Search results for: X-ray Image detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5754

Search results for: X-ray Image detection

3894 Rapid Plasmonic Colorimetric Glucose Biosensor via Biocatalytic Enlargement of Gold Nanostars

Authors: Masauso Moses Phiri

Abstract:

Frequent glucose monitoring is essential to the management of diabetes. Plasmonic enzyme-based glucose biosensors have the advantages of greater specificity, simplicity and rapidity. The aim of this study was to develop a rapid plasmonic colorimetric glucose biosensor based on biocatalytic enlargement of AuNS guided by GOx. Gold nanoparticles of 18 nm in diameter were synthesized using the citrate method. Using these as seeds, a modified seeded method for the synthesis of monodispersed gold nanostars was followed. Both the spherical and star-shaped nanoparticles were characterized using ultra-violet visible spectroscopy, agarose gel electrophoresis, dynamic light scattering, high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy. The feasibility of a plasmonic colorimetric assay through growth of AuNS by silver coating in the presence of hydrogen peroxide was investigated by several control and optimization experiments. Conditions for excellent sensing such as the concentration of the detection solution in the presence of 20 µL AuNS, 10 mM of 2-(N-morpholino) ethanesulfonic acid (MES), ammonia and hydrogen peroxide were optimized. Using the optimized conditions, the glucose assay was developed by adding 5mM of GOx to the solution and varying concentrations of glucose to it. Kinetic readings, as well as color changes, were observed. The results showed that the absorbance values of the AuNS were blue shifting and increasing as the concentration of glucose was elevated. Control experiments indicated no growth of AuNS in the absence of GOx, glucose or molecular O₂. Increased glucose concentration led to an enhanced growth of AuNS. The detection of glucose was also done by naked-eye. The color development was near complete in ± 10 minutes. The kinetic readings which were monitored at 450 and 560 nm showed that the assay could discriminate between different concentrations of glucose by ± 50 seconds and near complete at ± 120 seconds. A calibration curve for the qualitative measurement of glucose was derived. The magnitude of wavelength shifts and absorbance values increased concomitantly with glucose concentrations until 90 µg/mL. Beyond that, it leveled off. The lowest amount of glucose that could produce a blue shift in the localized surface plasmon resonance (LSPR) absorption maxima was found to be 10 – 90 µg/mL. The limit of detection was 0.12 µg/mL. This enabled the construction of a direct sensitivity plasmonic colorimetric detection of glucose using AuNS that was rapid, sensitive and cost-effective with naked-eye detection. It has great potential for transfer of technology for point-of-care devices.

Keywords: colorimetric, gold nanostars, glucose, glucose oxidase, plasmonic

Procedia PDF Downloads 153
3893 A New Seperation / Precocentration and Determination Procedure Based on Solidified Floating Organic Drop Microextraction (SFODME) of Lead by Using Graphite Furnace Atomic Absorption Spectrometry

Authors: Seyda Donmez, Oya Aydin Urucu, Ece Kok Yetimoglu

Abstract:

Solidified floating organic drop microextraction was used for a preconcentration method of trace amount of lead. The analyte was complexed with 1-(2-pyridylazo)-2-naphtol and 1-undecanol, acetonitrile was added as an extraction and dispersive solvent respectively. The influences of some analytical parameters pH, volumes of extraction and disperser solvent, concentration of chelating agent, and concentration of salt were optimized. Under the optimum conditions the detection limits of Pb (II) was determined. The procedure was validated for the analysis of NCS DC 73347a hair standard reference material with satisfactory result. The developed procedure was successfully applied to food and water samples for detection of Pb (II) ions.

