Search results for: active and passive renewable energy systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18862

Search results for: active and passive renewable energy systems

17002 Active Filtration of Phosphorus in Ca-Rich Hydrated Oil Shale Ash Filters: The Effect of Organic Loading and Form of Precipitated Phosphatic Material

Authors: Päärn Paiste, Margit Kõiv, Riho Mõtlep, Kalle Kirsimäe

Abstract:

For small-scale wastewater management, the treatment wetlands (TWs) as a low cost alternative to conventional treatment facilities, can be used. However, P removal capacity of TW systems is usually problematic. P removal in TWs is mainly dependent on the physico–chemical and hydrological properties of the filter material. Highest P removal efficiency has been shown trough Ca-phosphate precipitation (i.e. active filtration) in Ca-rich alkaline filter materials, e.g. industrial by-products like hydrated oil shale ash (HOSA), metallurgical slags. In this contribution we report preliminary results of a full-scale TW system using HOSA material for P removal for a municipal wastewater at Nõo site, Estonia. The main goals of this ongoing project are to evaluate: a) the long-term P removal efficiency of HOSA using real waste water; b) the effect of high organic loading rate; c) variable P-loading effects on the P removal mechanism (adsorption/direct precipitation); and d) the form and composition of phosphate precipitates. Onsite full-scale experiment with two concurrent filter systems for treatment of municipal wastewater was established in September 2013. System’s pretreatment steps include septic tank (2 m2) and vertical down-flow LECA filters (3 m2 each), followed by horizontal subsurface HOSA filters (effective volume 8 m3 each). Overall organic and hydraulic loading rates of both systems are the same. However, the first system is operated in a stable hydraulic loading regime and the second in variable loading regime that imitates the wastewater production in an average household. Piezometers for water and perforated sample containers for filter material sampling were incorporated inside the filter beds to allow for continuous in-situ monitoring. During the 18 months of operation the median removal efficiency (inflow to outflow) of both systems were over 99% for TP, 93% for COD and 57% for TN. However, we observed significant differences in the samples collected in different points inside the filter systems. In both systems, we observed development of preferred flow paths and zones with high and low loadings. The filters show formation and a gradual advance of a “dead” zone along the flow path (zone with saturated filter material characterized by ineffective removal rates), which develops more rapidly in the system working under variable loading regime. The formation of the “dead” zone is accompanied by the growth of organic substances on the filter material particles that evidently inhibit the P removal. Phase analysis of used filter materials using X-ray diffraction method reveals formation of minor amounts of amorphous Ca-phosphate precipitates. This finding is supported by ATR-FTIR and SEM-EDS measurements, which also reveal Ca-phosphate and authigenic carbonate precipitation. Our first experimental results demonstrate that organic pollution and loading regime significantly affect the performance of hydrated ash filters. The material analyses also show that P is incorporated into a carbonate substituted hydroxyapatite phase.

Keywords: active filtration, apatite, hydrated oil shale ash, organic pollution, phosphorus

Procedia PDF Downloads 262
17001 Alumina Supported Copper-manganese Catalysts for Combustion of Exhaust Gases: Catalysts Characterization

Authors: Krasimir I. Ivanov, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Georgi V. Avdeev, Tatyana T. Tabakova

Abstract:

In recent research copper and manganese systems were found to be the most active in CO and organic compounds oxidation among the base catalysts. The mixed copper manganese oxide has been widely studied in oxidation reactions because of their higher activity at low temperatures in comparison with single oxide catalysts. The results showed that the formation of spinel CuxMn3−xO4 in the oxidized catalyst is responsible for the activity even at room temperature. That is why most of the investigations are focused on the hopcalite catalyst (CuMn2O4) as the best copper-manganese catalyst. Now it’s known that this is true only for CO oxidation, but not for mixture of CO and VOCs. The purpose of this study is to investigate the alumina supported copper-manganese catalysts with different Cu/Mn molar ratio in terms of oxidation of CO, methanol and dimethyl ether. The catalysts were prepared by impregnation of γ-Al2O3 with copper and manganese nitrates and the catalytic activity measurements were carried out in continuous flow equipment with a four-channel isothermal stainless steel reactor. Gas mixtures on the input and output of the reactor were analyzed with a gas chromatograph, equipped with FID and TCD detectors. The texture characteristics were determined by low-temperature (- 196 oС) nitrogen adsorption in a Quantachrome Instruments NOVA 1200e (USA) specific surface area&pore analyzer. Thermal, XRD and TPR analyses were performed. It was established that the active component of the mixed Cu-Mn/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio. Highly active alumina supported Cu-Mn catalysts for CO, methanol and DME oxidation were synthesized. While the hopcalite is the best catalyst for CO oxidation, the best compromise for simultaneous oxidation of all components is the catalyst with Cu/Mn molar ratio 1:5.

Keywords: supported copper-manganese catalysts, CO, VOCs oxidation, combustion of exhaust gases

Procedia PDF Downloads 274
17000 Cakrawala Baca Transformation Model into Social Enterprise: A Benchmark Approach from Socentra Agro Mandiri (SAM) and Agritektur

Authors: Syafinatul Fitri

Abstract:

Cakrawala Baca is one of social organization in Indonesia that realize to transform its organization into social enterprise to create more sustainable organization that result more sustainable social impact. Cakrawala Baca implements voluntary system for its organization and it has passive social target. It funds its program by several fund rising activities that depend on donors or sponsor. Therefore social activity that held does not create sustainable social impact. It is different with social enterprise that usually more independent in funding its activity through social business and implement active social target and professional work for organization member. Therefore social enterprise can sustain its organization and then able to create sustainable social impact. Developing transformation model from social movement into social enterprise is the focus of this study. To achieve the aim of study, benchmark approach from successful social enterprise in Indonesia that has previously formed as social movement is employed. The benchmark is conducted through internal and external scanning that result the understanding of how they transformed into social enterprise. After understanding SAM and Agritektur transformation, transformation pattern is formulated based on their transformation similarities. This transformation pattern will be implemented to formulate the transformation plan for Cakrawala Baca to be a social enterprise.

