves to partition the conformational state into natural subgroups based on their similarity, an essential statistical methodology that is used for analyzing numerous sets of empirical data produced by Molecular Dynamics (MD) simulations. Local transition kernel among these clusters later used to connect the metastable states using a Markovian kinetic model in MSM and a non-Markovian model in MS. The choice of clustering approach in constructing such kernel is crucial since the high dimensionality of the biomolecular structures might easily confuse the identification of clusters when using the traditional hierarchical clustering methodology. Of particular interest, in the case of MS where the milestones are very close to each other, accurate determination of the milestone identity of the trajectory becomes a challenging issue. Throughout this work we present two cluster analysis methods applied to the cis–trans isomerism of dinucleotide AA. The choice of nucleic acids to commonly used proteins to study the cluster analysis is two fold: i) the energy landscape is rugged; hence transitions are more complex, enabling a more realistic model to study conformational transitions, ii) Nucleic acids conformational space is high dimensional. A diverse set of internal coordinates is necessary to describe the metastable states in nucleic acids, posing a challenge in studying the conformational transitions. Herein, we need improved clustering methods that accurately identify the AA structure in its metastable states in a robust way for a wide range of confused data conditions. The single linkage approach of the hierarchical clustering available in GROMACS MD-package is the first clustering methodology applied to our data. Self Organizing Map (SOM) neural network, that also known as a Kohonen network, is the second data clustering methodology. The performance comparison of the neural network as well as hierarchical clustering method is studied by means of computing the mean first passage times for the cis-trans conformational rates. Our hope is that this study provides insight into the complexities and need in determining the appropriate clustering algorithm for kinetic analysis. Our results can improve the effectiveness of decisions based on clustering confused empirical data in studying conformational transitions in biomolecules.

Keywords: milestoning, self organizing map, single linkage, structure clustering

Procedia PDF Downloads 207
5773 Prediction of B-Cell Epitope for 24 Mite Allergens: An in Silico Approach towards Epitope-Based Immune Therapeutics

Authors: Narjes Ebrahimi, Soheila Alyasin, Navid Nezafat, Hossein Esmailzadeh, Younes Ghasemi, Seyed Hesamodin Nabavizadeh

Abstract:

Immunotherapy with allergy vaccines is of great importance in allergen-specific immunotherapy. In recent years, B-cell epitope-based vaccines have attracted considerable attention and the prediction of epitopes is crucial to design these types of allergy vaccines. B-cell epitopes might be linear or conformational. The prerequisite for the identification of conformational epitopes is the information about allergens' tertiary structures. Bioinformatics approaches have paved the way towards the design of epitope-based allergy vaccines through the prediction of tertiary structures and epitopes. Mite allergens are one of the major allergy contributors. Several mite allergens can elicit allergic reactions; however, their structures and epitopes are not well established. So, B-cell epitopes of various groups of mite allergens (24 allergens in 6 allergen groups) were predicted in the present work. Tertiary structures of 17 allergens with unknown structure were predicted and refined with RaptorX and GalaxyRefine servers, respectively. The predicted structures were further evaluated by Rampage, ProSA-web, ERRAT and Verify 3D servers. Linear and conformational B-cell epitopes were identified with Ellipro, Bcepred, and DiscoTope 2 servers. To improve the accuracy level, consensus epitopes were selected. Fifty-four conformational and 133 linear consensus epitopes were predicted. Furthermore, overlapping epitopes in each allergen group were defined, following the sequence alignment of the allergens in each group. The predicted epitopes were also compared with the experimentally identified epitopes. The presented results provide valuable information for further studies about allergy vaccine design.