Keywords: analytical methods, graphite furnace atomic absorption spectrometry, heavy metals, solidified floating organic drop microextraction

Procedia PDF Downloads 277
3892 Diagnostic Evaluation of Urinary Angiogenin (ANG) and Clusterin (CLU) as Biomarker for Bladder Cancer

Authors: Marwa I. Shabayek, Ola A. Said, Hanan A. Attaia, Heba A. Awida

Abstract:

Bladder carcinoma is an important worldwide health problem. Both cystoscopy and urine cytology used in detecting bladder cancer suffer from drawbacks where cystoscopy is an invasive method and urine cytology shows low sensitivity in low grade tumors. This study validates easier and less time-consuming techniques to evaluate the value of combined use of angiogenin and clusterin in comparison and combination with voided urine cytology in the detection of bladder cancer patients. This study includes malignant (bladder cancer patients, n= 50), benign (n=20), and healthy (n=20) groups. The studied groups were subjected to cystoscopic examination, detection of bilharzial antibodies, urine cytology, and estimation of urinary angiogenin and clusterin by ELISA. The overall sensitivity and specifcity were 66% and 75% for angiogenin, 70% and 82.5% for clusterin and 46% and 80% for voided urine cytology. Combined sensitivity of angiogenin and clusterin with urine cytology increased from 82 to 88%.

Keywords: angiogenin, bladder cancer, clusterin, cytology

Procedia PDF Downloads 298
3891 Chemical Fingerprinting of Complex Samples With the Aid of Parallel Outlet Flow Chromatography

Authors: Xavier A. Conlan

Abstract:

Speed of analysis is a significant limitation to current high-performance liquid chromatography/mass spectrometry (HPLC/MS) and ultra-high-pressure liquid chromatography (UHPLC)/MS systems both of which are used in many forensic investigations. The flow rate limitations of MS detection require a compromise in the chromatographic flow rate, which in turn reduces throughput, and when using modern columns, a reduction in separation efficiency. Commonly, this restriction is combated through the post-column splitting of flow prior to entry into the mass spectrometer. However, this results in a loss of sensitivity and a loss in efficiency due to the post-extra column dead volume. A new chromatographic column format known as 'parallel segmented flow' involves the splitting of eluent flow within the column outlet end fitting, and in this study we present its application in order to interrogate the provenience of methamphetamine samples with mass spectrometry detection. Using parallel segmented flow, column flow rates as high as 3 mL/min were employed in the analysis of amino acids without post-column splitting to the mass spectrometer. Furthermore, when parallel segmented flow chromatography columns were employed, the sensitivity was more than twice that of conventional systems with post-column splitting when the same volume of mobile phase was passed through the detector. These finding suggest that this type of column technology will particularly enhance the capabilities of modern LC/MS enabling both high-throughput and sensitive mass spectral detection.

Keywords: chromatography, mass spectrometry methamphetamine, parallel segmented outlet flow column, forensic sciences

Procedia PDF Downloads 492
3890 Effect of Depth on Texture Features of Ultrasound Images

Authors: M. A. Alqahtani, D. P. Coleman, N. D. Pugh, L. D. M. Nokes

Abstract:

In diagnostic ultrasound, the echo graphic B-scan texture is an important area of investigation since it can be analyzed to characterize the histological state of internal tissues. An important factor requiring consideration when evaluating ultrasonic tissue texture is the depth. The effect of attenuation with depth of ultrasound, the size of the region of interest, gain, and dynamic range are important variables to consider as they can influence the analysis of texture features. These sources of variability have to be considered carefully when evaluating image texture as different settings might influence the resultant image. The aim of this study is to investigate the effect of depth on the texture features in-vivo using a 3D ultrasound probe. The left leg medial head of the gastrocnemius muscle of 10 healthy subjects were scanned. Two regions A and B were defined at different depth within the gastrocnemius muscle boundary. The size of both ROI’s was 280*20 pixels and the distance between region A and B was kept constant at 5 mm. Texture parameters include gray level, variance, skewness, kurtosis, co-occurrence matrix; run length matrix, gradient, autoregressive (AR) model and wavelet transform were extracted from the images. The paired t –test was used to test the depth effect for the normally distributed data and the Wilcoxon–Mann-Whitney test was used for the non-normally distributed data. The gray level, variance, and run length matrix were significantly lowered when the depth increased. The other texture parameters showed similar values at different depth. All the texture parameters showed no significant difference between depths A and B (p > 0.05) except for gray level, variance and run length matrix (p < 0.05). This indicates that gray level, variance, and run length matrix are depth dependent.