Keywords: social movement/social organization, non-profit organization (NPO), social enterprise, transformation, Benchmarks approach

Procedia PDF Downloads 494
16999 Green Wave Control Strategy for Optimal Energy Consumption by Model Predictive Control in Electric Vehicles

Authors: Furkan Ozkan, M. Selcuk Arslan, Hatice Mercan

Abstract:

Electric vehicles are becoming increasingly popular asa sustainable alternative to traditional combustion engine vehicles. However, to fully realize the potential of EVs in reducing environmental impact and energy consumption, efficient control strategies are essential. This study explores the application of green wave control using model predictive control for electric vehicles, coupled with energy consumption modeling using neural networks. The use of MPC allows for real-time optimization of the vehicles’ energy consumption while considering dynamic traffic conditions. By leveraging neural networks for energy consumption modeling, the EV's performance can be further enhanced through accurate predictions and adaptive control. The integration of these advanced control and modeling techniques aims to maximize energy efficiency and range while navigating urban traffic scenarios. The findings of this research offer valuable insights into the potential of green wave control for electric vehicles and demonstrate the significance of integrating MPC and neural network modeling for optimizing energy consumption. This work contributes to the advancement of sustainable transportation systems and the widespread adoption of electric vehicles. To evaluate the effectiveness of the green wave control strategy in real-world urban environments, extensive simulations were conducted using a high-fidelity vehicle model and realistic traffic scenarios. The results indicate that the integration of model predictive control and energy consumption modeling with neural networks had a significant impact on the energy efficiency and range of electric vehicles. Through the use of MPC, the electric vehicle was able to adapt its speed and acceleration profile in realtime to optimize energy consumption while maintaining travel time objectives. The neural network-based energy consumption modeling provided accurate predictions, enabling the vehicle to anticipate and respond to variations in traffic flow, further enhancing energy efficiency and range. Furthermore, the study revealed that the green wave control strategy not only reduced energy consumption but also improved the overall driving experience by minimizing abrupt acceleration and deceleration, leading to a smoother and more comfortable ride for passengers. These results demonstrate the potential for green wave control to revolutionize urban transportation by enhancing the performance of electric vehicles and contributing to a more sustainable and efficient mobility ecosystem.

Keywords: electric vehicles, energy efficiency, green wave control, model predictive control, neural networks

Procedia PDF Downloads 41
16998 Investigate and Control Thermal Spectra in Nanostructures and 2D Van der Waals Materials

Authors: Joon Sang Kang, Ming Ke, Yongjie Hu

Abstract:

Controlling heat transfer and thermal properties of materials is important to many fields such as energy efficiency and thermal management of integrated circuits. Significant progress over the past decade has been made to improve material performance through structuring at the nanoscale, however a clear relationship between structure dimensions, interfaces, and thermal properties remains to be established. The main challenge comes from the unknown intrinsic spectral contribution from different phonons. Here, we describe our current progress on quantifying and controlling thermal spectra based on our recently developed technical approach using ultrafast optical spectroscopy. Our work brings further the promise of rational material design to achieve high performance through a synergistic experimental-modeling approach. This approach can be broadly applicable to a wide range of materials and energy systems. In particular, we demonstrate in-situ characterization and tunable thermal properties of 2D van der waals materials through ionic intercalations. The significant impacts of this research in improving the efficiency of thermal energy conversion and management will also be illustrated.

Keywords: energy, mean free path, nanoscale heat transfer, nanostructure, phonons, TDTR, thermoelectrics, 2D materials

Procedia PDF Downloads 278
16997 The “Buffer Layer” An Improved Electrode-Electrolyte Interface For Solid-State Batteries

Authors: Gregory Schmidt

Abstract:

Solid-state lithium batteries are broadly accepted as promising candidates for application in the next generation of EVs as they should offer safer and higher-energy-density batteries. Nonetheless, their development is impeded by many challenges, including the resistive electrode–electrolyte interface originating from the removal of the liquid electrolyte that normally permeates through the porous cathode and ensures efficient ionic conductivity through the cell. One way to tackle this challenge is by formulating composite cathodes containing solid ionic conductors in their structure, but this approach will require the conductors to exhibit chemical stability, electrochemical stability, flexibility, and adhesion and is, therefore, limited to some materials. Recently, Arkema developed a technology called buffering layer which allows the transformation of any conventional porous electrode into a catholyte. This organic layer has a very high ionic conductivity at room temperature, is compatible with all active materials, and can be processed with conventional Gigafactory equipment. Moreover, this layer helps protect the solid ionic conductor from the cathode and anode materials. During this presentation, the manufacture and the electrochemical performance of this layer for different systems of cathode and anode will be discussed.

Keywords: electrochemistry, all solid state battery, materials, interface

Procedia PDF Downloads 83
16996 The Photocatalytic Approach for the Conversion of Polluted Seawater CO₂ into Renewable Source of Energy

Authors: Yasar N. Kavil, Yasser A. Shaban, Radwan K. Al Farawati, Mohamed I. Orif, Shahed U. M. Khanc

Abstract:

Photocatalytic way of reduction of CO₂ in polluted seawater into chemical fuel, methanol, was successfully gained over Cu/C-co-doped TiO₂ nanoparticles under UV and natural sunlight. A homemade stirred batch annular reactor was used to carry out the photocatalytic reduction experiments. Photocatalysts with various Cu loadings (0, 0.5, 1, 3, 5 and 7 wt.%) were synthesized by the sol-gel procedure and were characterized by XRD, SEM, UV–Vis, FTIR, and XPS. The photocatalytic production of methanol was promoted by the co-doping with C and Cu into TiO₂. This improvement was attributed to the modification of bandgap energy and the hindrance of the charges recombination. The polluted seawater showing the yield depended on its background hydrographic parameters. We assessed two types of polluted seawater system, the observed yield was 2910 and 990 µmol g⁻¹ after 5 h of illumination under UV and natural sunlight respectively in system 1 and the corresponding yield in system 2 was 2250 and 910 µmol g⁻¹ after 5 h of illumination. The production of methanol in the case of oxygen-depleted water was low, this is mainly attributed to the competition of methanogenic bacteria over methanol production. The results indicated that the methanol yield produced by Cu-C/TiO₂ was much higher than those of carbon-modified titanium oxide (C/TiO₂) and Degussa (P25-TiO₂). Under the current experimental condition, the optimum loading was achieved by the doping of 3 wt % of Cu. The highest methanol yield was obtained over 1 g L-1 of 3wt% Cu/C-TiO₂.