Keywords: B-cell epitope, Immunotherapy, In silico prediction, Mite allergens, Tertiary structure

Procedia PDF Downloads 147
5772 Predictions of Dynamic Behaviors for Gas Foil Bearings Operating at Steady-State Based on Multi-Physics Coupling Computer Aided Engineering Simulations

Authors: Tai Yuan Yu, Pei-Jen Wang

Abstract:

A simulation scheme of rotational motions for predictions of bump-type gas foil bearings operating at steady-state is proposed; and, the scheme is based on multi-physics coupling computer aided engineering packages modularized with computational fluid dynamic model and structure elasticity model to numerically solve the dynamic equation of motions of a hydrodynamic loaded shaft supported by an elastic bump foil. The bump foil is assumed to be modelled as infinite number of Hookean springs mounted on stiff wall. Hence, the top foil stiffness is constant on the periphery of the bearing housing. The hydrodynamic pressure generated by the air film lubrication transfers to the top foil and induces elastic deformation needed to be solved by a finite element method program, whereas the pressure profile applied on the top foil must be solved by a finite element method program based on Reynolds Equation in lubrication theory. As a result, the equation of motions for the bearing shaft are iteratively solved via coupling of the two finite element method programs simultaneously. In conclusion, the two-dimensional center trajectory of the shaft plus the deformation map on top foil at constant rotational speed are calculated for comparisons with the experimental results.

Keywords: computational fluid dynamics, fluid structure interaction multi-physics simulations, gas foil bearing, load capacity

Procedia PDF Downloads 146
5771 Municipalities as Enablers of Citizen-Led Urban Initiatives: Possibilities and Constraints

Authors: Rosa Nadine Danenberg

Abstract:

In recent years, bottom-up urban development has started growing as an alternative to conventional top-down planning. In large proportions, citizens and communities initiate small-scale interventions; suddenly seeming to form a trend. As a result, more and more cities are witnessing not only the growth of but also an interest in these initiatives, as they bear the potential to reshape urban spaces. Such alternative city-making efforts cause new dynamics in urban governance, with inevitable consequences for the controlled city planning and its administration. The emergence of enabling relationships between top-down and bottom-up actors signals an increasingly common urban practice. Various case studies show that an enabling relationship is possible, yet, how it can be optimally realized stays rather underexamined. Therefore, the seemingly growing worldwide phenomenon of ‘municipal bottom-up urban development’ necessitates an adequate governance structure. As such, the aim of this research is to contribute knowledge to how municipalities can enable citizen-led urban initiatives from a governance innovation perspective. Empirical case-study research in Stockholm and Istanbul, derived from interviews with founders of four citizen-led urban initiatives and one municipal representative in each city, provided valuable insights to possibilities and constraints for enabling practices. On the one hand, diverging outcomes emphasize the extreme oppositional features of both cases (Stockholm and Istanbul). Firstly, both cities’ characteristics are drastically different. Secondly, the ideologies and motifs for the initiatives to emerge vary widely. Thirdly, the major constraints for citizen-led urban initiatives to relate to the municipality are considerably different. Two types of municipality’s organizational structures produce different underlying mechanisms which demonstrate the constraints. The first municipal organizational structure is steered by bureaucracy (Stockholm). It produces an administrative division that brings up constraints such as the lack of responsibility, transparency and continuity by municipal representatives. The second structure is dominated by municipal politics and governmental hierarchy (Istanbul). It produces informality, lack of transparency and a fragmented civil society. In order to cope with the constraints produced by both types of organizational structures, the initiatives have adjusted their organization to the municipality’s underlying structures. On the other hand, this paper has in fact also come to a rather unifying conclusion. Interestingly, the suggested possibilities for an enabling relationship underline converging new urban governance arrangements. This could imply that for the two varying types of municipality’s organizational structures there is an accurate governance structure. Namely, the combination of a neighborhood council with a municipal guide, with allowance for the initiatives to adopt a politicizing attitude is found as coinciding. Especially its combination appears key to redeem varying constraints. A municipal guide steers the initiatives through bureaucratic struggles, is supported by coproduction methods, while it balances out municipal politics. Next, a neighborhood council, that is politically neutral and run by local citizens, can function as an umbrella for citizen-led urban initiatives. What is crucial is that it should cater for a more entangled relationship between municipalities and initiatives with enhanced involvement of the initiatives in decision-making processes and limited involvement of prevailing constraints pointed out in this research.