Keywords: ultrasound image, texture parameters, computational biology, biomedical engineering

Procedia PDF Downloads 296
3889 Damage Analysis in Open Hole Composite Specimens by Acoustic Emission: Experimental Investigation

Authors: Youcef Faci, Ahmed Mebtouche, Badredine Maalem

Abstract:

n the present work, an experimental study is carried out using acoustic emission and DIC techniques to analyze the damage of open hole woven composite carbon/epoxy under solicitations. Damage mechanisms were identified based on acoustic emission parameters such as amplitude, energy, and cumulative account. The findings of the AE measurement were successfully identified by digital image correlation (DIC) measurements. The evolution value of bolt angle inclination during tensile tests was studied and analyzed. Consequently, the relationship between the bolt inclination angles during tensile tests associated with failure modes of fastened joints of composite materials is determined. Moreover, there is an interaction between laminate pattern, laminate thickness, fastener size and type, surface strain concentrations, and out-of-plane displacement. Conclusions are supported by microscopic visualizations of the composite specimen.

Keywords: tensile test, damage, acoustic emission, digital image correlation

Procedia PDF Downloads 70
3888 Developing Three-Dimensional Digital Image Correlation Method to Detect the Crack Variation at the Joint of Weld Steel Plate

Authors: Ming-Hsiang Shih, Wen-Pei Sung, Shih-Heng Tung

Abstract:

The purposes of hydraulic gate are to maintain the functions of storing and draining water. It bears long-term hydraulic pressure and earthquake force and is very important for reservoir and waterpower plant. The high tensile strength of steel plate is used as constructional material of hydraulic gate. The cracks and rusts, induced by the defects of material, bad construction and seismic excitation and under water respectively, thus, the mechanics phenomena of gate with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of hydroelectric power plant. Stress distribution analysis is a very important and essential surveying technique to analyze bi-material and singular point problems. The finite difference infinitely small element method has been demonstrated, suitable for analyzing the buckling phenomena of welding seam and steel plate with crack. Especially, this method can easily analyze the singularity of kink crack. Nevertheless, the construction form and deformation shape of some gates are three-dimensional system. Therefore, the three-dimensional Digital Image Correlation (DIC) has been developed and applied to analyze the strain variation of steel plate with crack at weld joint. The proposed Digital image correlation (DIC) technique is an only non-contact method for measuring the variation of test object. According to rapid development of digital camera, the cost of this digital image correlation technique has been reduced. Otherwise, this DIC method provides with the advantages of widely practical application of indoor test and field test without the restriction on the size of test object. Thus, the research purpose of this research is to develop and apply this technique to monitor mechanics crack variations of weld steel hydraulic gate and its conformation under action of loading. The imagines can be picked from real time monitoring process to analyze the strain change of each loading stage. The proposed 3-Dimensional digital image correlation method, developed in the study, is applied to analyze the post-buckling phenomenon and buckling tendency of welded steel plate with crack. Then, the stress intensity of 3-dimensional analysis of different materials and enhanced materials in steel plate has been analyzed in this paper. The test results show that this proposed three-dimensional DIC method can precisely detect the crack variation of welded steel plate under different loading stages. Especially, this proposed DIC method can detect and identify the crack position and the other flaws of the welded steel plate that the traditional test methods hardly detect these kind phenomena. Therefore, this proposed three-dimensional DIC method can apply to observe the mechanics phenomena of composite materials subjected to loading and operating.

Keywords: welded steel plate, crack variation, three-dimensional digital image correlation (DIC), crack stel plate

Procedia PDF Downloads 520
3887 Segmental Motion of Polymer Chain at Glass Transition Probed by Single Molecule Detection

Authors: Hiroyuki Aoki

Abstract:

The glass transition phenomenon has been extensively studied for a long time. The glass transition of polymer materials is assigned to the transition of the dynamics of the chain backbone segment. However, the detailed mechanism of the transition behavior of the segmental motion is still unclear. In the current work, the single molecule detection technique was employed to reveal the trajectory of the molecular motion of the single polymer chain. The center segment of poly(butyl methacrylate) chain was labeled by a perylenediimide dye molecule and observed by a highly sensitive fluorescence microscope in a defocus condition. The translational and rotational diffusion of the center segment in a single polymer chain was analyzed near the glass transition temperature. The direct observation of the individual polymer chains revealed the intermittent behavior of the segmental motion, indicating the spatial inhomogeneity.