Keywords: CO₂ photoreduction, copper, Cu/C-co-doped TiO₂, methanol, seawater

Procedia PDF Downloads 266
16995 Mathematical Model for Interaction Energy of Toroidal Molecules and Other Nanostructures

Authors: Pakhapoom Sarapat, James M. Hill, Duangkamon Baowan

Abstract:

Carbon nanotori provide several properties such as high tensile strength and heat resistance. They are promised to be ideal structures for encapsulation, and their encapsulation ability can be determined by the interaction energy between the carbon nanotori and the encapsulated nanostructures. Such interaction energy is evaluated using Lennard-Jones potential and continuum approximation. Here, four problems relating to toroidal molecules are determined in order to find the most stable configuration. Firstly, the interaction energy between a carbon nanotorus and an atom is examined. The second problem relates to the energy of a fullerene encapsulated inside a carbon nanotorus. Next, the interaction energy between two symmetrically situated and parallel nanotori is considered. Finally, the classical mechanics is applied to model the interaction energy between the toroidal structure of cyclodextrin and the spherical DNA molecules. These mathematical models might be exploited to study a number of promising devices for future developments in bio and nanotechnology.

Keywords: carbon nanotori, continuum approximation, interaction energy, Lennard-Jones potential, nanotechnology

Procedia PDF Downloads 134
16994 Investigation of Input Energy Efficiency in Corn (KSC704) Farming in Khoy City, Iran

Authors: Nasser Hosseini

Abstract:

Energy cycle is one of the essential points in agricultural ecosystems all over the world. Corn is one of the important products in Khoy city. Knowing input energy level and evaluating output energy from farms to reduce energy and increase efficiency in farms is very important if one can reduce input energy level into farms through the indices like poisons, fertilization, tractor energy and labour force. In addition to the net income of the farmers, this issue would play a significant role in preserving farm ecosystem from pollution and wrecker factors. For this reason, energy balance sheet in corn farms as well as input and output energy in 2012-2013 were researched by distributing a questionnaire among farmers in various villages in Khoy city. Then, the input energy amount into farms via energy-consuming factors, mentioned above, with regard to special coefficients was computed. Energy was computed on the basis of seed corn function, chemical compound and its content as well. In this investigation, we evaluated the level of stored energy 10792831 kcal per hectare. We found out that the greatest part of energy depended on irrigation which has 5136141.8 kcal and nitrate fertilizer energy with 2509760 kcal and the lowest part of energy depended on phosphor fertilizer, the rate of posited energy equaled 36362500 kcal and energy efficiency on the basis of seed corn function were estimated as 3.36. We found some ways to reduce consumptive energy in farm and nitrate fertilizer and, on the other hand, to increase balance sheet. They are, to name a few, using alternative farming and potherbs for biological stabilizing of nitrogen and changing kind of fertilizers such as urea fertilizer with sulphur cover, and using new generation of irrigation, the compound of water super absorbent like colored hydrogels and using natural fertilizer to preserve.

Keywords: corn (KSC704), output and input, energy efficiency, Khoy city

Procedia PDF Downloads 425
16993 Use of Cassava Waste and Its Energy Potential

Authors: I. Inuaeyen, L. Phil, O. Eni

Abstract:

Fossil fuels have been the main source of global energy for many decades, accounting for about 80% of global energy need. This is beginning to change however with increasing concern about greenhouse gas emissions which comes mostly from fossil fuel combustion. Greenhouse gases such as carbon dioxide are responsible for stimulating climate change. As a result, there has been shift towards more clean and renewable energy sources of energy as a strategy for stemming greenhouse gas emission into the atmosphere. The production of bio-products such as bio-fuel, bio-electricity, bio-chemicals, and bio-heat etc. using biomass materials in accordance with the bio-refinery concept holds a great potential for reducing high dependence on fossil fuel and their resources. The bio-refinery concept promotes efficient utilisation of biomass material for the simultaneous production of a variety of products in order to minimize or eliminate waste materials. This will ultimately reduce greenhouse gas emissions into the environment. In Nigeria, cassava solid waste from cassava processing facilities has been identified as a vital feedstock for bio-refinery process. Cassava is generally a staple food in Nigeria and one of the most widely cultivated foodstuff by farmers across Nigeria. As a result, there is an abundant supply of cassava waste in Nigeria. In this study, the aim is to explore opportunities for converting cassava waste to a range of bio-products such as butanol, ethanol, electricity, heat, methanol, furfural etc. using a combination of biochemical, thermochemical and chemical conversion routes. . The best process scenario will be identified through the evaluation of economic analysis, energy efficiency, life cycle analysis and social impact. The study will be carried out by developing a model representing different process options for cassava waste conversion to useful products. The model will be developed using Aspen Plus process simulation software. Process economic analysis will be done using Aspen Icarus software. So far, comprehensive survey of literature has been conducted. This includes studies on conversion of cassava solid waste to a variety of bio-products using different conversion techniques, cassava waste production in Nigeria, modelling and simulation of waste conversion to useful products among others. Also, statistical distribution of cassava solid waste production in Nigeria has been established and key literatures with useful parameters for developing different cassava waste conversion process has been identified. In the future work, detailed modelling of the different process scenarios will be carried out and the models validated using data from literature and demonstration plants. A techno-economic comparison of the various process scenarios will be carried out to identify the best scenario using process economics, life cycle analysis, energy efficiency and social impact as the performance indexes.