Keywords: bottom-up urban development, governance innovation, Istanbul, Stockholm

Procedia PDF Downloads 205
5770 Development and Validation of Family Outcome Survey – Revised Taiwan Version

Authors: Shih-Heng Sun, Hsiu-Yu Chang

Abstract:

“Family centered service model” becomes mainstream in early intervention. Family outcome should be evaluated in addition child improvement in terms of outcome evaluation in early intervention. The purpose of this study is to develop a surveys to evaluate family outcomes in early intervention. Method: “Family Outcomes Survey- Revised Taiwan Version” (FOS-RT) was developed through translation, back-translation, and review by the original author. Expert meeting was held to determine the content validity. Two hundred and eighty six parent-child dyads recruited from 10 local Early Intervention Resource Centers (EIRC) participated in the study after they signed inform consent. The results showed both parts of FOS-RT exhibits good internal consistency and test-retest reliability. The result of confirmatory factor analysis indicated moderate fit of 5 factor structure of part A and 3 factor structure of part B of FOS-RT. The correlation between different sessions reached moderate to high level reveals some sessions measure similar latent trait of family outcomes. Correlation between FOS-RT and Parents‘ Perceived Parenting Skills Questionnaire was calculated to determine the convergence validity. The moderate correlation indicates the two assessments measure different parts of early intervention outcome although both assessments have similar sub-scales. The results of this study support FOS-RT is a valid and reliable tool to evaluate family outcome after the family and children with developmental disability receive early intervention services.

Keywords: early intervention, family service, outcome evaluation, parenting skills, family centered

Procedia PDF Downloads 493
5769 Optimum Design for Cathode Microstructure of Solid Oxide Fuel Cell

Authors: M. Riazat, H. Abdolvand, M. Baniassadi

Abstract:

In this present work, 3D reconstruction of cathode of SOFC is developed with various volume fractions and porosity. Three Phase Boundary (TPB) of construction of such derived micro structures is calculated. The neural network is used to optimize the porosity and volume fraction of each phase to reach a structure with maximum TPB.

Keywords: fuel cell, solid oxide, TPB, 3D reconstruction

Procedia PDF Downloads 307
5768 Synthesis of Pendent Compartmental Ligand Derived from Polymethacrylate of 3-Formylsalicylic Acid Schiff Base and Its Application Studies

Authors: Dhivya Arumugam, Kaliyappan Thananjeyan

Abstract:

The monomer of (3-((4-(methacryloyloxy)phenylimino)methyl)-2-hydroxybenzoic acid) schiff base polymer was prepared by reacting methacryloyl chloride with imine compound derived from 3-formylsalisylic acid and 4- aminophenol. The monomer was polymerized in DMF at 70oC using benzoyl peroxide as free radical initiator. Polymer metal complex was obtained in DMF solution of polymer with aqueous solution of metal ions. The polymer and the polymer metal complex were characterized by elemental analysis and spectral studies. The elemental analysis data suggest that the metal to ligand ratio is 1:1 and hence, it acts as a binucleating compartmental ligand. The IR spectral data of these complexes suggest that the metals are coordinated through nitrogen of the imine group, the oxygen of carboxylate ion and the oxygen of the phenolic –OH group which also acts as the bridging ligand. The electronic spectra and magnetic moments of the polychelates shows that octahedral and square planar structure for Ni(II) and Cu(II) complexes respectively. X-ray diffraction studies revealed that polychelates are highly crystalline. The thermal and electrical properties, catalytic activity, structure property relationships are discussed. Further the synthesized polymer was used for metal uptake studies from waste water, which is one of the effective waste water treatment strategies. And also, the polymers and polychelates were investigated for antimicrobial activity with various microorganisms by using agar well diffusion method and the results have been discussed.

Keywords: acyclic compartmental ligands, binucleating ligand, 3-formylsalicylic acid, free radical polymerization, polluting ions, polychelate

Procedia PDF Downloads 105
5767 High Aspect Ratio Sio2 Capillary Based On Silicon Etching and Thermal Oxidation Process for Optical Modulator

Authors: Nguyen Van Toan, Suguru Sangu, Tetsuro Saito, Naoki Inomata, Takahito Ono

Abstract:

This paper presents the design and fabrication of an optical window for an optical modulator toward image sensing applications. An optical window consists of micrometer-order SiO2 capillaries (porous solid) that can modulate transmission light intensity by moving the liquid in and out of porous solid. A high optical transmittance of the optical window can be achieved due to refractive index matching when the liquid is penetrated into the porous solid. Otherwise, its light transmittance is lower because of light reflection and scattering by air holes and capillary walls. Silicon capillaries fabricated by deep reactive ion etching (DRIE) process are completely oxidized to form the SiO2 capillaries. Therefore, high aspect ratio SiO2 capillaries can be achieved based on silicon capillaries formed by DRIE technique. Large compressive stress of the oxide causes bending of the capillary structure, which is reduced by optimizing the design of device structure. The large stress of the optical window can be released via thin supporting beams. A 7.2 mm x 9.6 mm optical window area toward a fully integrated with the image sensor format is successfully fabricated and its optical transmittance is evaluated with and without inserting liquids (ethanol and matching oil). The achieved modulation range is approximately 20% to 35% with and without liquid penetration in visible region (wavelength range from 450 nm to 650 nm).

Keywords: thermal oxidation process, SiO2 capillaries, optical window, light transmittance, image sensor, liquid penetration

Procedia PDF Downloads 472
5766 Evaluation of the Mechanical Behavior of a Retaining Wall Structure on a Weathered Soil through Probabilistic Methods

Authors: P. V. S. Mascarenhas, B. C. P. Albuquerque, D. J. F. Campos, L. L. Almeida, V. R. Domingues, L. C. S. M. Ozelim

Abstract:

Retaining slope structures are increasingly considered in geotechnical engineering projects due to extensive urban cities growth. These kinds of engineering constructions may present instabilities over the time and may require reinforcement or even rebuilding of the structure. In this context, statistical analysis is an important tool for decision making regarding retaining structures. This study approaches the failure probability of the construction of a retaining wall over the debris of an old and collapsed one. The new solution’s extension length will be of approximately 350 m and will be located over the margins of the Lake Paranoá, Brasilia, in the capital of Brazil. The building process must also account for the utilization of the ruins as a caisson. A series of in situ and laboratory experiments defined local soil strength parameters. A Standard Penetration Test (SPT) defined the in situ soil stratigraphy. Also, the parameters obtained were verified using soil data from a collection of masters and doctoral works from the University of Brasília, which is similar to the local soil. Initial studies show that the concrete wall is the proper solution for this case, taking into account the technical, economic and deterministic analysis. On the other hand, in order to better analyze the statistical significance of the factor-of-safety factors obtained, a Monte Carlo analysis was performed for the concrete wall and two more initial solutions. A comparison between the statistical and risk results generated for the different solutions indicated that a Gabion solution would better fit the financial and technical feasibility of the project.

Keywords: economical analysis, probability of failure, retaining walls, statistical analysis

Procedia PDF Downloads 396
5765 Fly Ash Derived Zeolites as Potential Sorbents for Elemental Mercury Removal from Simulated Gas Stream

Authors: Piotr Kunecki, Magdalena Wdowin

Abstract:

The fly ash produced as waste in the process of conventional coal combustion was utilized in the hybrid synthesis of zeolites X and A from Faujasite (FAU) and Linde Type A (LTA) frameworks, respectively. The applied synthesis method included modification together with the crystallization stage. The sorbent modification was performed by introducing metals into the zeolite structure in order to create an ability to form stable bonds with elemental mercury (Hg0). The use of waste in the form of fly ash as a source of silicon and aluminum, as well as the proposed method of zeolite synthesis, fits the circular economy idea. The effect of zeolite modification on Hg0 removal from a simulated gas stream was studied empirically using prototype installation designed to test the effectiveness of sorption by solid-state sorbents. Both derived zeolites X and A modified with silver nitrate revealed significant mercury uptake during a 150-minute sorption experiment. The amount of elemental mercury removed in the experiment ranged from 5.69 to 6.01 µg Hg0/1g of sorbent for zeolites X and from 4.47 to 4.86 µg Hg0/1g of sorbent for zeolites A. In order to confirm the effectiveness of the sorbents towards mercury bonding, the possible re-emission effect was tested as well. Derived zeolites X and A did not show mercury re-emission after the sorption process, which confirms the stable bonding of Hg0 in the structure of synthesized zeolites. The proposed hybrid synthesis method possesses the potential to be implemented for both fly ash utilization as well as the time and energy-saving production of aluminosilicate, porous materials with high Hg0 removal efficiency. This research was supported by National Science Centre, Poland, grant no 2021/41/N/ST5/03214.