Keywords: glass transition, molecular motion, polymer materials, single molecule

Procedia PDF Downloads 339
3886 Diagnosis of the Lubrification System of a Gas Turbine Using the Adaptive Neuro-Fuzzy Inference System

Authors: H. Mahdjoub, B. Hamaidi, B. Zerouali, S. Rouabhia

Abstract:

The issue of fault detection and diagnosis (FDD) has gained widespread industrial interest in process condition monitoring applications. Accordingly, the use of neuro-fuzzy technic seems very promising. This paper treats a diagnosis modeling a strategic equipment of an industrial installation. We propose a diagnostic tool based on adaptive neuro-fuzzy inference system (ANFIS). The neuro-fuzzy network provides an abductive diagnosis. Moreover, it takes into account the uncertainties on the maintenance knowledge by giving a fuzzy characterization of each cause. This work was carried out with real data of a lubrication circuit from the gas turbine. The machine of interest is a gas turbine placed in a gas compressor station at South Industrial Centre (SIC Hassi Messaoud Ouargla, Algeria). We have defined the zones of good and bad functioning, and the results are presented to demonstrate the advantages of the proposed method.

Keywords: fault detection and diagnosis, lubrication system, turbine, ANFIS, training, pattern recognition

Procedia PDF Downloads 490
3885 Deep Learning for Image Correction in Sparse-View Computed Tomography

Authors: Shubham Gogri, Lucia Florescu

Abstract:

Medical diagnosis and radiotherapy treatment planning using Computed Tomography (CT) rely on the quantitative accuracy and quality of the CT images. At the same time, requirements for CT imaging include reducing the radiation dose exposure to patients and minimizing scanning time. A solution to this is the sparse-view CT technique, based on a reduced number of projection views. This, however, introduces a new problem— the incomplete projection data results in lower quality of the reconstructed images. To tackle this issue, deep learning methods have been applied to enhance the quality of the sparse-view CT images. A first approach involved employing Mir-Net, a dedicated deep neural network designed for image enhancement. This showed promise, utilizing an intricate architecture comprising encoder and decoder networks, along with the incorporation of the Charbonnier Loss. However, this approach was computationally demanding. Subsequently, a specialized Generative Adversarial Network (GAN) architecture, rooted in the Pix2Pix framework, was implemented. This GAN framework involves a U-Net-based Generator and a Discriminator based on Convolutional Neural Networks. To bolster the GAN's performance, both Charbonnier and Wasserstein loss functions were introduced, collectively focusing on capturing minute details while ensuring training stability. The integration of the perceptual loss, calculated based on feature vectors extracted from the VGG16 network pretrained on the ImageNet dataset, further enhanced the network's ability to synthesize relevant images. A series of comprehensive experiments with clinical CT data were conducted, exploring various GAN loss functions, including Wasserstein, Charbonnier, and perceptual loss. The outcomes demonstrated significant image quality improvements, confirmed through pertinent metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) between the corrected images and the ground truth. Furthermore, learning curves and qualitative comparisons added evidence of the enhanced image quality and the network's increased stability, while preserving pixel value intensity. The experiments underscored the potential of deep learning frameworks in enhancing the visual interpretation of CT scans, achieving outcomes with SSIM values close to one and PSNR values reaching up to 76.