Keywords: bio-refinery, cassava waste, energy, process modelling

Procedia PDF Downloads 354
16992 Sustainability and Energy-Efficiency in Buildings: A review

Authors: Medya Fathi

Abstract:

Moving toward sustainable development is among today’s critical issues worldwide that make all industries, particularly construction, pay increasing attention to a healthy environment and a society with a prosperous economy. One of the solutions is to improve buildings’ energy performance by cutting energy consumption and related carbon emissions, eventually improving the quality of life. Unfortunately, the energy demand for buildings is rising. For instance, in Europe, the building sector accounts for 19% of the global energy-related greenhouse gas (GHGs) emissions, the main contributor to global warming in the last 50 years, and 36% of the total CO2 emissions, according to European Commission 2019. The crisis of energy use demands expanding knowledge and understanding of the potential benefits of energy-efficient buildings. In this regard, the present paper aims to critically review the existing body of knowledge on improving energy efficiency in buildings and detail the significant research contributions. Peer-reviewed journal articles published in the last decade in reputed journals were reviewed using the database Scopus and keywords of Sustainability, Sustainable Development, Energy Performance, Energy Consumption, Energy Efficiency, and Buildings. All contributions will be classified by journal type, publication time, country/region, building occupancy type, applied strategies, and findings. This study will provide an essential basis for researchers working on missing areas and filling the existing gaps in the body of knowledge.

Keywords: sustainability, energy performance, energy efficiency, buildings, review

Procedia PDF Downloads 55
16991 Analysis of Co2 Emission from Thailand's Thermal Power Sector by Divisia Decomposition Approach

Authors: Isara Muangthai, Lin Sue Jane

Abstract:

Electricity is vital to every country’s economy in the world. For Thailand, the electricity generation sector plays an important role in the economic system, and it is the largest source of CO2 emissions. The aim of this paper is to use the decomposition analysis to investigate the key factors contributing to the changes of CO2 emissions from the electricity sector. The decomposition analysis has been widely used to identify and assess the contributors to the changes in emission trends. Our study adopted the Divisia index decomposition to identify the key factors affecting the evolution of CO2 emissions from Thailand’s thermal power sector during 2000-2011. The change of CO2 emissions were decomposed into five factors, including: Emission coefficient, heat rate, fuel intensity, electricity intensity, and economic growth. Results have shown that CO2 emission in Thailand’s thermal power sector increased 29,173 thousand tons during 2000-2011. Economic growth was found to be the primary factor for increasing CO2 emissions, while the electricity intensity played a dominant role in decreasing CO2 emissions. The increasing effect of economic growth was up to 55,924 million tons of CO2 emissions because the growth and development of the economy relied on a large electricity supply. On the other hand, the shifting of fuel structure towards a lower-carbon content resulted in CO2 emission decline. Since the CO2 emissions released from Thailand’s electricity generation are rapidly increasing, the Thailand government will be required to implement a CO2 reduction plan in the future. In order to cope with the impact of CO2 emissions related to the power sector and to achieve sustainable development, this study suggests that Thailand’s government should focus on restructuring the fuel supply in power generation towards low carbon fuels by promoting the use of renewable energy for electricity, improving the efficiency of electricity use by reducing electricity transmission and the distribution of line losses, implementing energy conservation strategies by enhancing the purchase of energy-saving products, substituting the new power plant technology in the old power plants, promoting a shift of economic structure towards less energy-intensive services and orienting Thailand’s power industry towards low carbon electricity generation.

Keywords: co2 emission, decomposition analysis, electricity generation, energy consumption

Procedia PDF Downloads 466
16990 A Customize Battery Management Approach for Satellite

Authors: Muhammad Affan, Muhammad Ilyas Raza, Muhammad Harris Hashmi

Abstract:

This work is attributed to the battery management unit design of student Satellites under Pakistan National Student Satellite Program (PNSSP). The aim has been to design a customized, low-cost, efficient, reliable and less-complex battery management scheme for the Satellite. Nowadays, Lithium Ion (Li-ion) batteries have become the de-facto standard for remote applications, especially for satellites. Li-ion cells are selected for secondary storage. The design also addresses Li-ion safety requirements by monitoring, balancing and protecting cells for safe and prolonged operation. Accurate voltage measurement of individual cells was the main challenge because all the actions triggered were based on the digital voltage measurement. For this purpose, a resistive-divider network is used to maintain simplicity and cost-effectiveness. To cater the problem of insufficient i/o pins on microcontroller, fast multiplexers and de-multiplexers were used. The discrepancy inherited in the given design is the dissipation of heat due to the dissipative resistors. However, it is still considered to be the optimum adoption, considering the simple and cost-effective nature of the passive balancing technique. Furthermore, it is a completely unique solution, customized to meet specific requirements. However, there is still an option for a more advanced and expensive design.

Keywords: satellite, battery module, passive balancing, dissipative

Procedia PDF Downloads 121
16989 Skills Development: The Active Learning Model of a French Computer Science Institute

Authors: N. Paparisteidi, D. Rodamitou

Abstract:

This article focuses on the skills development and path planning of students studying computer science in EPITECH: french private institute of Higher Education. The researchers examine students’ points of view and experience in a blended learning model based on a skills development curriculum. The study is based on the collection of four main categories of data: semi-participant observation, distribution of questionnaires, interviews, and analysis of internal school databases. The findings seem to indicate that a skills-based program on active learning enables students to develop their learning strategies as well as their personal skills and to actively engage in the creation of their career path and contribute to providing additional information to curricula planners and decision-makers about learning design in higher education.