Keywords: fly ash, synthetic zeolites, elemental mercury removal, sorption, simulated gas stream

Procedia PDF Downloads 66
5764 Improving Efficiency and Effectiveness of FMEA Studies

Authors: Joshua Loiselle

Abstract:

This paper discusses the challenges engineering teams face in conducting Failure Modes and Effects Analysis (FMEA) studies. This paper focuses on the specific topic of improving the efficiency and effectiveness of FMEA studies. Modern economic needs and increased business competition require engineers to constantly develop newer and better solutions within shorter timeframes and tighter margins. In addition, documentation requirements for meeting standards/regulatory compliance and customer needs are becoming increasingly complex and verbose. Managing open actions and continuous improvement activities across all projects, product variations, and processes in addition to daily engineering tasks is cumbersome, time consuming, and is susceptible to errors, omissions, and non-conformances. FMEA studies are proven methods for improving products and processes while subsequently reducing engineering workload and improving machine and resource availability through a pre-emptive, systematic approach of identifying, analyzing, and improving high-risk components. If implemented correctly, FMEA studies significantly reduce costs and improve productivity. However, the value of an effective FMEA is often shrouded by a lack of clarity and structure, misconceptions, and previous experiences and, as such, FMEA studies are frequently grouped with the other required information and documented retrospectively in preparation of customer requirements or audits. Performing studies in this way only adds cost to a project and perpetuates the misnomer that FMEA studies are not value-added activities. This paper discusses the benefits of effective FMEA studies, the challenges related to conducting FMEA studies, best practices for efficiently overcoming challenges via structure and automation, and the benefits of implementing those practices.

Keywords: FMEA, quality, APQP, PPAP

Procedia PDF Downloads 287
5763 Biofuel Production via Thermal Cracking of Castor Methyl Ester

Authors: Roghaieh Parvizsedghy, Seyed Mojtaba Sadrameli

Abstract:

Diminishing oil reserves, deteriorating health standards because of greenhouse gas emissions and associated environmental impacts have emerged biofuel production. Vegetable oils are proved to be valuable feedstock in these growing industries as they are renewable and potentially inexhaustible sources. Thermal Cracking of vegetable oils (triglycerides) leads to production of biofuels which are similar to fossil fuels in terms of composition but their combustion and physical properties have limits. Acrolein (very poisonous gas) and water production during cracking of triglycerides occurs because of presence of glycerin in their molecular structure. Transesterification of vegetable oil is a method to extract glycerol from triglycerides structure and produce methyl ester. In this study, castor methyl ester was used for thermal cracking in order to survey the efficiency of this method to produce bio-gasoline and bio-diesel. Thus, several experiments were designed by means of central composite method. Statistical studies showed that two reaction parameters, namely cracking temperature and feed flowrate, affect products yield significantly. At the optimized conditions (480 °C and 29 g/h) for maximum bio-gasoline production, 88.6% bio-oil was achieved which was distilled and separated as bio-gasoline (28%) and bio-diesel (48.2%). Bio-gasoline exposed a high octane number and combustion heat. Distillation curve and Reid vapor pressure of bio-gasoline fell in the criteria of standard gasoline (class AA) by ASTM D4814. Bio-diesel was compatible with standard diesel by ASTM D975. Water production was negligible and no evidence of acrolein production was distinguished. Therefore, thermal cracking of castor methyl ester could be used as a method to produce valuable biofuels.

Keywords: bio-diesel, bio-gasoline, castor methyl ester, thermal cracking, transesterification

Procedia PDF Downloads 222
5762 Relationship between Structure of Some Nitroaromatic Pollutants and Their Degradation Kinetic Parameters in UV-VIS/TIO2 System

Authors: I. Nitoi, P. Oancea, M. Raileanu, M. Crisan, L. Constantin, I. Cristea

Abstract:

Hazardous organic compounds like nitroaromatics are frequently found in chemical and petroleum industries discharged effluents. Due to their bio-refractory character and high chemical stability cannot be efficiently removed by classical biological or physical-chemical treatment processes. In the past decades, semiconductor photocatalysis has been frequently applied for the advanced degradation of toxic pollutants. Among various semiconductors titania was a widely studied photocatalyst, due to its chemical inertness, low cost, photostability and nontoxicity. In order to improve optical absorption and photocatalytic activity of TiO2 many attempts have been made, one feasible approach consists of doping oxide semiconductor with metal. The degradation of dinitrobenzene (DNB) and dinitrotoluene (DNT) from aqueous solution under UVA-VIS irradiation using heavy metal (0.5% Fe, 1%Co, 1%Ni ) doped titania was investigated. The photodegradation experiments were carried out using a Heraeus laboratory scale UV-VIS reactor equipped with a medium-pressure mercury lamp which emits in the range: 320-500 nm. Solutions with (0.34-3.14) x 10-4 M pollutant content were photo-oxidized in the following working conditions: pH = 5-9; photocatalyst dose = 200 mg/L; irradiation time = 30 – 240 minutes. Prior to irradiation, the photocatalyst powder was added to the samples, and solutions were bubbled with air (50 L/hour), in the dark, for 30 min. Dopant type, pH, structure and initial pollutant concentration influence on the degradation efficiency were evaluated in order to set up the optimal working conditions which assure substrate advanced degradation. The kinetics of nitroaromatics degradation and organic nitrogen mineralization was assessed and pseudo-first order rate constants were calculated. Fe doped photocatalyst with lowest metal content (0.5 wt.%) showed a considerable better behaviour in respect to pollutant degradation than Co and Ni (1wt.%) doped titania catalysts. For the same working conditions, degradation efficiency was higher for DNT than DNB in accordance with their calculated adsobance constants (Kad), taking into account that degradation process occurs on catalyst surface following a Langmuir-Hinshalwood model. The presence of methyl group in the structure of DNT allows its degradation by oxidative and reductive pathways, while DNB is converted only by reductive route, which also explain the highest DNT degradation efficiency. For highest pollutant concentration tested (3 x 10-4 M), optimum working conditions (0.5 wt.% Fe doped –TiO2 loading of 200 mg/L, pH=7 and 240 min. irradiation time) assures advanced nitroaromatics degradation (ηDNB=89%, ηDNT=94%) and organic nitrogen mineralization (ηDNB=44%, ηDNT=47%).

Keywords: hazardous organic compounds, irradiation, nitroaromatics, photocatalysis

Procedia PDF Downloads 304
5761 Structural Damage Detection in a Steel Column-Beam Joint Using Piezoelectric Sensors

Authors: Carlos H. Cuadra, Nobuhiro Shimoi

Abstract:

Application of piezoelectric sensors to detect structural damage due to seismic action on building structures is investigated. Plate-type piezoelectric sensor was developed and proposed for this task. A film-type piezoelectric sheet was attached on a steel plate and covered by a layer of glass. A special glue is used to fix the glass. This glue is a silicone that requires the application of ultraviolet rays for its hardening. Then, the steel plate was set up at a steel column-beam joint of a test specimen that was subjected to bending moment when test specimen is subjected to monotonic load and cyclic load. The structural behavior of test specimen during cyclic loading was verified using a finite element model, and it was found good agreement between both results on load-displacement characteristics. The cross section of steel elements (beam and column) is a box section of 100 mm×100 mm with a thin of 6 mm. This steel section is specified by the Japanese Industrial Standards as carbon steel square tube for general structure (STKR400). The column and beam elements are jointed perpendicularly using a fillet welding. The resulting test specimen has a T shape. When large deformation occurs the glass plate of the sensor device cracks and at that instant, the piezoelectric material emits a voltage signal which would be the indicator of a certain level of deformation or damage. Applicability of this piezoelectric sensor to detect structural damages was verified; however, additional analysis and experimental tests are required to establish standard parameters of the sensor system.