Keywords: active learning, blended learning, higher education, skills development

Procedia PDF Downloads 91
16988 Design, Optimize the Damping System for Optical Scanning Equipment

Authors: Duy Nhat Tran, Van Tien Pham, Quang Trung Trinh, Tien Hai Tran, Van Cong Bui

Abstract:

In recent years, artificial intelligence and the Internet of Things have experienced significant advancements. Collecting image data and real-time analysis and processing of tasks have become increasingly popular in various aspects of life. Optical scanning devices are widely used to observe and analyze different environments, whether fixed outdoors, mounted on mobile devices, or used in unmanned aerial vehicles. As a result, the interaction between the physical environment and these devices has become more critical in terms of safety. Two commonly used methods for addressing these challenges are active and passive approaches. Each method has its advantages and disadvantages, but combining both methods can lead to higher efficiency. One solution is to utilize direct-drive motors for position control and real-time feedback within the operational range to determine appropriate control parameters with high precision. If the maximum motor torque is smaller than the inertial torque and the rotor reaches the operational limit, the spring system absorbs the impact force. Numerous experiments have been conducted to demonstrate the effectiveness of device protection during operation.

Keywords: optical device, collision safety, collision absorption, precise mechanics

Procedia PDF Downloads 43
16987 Factors in a Sustainability Assessment of New Types of Closed Cavity Facades

Authors: Zoran Veršić, Josip Galić, Marin Binički, Lucija Stepinac

Abstract:

With the current increase in CO₂ emissions and global warming, the sustainability of both existing and new solutions must be assessed on a wide scale. As the implementation of closed cavity facades (CCF) is on the rise, a variety of factors must be included in the analysis of new types of CCF. This paper aims to cover the relevant factors included in the sustainability assessment of new types of CCF. Several mathematical models are being used to describe the physical behavior of CCF. Depending on the type of CCF, they cover the main factors which affect the durability of the façade: thermal behavior of various elements in the façade, stress, and deflection of the glass panels, pressure inside a cavity, exchange rate, and the moisture buildup in the cavity. CCF itself represents a complex system in which all mentioned factors must be considered mutually. Still, the façade is only an envelope of a more complex system, the building. Choice of the façade dictates the heat loss and the heat gain, thermal comfort of inner space, natural lighting, and ventilation. Annual consumption of energy for heating, cooling, lighting, and maintenance costs will present the operational advantages or disadvantages of the chosen façade system in both the economic and environmental aspects. Still, the only operational viewpoint is not all-inclusive. As the building codes constantly demand higher energy efficiency as well as transfer to renewable energy sources, the ratio of embodied and lifetime operational energy footprint of buildings is changing. With the drop in operational energy CO₂ emissions, embodied energy emissions present a larger and larger share in the lifecycle emissions of the building. Taken all into account, the sustainability assessment of a façade, as well as other major building elements, should include all mentioned factors during the lifecycle of an element. The challenge of such an approach is a timescale. Depending on the climatic conditions on the building site, the expected lifetime of CCF can exceed 25 years. In such a time span, some of the factors can be estimated more precisely than others. The ones depending on the socio-economic conditions are more likely to be harder to predict than the natural ones like the climatic load. This work recognizes and summarizes the relevant factors needed for the assessment of new types of CCF, considering the entire lifetime of a façade element and economic and environmental aspects.

Keywords: assessment, closed cavity façade, life cycle, sustainability

Procedia PDF Downloads 177
16986 Photocatalytic Hydrogen Production, Effect of Metal Particle Size and Their Electronic/Optical Properties on the Reaction

Authors: Hicham Idriss

Abstract:

Hydrogen production from water is one of the most promising methods to secure renewable sources or vectors of energy for societies in general and for chemical industries in particular. At present over 90% of the total amount of hydrogen produced in the world is made from non-renewable fossil fuels (via methane reforming). There are many methods for producing hydrogen from water and these include reducible oxide materials (solar thermal production), combined PV/electrolysis, artificial photosynthesis and photocatalysis. The most promising of these processes is the one relying on photocatalysis; yet serious challenges are hindering its success so far. In order to make this process viable considerable improvement of the photon conversion is needed. Among the key studies that our group has been conducting in the last few years are those focusing on synergism between the semiconductor phases, photonic band gap materials, pn junctions, plasmonic resonance responses, charge transfer to metal cations, in addition to metal dispersion and band gap engineering. In this work results related to phase transformation of the anatase to rutile in the case of TiO2 (synergism), of Au and Ag dispersion (electron trapping and hydrogen-hydrogen recombination centers) as well as their plasmon resonance response (visible light conversion) are presented and discussed. It is found for example that synergism between the two common phases of TiO2 (anatase and rutile) is sensitive to the initial particle size. It is also found, in agreement with previous results, that the rate is very sensitive to the amount of metals (with similar particle size) on the surface unlike the case of thermal heterogeneous catalysis.

Keywords: photo-catalysis, hydrogen production, water splitting, plasmonic

Procedia PDF Downloads 240
16985 Development of an Optimization Method for Myoelectric Signal Processing by Active Matrix Sensing in Robot Rehabilitation

Authors: Noriyoshi Yamauchi, Etsuo Horikawa, Takunori Tsuji

Abstract:

Training by exoskeleton robot is drawing attention as a rehabilitation method for body paralysis seen in many cases, and there are many forms that assist with the myoelectric signal generated by exercise commands from the brain. Rehabilitation requires more frequent training, but it is one of the reasons that the technology is required for the identification of the myoelectric potential derivation site and attachment of the device is preventing the spread of paralysis. In this research, we focus on improving the efficiency of gait training by exoskeleton type robots, improvement of myoelectric acquisition and analysis method using active matrix sensing method, and improvement of walking rehabilitation and walking by optimization of robot control.

Keywords: active matrix sensing, brain machine interface (BMI), the central pattern generator (CPG), myoelectric signal processing, robot rehabilitation

Procedia PDF Downloads 376
16984 Molecular Docking Study of Quinazoline and Quinoline Derivatives against EGFR

Authors: Asli Faiza, Khamouli Saida

Abstract:

With the development of computer tools over the past 20 years. Molecular modeling and, more precisely, molecular docking has very quickly entered field of pharmaceutical research. EGFR enzyme involved in cancer disease.Our work consists of studying the inhibition of EGFR (1M17) with deferent inhibitors derived from quinazoline and quinoline by molecular docking. The values of ligands L148 and L177 are the best ligands for inhibit the activity of 1M17 since it forms a stable complex with this enzyme by better binding to the active site. The results obtained show that the ligands L148 and L177 give weak interactions with the active site residues EGFR (1M17), which stabilize the complexes formed of this ligands, which gives a better binding at the level of the active site, and an RMSD of L148 [1,9563 Å] and of L177 [ 1,2483 Å]. [1, 9563, 1.2483] Å

Keywords: docking, EGFR, quinazoline, quinoliène, MOE

Procedia PDF Downloads 51
16983 Trauma: Constructivist Theoretical Framework

Authors: Wendi Dunham, Kimberly Floyd

Abstract:

The constructivist approach to learning is a theoretical orientation that posits that individuals create their own understanding and knowledge of the world through their experiences and interactions. This approach emphasizes that learning is an active process and that individuals are not passive recipients when constructing their understanding of their world. When used concurrently with trauma-informed practices, a constructivist approach can inform the development of a framework for students and teachers that supports their social, emotional, and mental health in addition to enabling academic success. This framework can be applied to teachers and students. When applied to teachers, it can be used to achieve purposeful coping mechanisms through restorative justice and dispositional mindfulness. When applied to students, the framework can implement proactive, student-based practices such as Response to Intervention (RtI) and the 4 Rs to connect resiliency and intervention to academic learning. Using a constructivist, trauma-informed framework can provide students with a greater sense of control and agency over their trauma experiences and impart confidence in achieving school success.

Keywords: trauma, trauma informed practices in education, constructivist theory framework, school responses to trauma, trauma informed supports for teachers, trauma informed strategies for students, restorative justice, mindfulness, response to intervention, the 4 R's, resiliency

Procedia PDF Downloads 26
16982 Development of Fuzzy Logic and Neuro-Fuzzy Surface Roughness Prediction Systems Coupled with Cutting Current in Milling Operation

Authors: Joseph C. Chen, Venkata Mohan Kudapa

Abstract:

Development of two real-time surface roughness (Ra) prediction systems for milling operations was attempted. The systems used not only cutting parameters, such as feed rate and spindle speed, but also the cutting current generated and corrected by a clamp type energy sensor. Two different approaches were developed. First, a fuzzy inference system (FIS), in which the fuzzy logic rules are generated by experts in the milling processes, was used to conduct prediction modeling using current cutting data. Second, a neuro-fuzzy system (ANFIS) was explored. Neuro-fuzzy systems are adaptive techniques in which data are collected on the network, processed, and rules are generated by the system. The inference system then uses these rules to predict Ra as the output. Experimental results showed that the parameters of spindle speed, feed rate, depth of cut, and input current variation could predict Ra. These two systems enable the prediction of Ra during the milling operation with an average of 91.83% and 94.48% accuracy by FIS and ANFIS systems, respectively. Statistically, the ANFIS system provided better prediction accuracy than that of the FIS system.

Keywords: surface roughness, input current, fuzzy logic, neuro-fuzzy, milling operations

Procedia PDF Downloads 127
16981 Evaluating and Supporting Student Engagement in Online Learning

Authors: Maria Hopkins

Abstract:

Research on student engagement is founded on a desire to improve the quality of online instruction in both course design and delivery. A high level of student engagement is associated with a wide range of educational practices including purposeful student-faculty contact, peer to peer contact, active and collaborative learning, and positive factors such as student satisfaction, persistence, achievement, and learning. By encouraging student engagement, institutions of higher education can have a positive impact on student success that leads to retention and degree completion. The current research presents the results of an online student engagement survey which support faculty teaching practices to maximize the learning experience for online students. The ‘Indicators of Engaged Learning Online’ provide a framework that measures level of student engagement. Social constructivism and collaborative learning form the theoretical basis of the framework. Social constructivist pedagogy acknowledges the social nature of knowledge and its creation in the minds of individual learners. Some important themes that flow from social constructivism involve the importance of collaboration among instructors and students, active learning vs passive consumption of information, a learning environment that is learner and learning centered, which promotes multiple perspectives, and the use of social tools in the online environment to construct knowledge. The results of the survey indicated themes that emphasized the importance of: Interaction among peers and faculty (collaboration); Timely feedback on assignment/assessments; Faculty participation and visibility; Relevance and real-world application (in terms of assignments, activities, and assessments); and Motivation/interest (the need for faculty to motivate students especially those that may not have an interest in the coursework per se). The qualitative aspect of this student engagement study revealed what instructors did well that made students feel engaged in the course, but also what instructors did not do well, which could inform recommendations to faculty when expectations for teaching a course are reviewed. Furthermore, this research provides evidence for the connection between higher student engagement and persistence and retention in online programs, which supports our rationale for encouraging student engagement, especially in the online environment because attrition rates are higher than in the face-to-face environment.

Keywords: instructional design, learning effectiveness, online learning, student engagement

Procedia PDF Downloads 281
16980 On the Quantum Behavior of Nanoparticles: Quantum Theory and Nano-Pharmacology

Authors: Kurudzirayi Robson Musikavanhu

Abstract:

Nanophase particles exhibit quantum behavior by virtue of their small size, being particles of gamma to x-ray wavelength [atomic range]. Such particles exhibit high frequencies, high energy/photon, high penetration power, high ionization power [atomic behavior] and are stable at low energy levels as opposed to bulk phase matter [macro particles] which exhibit higher wavelength [radio wave end] properties, hence lower frequency, lower energy/photon, lower penetration power, lower ionizing power and are less stable at low temperatures. The ‘unique’ behavioral motion of Nano systems will remain a mystery as long as quantum theory remains a mystery, and for pharmacology, pharmacovigilance profiling of Nano systems becomes virtually impossible. Quantum theory is the 4 – 3 – 5 electromagnetic law of life and life motion systems on planet earth. Electromagnetic [wave-particle] properties of all particulate matter changes as mass [bulkiness] changes from one phase to the next [Nano-phase to micro-phase to milli-phase to meter-phase to kilometer phase etc.] and the subsequent electromagnetic effect of one phase particle on bulk matter [different phase] changes from one phase to another. All matter exhibit electromagnetic properties [wave-particle duality] in behavior and the lower the wavelength [and the lesser the bulkiness] the higher the gamma ray end properties exhibited and the higher the wavelength [and the greater the bulkiness], the more the radio-wave end properties are exhibited. Quantum theory is the 4 [moon] – 3[sun] – [earth] 5 law of the Electromagnetic spectrum [solar system]. 4 + 3 = 7; 4 + 3 + 5 = 12; 4 * 3 * 5 = 60; 42 + 32 = 52; 43 + 33 + 53 = 63. Quantum age is overdue.

Keywords: electromagnetic solar system, nano-material, nano pharmacology, pharmacovigilance, quantum theory

Procedia PDF Downloads 428
16979 A Model Predictive Control Based Virtual Active Power Filter Using V2G Technology

Authors: Mahdi Zolfaghari, Seyed Hossein Hosseinian, Hossein Askarian Abyaneh, Mehrdad Abedi

Abstract:

This paper presents a virtual active power filter (VAPF) using vehicle to grid (V2G) technology to maintain power quality requirements. The optimal discrete operation of the power converter of electric vehicle (EV) is based on recognizing desired switching states using the model predictive control (MPC) algorithm. A fast dynamic response, lower total harmonic distortion (THD) and good reference tracking performance are realized through the presented control strategy. The simulation results using MATLAB/Simulink validate the effectiveness of the scheme in improving power quality as well as good dynamic response in power transferring capability.

Keywords: electric vehicle, model predictive control, power quality, V2G technology, virtual active power filter

Procedia PDF Downloads 410
16978 Photovoltaic-Driven Thermochemical Storage for Cooling Applications to Be Integrated in Polynesian Microgrids: Concept and Efficiency Study

Authors: Franco Ferrucci, Driss Stitou, Pascal Ortega, Franck Lucas

Abstract:

The energy situation in tropical insular regions, as found in the French Polynesian islands, presents a number of challenges, such as high dependence on imported fuel, high transport costs from the mainland and weak electricity grids. Alternatively, these regions have a variety of renewable energy resources, which favor the exploitation of smart microgrids and energy storage technologies. With regards to the electrical energy demand, the high temperatures in these regions during the entire year implies that a large proportion of consumption is used for cooling buildings, even during the evening hours. In this context, this paper presents an air conditioning system driven by photovoltaic (PV) electricity that combines a refrigeration system and a thermochemical storage process. Thermochemical processes are able to store energy in the form of chemical potential with virtually no losses, and this energy can be used to produce cooling during the evening hours without the need to run a compressor (thus no electricity is required). Such storage processes implement thermochemical reactors in which a reversible chemical reaction between a solid compound and a gas takes place. The solid/gas pair used in this study is BaCl2 reacting with ammonia (NH3), which is also the coolant fluid in the refrigeration circuit. In the proposed system, the PV-driven electric compressor is used during the daytime either to run the refrigeration circuit when a cooling demand occurs or to decompose the ammonia-charged salt and remove the gas from thermochemical reactor when no cooling is needed. During the evening, when there is no electricity from solar source, the system changes its configuration and the reactor reabsorbs the ammonia gas from the evaporator and produces the cooling effect. In comparison to classical PV-driven air conditioning units equipped with electrochemical batteries (e.g. Pb, Li-ion), the proposed system has the advantage of having a novel storage technology with a much longer charge/discharge life cycle, and no self-discharge. It also allows a continuous operation of the electric compressor during the daytime, thus avoiding the problems associated with the on-off cycling. This work focuses on the system concept and on the efficiency study of its main components. It also compares the thermochemical with electrochemical storage as well as with other forms of thermal storage, such as latent (ice) and sensible heat (chilled water). The preliminary results show that the system seems to be a promising alternative to simultaneously fulfill cooling and energy storage needs in tropical insular regions.

Keywords: microgrid, solar air-conditioning, solid/gas sorption, thermochemical storage, tropical and insular regions

Procedia PDF Downloads 223
16977 Investigations on the Cytotoxicity and Antimicrobial Activities of Terezine E and 14-Hydroxyterezine D

Authors: Mariam Mojally, Randa Abdou, Wisal Bokhari, Sultan Sab, Mohammed Dawoud, Amjad Albohy

Abstract:

Secondary metabolites produced by endophytes are an excellent source of biologically active compounds. In our current study, we evaluated terezine E and 14-hydroxyterezine D for binding to the active site of histone deacetylase (PDB ID: 4CBT) and matrix metalloproteinase 9 (PDB ID: 4H3X) by molecular docking using AutoDock Vina software after having tested their cytotoxic activities on three cell lines (human ductal breast epithelial tumor cells (T47D)-HCC1937), human hepatocarcinoma cell line (HepG2)-HB8065), and human colorectal carcinoma cells (HCT-116)-TCP1006, purchased from ATCC, USA)). Additionally, their antimicrobial activities were investigated, and their minimum inhibitory concentration (MIC) values were determined against P. notatum and S. aureus by the broth microdilution method. Higher cytotoxicity was observed for terezine E against all tested cell lines compared to 14-hydroxyterezine D. Molecular docking results supported the high cytotoxicity of terezine E and showed higher binding affinity with 4CBT with an energy score of 9 kcal/mol. Terezine E showed higher antibacterial and antifungal activities than 14-hydroxyrerezine D: MIC values were 15.45 and 21.73 mg/mL against S. aureus and 8.61 and 11.54 mg/mL against P. notatum, respectively

Keywords: Terezine E, 14-Hydroxyterezine D, cytotoxicity, antimicrobial activity, molecular docking