Keywords: piezoelectric sensor, static cyclic test, steel structure, seismic damages

Procedia PDF Downloads 113
5760 Design of Photonic Crystal with Defect Layer to Eliminate Interface Corrugations for Obtaining Unidirectional and Bidirectional Beam Splitting under Normal Incidence

Authors: Evrim Colak, Andriy E. Serebryannikov, Pavel V. Usik, Ekmel Ozbay

Abstract:

Working with a dielectric photonic crystal (PC) structure which does not include surface corrugations, unidirectional transmission and dual-beam splitting are observed under normal incidence as a result of the strong diffractions caused by the embedded defect layer. The defect layer has twice the period of the regular PC segments which sandwich the defect layer. Although the PC has even number of rows, the structural symmetry is broken due to the asymmetric placement of the defect layer with respect to the symmetry axis of the regular PC. The simulations verify that efficient splitting and occurrence of strong diffractions are related to the dispersion properties of the Floquet-Bloch modes of the photonic crystal. Unidirectional and bi-directional splitting, which are associated with asymmetric transmission, arise due to the dominant contribution of the first positive and first negative diffraction orders. The effect of the depth of the defect layer is examined by placing single defect layer in varying rows, preserving the asymmetry of PC. Even for deeply buried defect layer, asymmetric transmission is still valid even if the zeroth order is not coupled. This transmission is due to evanescent waves which reach to the deeply embedded defect layer and couple to higher order modes. In an additional selected performance, whichever surface is illuminated, i.e., in both upper and lower surface illumination cases, incident beam is split into two beams of equal intensity at the output surface where the intensity of the out-going beams are equal for both illumination cases. That is, although the structure is asymmetric, symmetric bidirectional transmission with equal transmission values is demonstrated and the structure mimics the behavior of symmetric structures. Finally, simulation studies including the examination of a coupled-cavity defect for two different permittivity values (close to the permittivity values of GaAs or Si and alumina) reveal unidirectional splitting for a wider band of operation in comparison to the bandwidth obtained in the case of a single embedded defect layer. Since the dielectric materials that are utilized are low-loss and weakly dispersive in a wide frequency range including microwave and optical frequencies, the studied structures should be scalable to the mentioned ranges.

Keywords: asymmetric transmission, beam deflection, blazing, bi-directional splitting, defect layer, dual beam splitting, Floquet-Bloch modes, isofrequency contours, line defect, oblique incidence, photonic crystal, unidirectionality

Procedia PDF Downloads 173
5759 Gravitational Water Vortex Power Plant: Experimental-Parametric Design of a Hydraulic Structure Capable of Inducing the Artificial Formation of a Gravitational Water Vortex Appropriate for Hydroelectric Generation

Authors: Henrry Vicente Rojas Asuero, Holger Manuel Benavides Muñoz

Abstract:

Approximately 80% of the energy consumed worldwide is generated from fossil sources, which are responsible for the emission of a large volume of greenhouse gases. For this reason, the global trend, at present, is the widespread use of energy produced from renewable sources. This seeks safety and diversification of energy supply, based on social cohesion, economic feasibility and environmental protection. In this scenario, small hydropower systems (P ≤ 10MW) stand out due to their high efficiency, economic competitiveness and low environmental impact. Small hydropower systems, along with wind and solar energy, are expected to represent a significant percentage of the world's energy matrix in the near term. Among the various technologies present in the state of the art, relating to small hydropower systems, is the Gravitational Water Vortex Power Plant, a recent technology that excels because of its versatility of operation, since it can operate with jumps in the range of 0.70 m-2.00 m and flow rates from 1 m3/s to 20 m3/s. Its operating system is based on the utilization of the energy of rotation contained within a large water vortex artificially induced. This paper presents the study and experimental design of an optimal hydraulic structure with the capacity to induce the artificial formation of a gravitational water vortex trough a system of easy application and high efficiency, able to operate in conditions of very low head and minimum flow. The proposed structure consists of a channel, with variable base, vortex inductor, tangential flow generator, coupled to a circular tank with a conical transition bottom hole. In the laboratory test, the angular velocity of the water vortex was related to the geometric characteristics of the inductor channel, as well as the influence of the conical transition bottom hole on the physical characteristics of the water vortex. The results show angular velocity values of greater magnitude as a function of depth, in addition the presence of the conical transition in the bottom hole of the circular tank improves the water vortex formation conditions while increasing the angular velocity values. Thus, the proposed system is a sustainable solution for the energy supply of rural areas near to watercourses.

Keywords: experimental model, gravitational water vortex power plant, renewable energy, small hydropower

Procedia PDF Downloads 274