Procedia PDF Downloads 53
16976 Impact of Silicon Surface Modification on the Catalytic Performance Towards CO₂ Conversion of Cu₂S/Si-Based Photocathodes

Authors: Karima Benfadel, Lamia Talbi, Sabiha Anas Boussaa, Afaf Brik, Assia Boukezzata, Yahia Ouadah, Samira Kaci

Abstract:

In order to prevent global warming, which is mainly caused by the increase in carbon dioxide levels in the atmosphere, it is interesting to produce renewable energy in the form of chemical energy by converting carbon dioxide into alternative fuels and other energy-dense products. Photoelectrochemical reduction of carbon dioxide to value-added products and fuels is a promising and current method. The objective of our study is to develop Cu₂S-based photoélectrodes, in which Cu₂S is used as a CO₂ photoelectrocatalyst deposited on nanostructured silicon substrates. Cu₂S thin layers were deposited using the chemical bath deposition (CBD) technique. Silicon nanowires and nanopyramids were obtained by alkaline etching. SEM and UV-visible spectroscopy was used to analyse the morphology and optical characteristics. By using a potentiostat station, we characterized the photoelectrochemical properties. We performed cyclic voltammetry in the presence and without CO₂ purging as well as linear voltammetry (LSV) in the dark and under white light irradiation. We perform chronoamperometry to study the stability of our photocathodes. The quality of the nanowires and nanopyramids was visible in the SEM images, and after Cu₂S deposition, we could see how the deposition was distributed over the textured surfaces. The inclusion of the Cu₂S layer applied on textured substrates significantly reduces the reflectance (R%). The catalytic performance towards CO₂ conversion of Cu₂S/Si-based photocathodes revealed that the texturing of the silicon surface with nanowires and pyramids has a better photoelectrochemical behavior than those without surface modifications.

Keywords: CO₂ conversion, Cu₂S photocathode, silicone nanostructured, electrochemistry

Procedia PDF Downloads 64
16975 Potential Risks of Using Disconnected Composite Foundation Systems in Active Seismic Zones

Authors: Mohamed ElMasry, Ahmad Ragheb, Tareq AbdelAziz, Mohamed Ghazy

Abstract:

Choosing the suitable infrastructure system is becoming more challenging with the increase in demand for heavier structures contemporarily. This is the case where piled raft foundations have been widely used around the world to support heavy structures without extensive settlement. In the latter system, piles are rigidly connected to the raft, and most of the load goes to the soil layer on which the piles are bearing. In spite of that, when soil profiles contain thicker soft clay layers near the surface, or at relatively shallow depths, it is unfavorable to use the rigid piled raft foundation system. Consequently, the disconnected piled raft system was introduced as an alternative approach for the rigidly connected system. In this system, piles are disconnected from the raft using a cushion of soil, mostly of a granular interlayer. The cushion is used to redistribute the stresses among the piles and the subsoil. Piles are also used to stiffen the subsoil, and by this way reduce the settlement without being rigidly connected to the raft. However, the seismic loading effect on such disconnected foundation systems remains a problem, since the soil profiles may include thick clay layers which raise risks of amplification of the dynamic earthquake loads. In this paper, the effects of seismic behavior on the connected and disconnected piled raft systems are studied through a numerical model using Midas GTS NX Software. The study concerns the soil-structure interaction and the expected behavior of the systems. Advantages and disadvantages of each foundation approach are studied, and a comparison between the results are presented to show the effects of using disconnected piled raft systems in highly seismic zones. This was done by showing the excitation amplification in each of the foundation systems.

Keywords: soil-structure interaction, disconnected piled-raft, risks, seismic zones

Procedia PDF Downloads 252
16974 Assessment of Energy Consumption in Cluster Redevelopment: A Case Study of Bhendi Bazar in Mumbai

Authors: Insiya Kapasi, Roshni Udyavar Yehuda

Abstract:

Cluster Redevelopment is a new concept in the city of Mumbai. Its regulations were laid down by the government in 2009. The concept of cluster redevelopment encompasses a group of buildings defined by a boundary as specified by the municipal authority (in this case, Mumbai), which may be dilapidated or approved for redevelopment. The study analyses the effect of cluster redevelopment in the form of renewal of old group of buildings as compared to refurbishment or restoration - on energy consumption. The methodology includes methods of assessment to determine increase or decrease in energy consumption in cluster redevelopment based on different criteria such as carpet area of the units, building envelope and its architectural elements. Results show that as the area and number of units increase the Energy consumption increases and the EPI (energy performance index) decreases as compared to the base case. The energy consumption per unit area declines by 29% in the proposed cluster redevelopment as compared to the original settlement. It is recommended that although the development is spacious and provides more light and ventilation, aspects such as glass type, traditional architectural features and consumer behavior are critical in the reduction of energy consumption.

Keywords: Cluster Redevelopment, Energy Consumption, Energy Efficiency, Typologies

Procedia PDF Downloads 137
16973 The Optimization of Sun Collector Parameters

Authors: István Patkó, Hosam Bayoumi Hamuda, András Szeder

Abstract:

In order to efficiently solve the problems created by the deepening energy crisis affecting Europe and the world, governments cannot neglect the opportunities of using the energy produced by sun collectors. In many of the EU countries there are sun collectors producing heat energy, e.g. in 2011 in the area of EU27 (countries which belong to European Union) + Switzerland altogether 37519126 m2 were operated, which are capable of producing 26.3 GWh heat energy. The energy produced by these sun collectors is utilized at the place of production. In the near future governments will have to focus more on spreading and using sun collectors. Among the complex problems of operating sun collectors, this article deals with determining the optimal tilt angle, directions of sun collectors. We evaluate the contamination of glass surface of sun collector to the produced energy. Our theoretically results are confirmed by laboratory measurements. The purpose of our work is to help users and engineers in determination of optimal operation parameters of sun collectors.

Keywords: heat energy, tilt angle, direction of sun collector, contamination of surface

Procedia PDF Downloads 419