Keywords: generative adversarial networks, sparse view computed tomography, CT image correction, Mir-Net

Procedia PDF Downloads 162
3884 Modifying Byzantine Fault Detection Using Disjoint Paths

Authors: Mehmet Hakan Karaata, Ali Hamdan, Omer Yusuf Adam Mohamed

Abstract:

Consider a distributed system that delivers messages from a process to another. Such a system is often required to deliver each message to its destination regardless of whether or not the system components experience arbitrary forms of faults. In addition, each message received by the destination must be a message sent by a system process. In this paper, we first identify the necessary and sufficient conditions to detect some restricted form of Byzantine faults referred to as modifying Byzantine faults. An observable form of a Byzantine fault whose effect is limited to the modification of a message metadata or content, timing and omission faults, and message replay is referred to as a modifying Byzantine fault. We then present a distributed protocol to detect modifying Byzantine faults using optimal number of messages over node-disjoint paths.

Keywords: Byzantine faults, distributed systems, fault detection, network pro- tocols, node-disjoint paths

Procedia PDF Downloads 566
3883 Robotic Arm-Automated Spray Painting with One-Shot Object Detection and Region-Based Path Optimization

Authors: Iqraq Kamal, Akmal Razif, Sivadas Chandra Sekaran, Ahmad Syazwan Hisaburi

Abstract:

Painting plays a crucial role in the aerospace manufacturing industry, serving both protective and cosmetic purposes for components. However, the traditional manual painting method is time-consuming and labor-intensive, posing challenges for the sector in achieving higher efficiency. Additionally, the current automated robot path planning has been a bottleneck for spray painting processes, as typical manual teaching methods are time-consuming, error-prone, and skill-dependent. Therefore, it is essential to develop automated tool path planning methods to replace manual ones, reducing costs and improving product quality. Focusing on flat panel painting in aerospace manufacturing, this study aims to address issues related to unreliable part identification techniques caused by the high-mixture, low-volume nature of the industry. The proposed solution involves using a spray gun and a UR10 robotic arm with a vision system that utilizes one-shot object detection (OS2D) to identify parts accurately. Additionally, the research optimizes path planning by concentrating on the region of interest—specifically, the identified part, rather than uniformly covering the entire painting tray.

Keywords: aerospace manufacturing, one-shot object detection, automated spray painting, vision-based path optimization, deep learning, automation, robotic arm

Procedia PDF Downloads 82
3882 Synthesis of Fluorescent PET-Type “Turn-Off” Triazolyl Coumarin Based Chemosensors for the Sensitive and Selective Sensing of Fe⁺³ Ions in Aqueous Solutions

Authors: Aidan Battison, Neliswa Mama

Abstract:

Environmental pollution by ionic species has been identified as one of the biggest challenges to the sustainable development of communities. The widespread use of organic and inorganic chemical products and the release of toxic chemical species from industrial waste have resulted in a need for advanced monitoring technologies for environment protection, remediation and restoration. Some of the disadvantages of conventional sensing methods include expensive instrumentation, well-controlled experimental conditions, time-consuming procedures and sometimes complicated sample preparation. On the contrary, the development of fluorescent chemosensors for biological and environmental detection of metal ions has attracted a great deal of attention due to their simplicity, high selectivity, eidetic recognition, rapid response and real-life monitoring. Coumarin derivatives S1 and S2 (Scheme 1) containing 1,2,3-triazole moieties at position -3- have been designed and synthesized from azide and alkyne derivatives by CuAAC “click” reactions for the detection of metal ions. These compounds displayed a strong preference for Fe3+ ions with complexation resulting in fluorescent quenching through photo-induced electron transfer (PET) by the “sphere of action” static quenching model. The tested metal ions included Cd2+, Pb2+, Ag+, Na+, Ca2+, Cr3+, Fe3+, Al3+, Cd2+, Ba2+, Cu2+, Co2+, Hg2+, Zn2+ and Ni2+. The detection limits of S1 and S2 were determined to be 4.1 and 5.1 uM, respectively. Compound S1 displayed the greatest selectivity towards Fe3+ in the presence of competing for metal cations. S1 could also be used for the detection of Fe3+ in a mixture of CH3CN/H¬2¬O. Binding stoichiometry between S1 and Fe3+ was determined by using both Jobs-plot and Benesi-Hildebrand analysis. The binding was shown to occur in a 1:1 ratio between the sensor and a metal cation. Reversibility studies between S1 and Fe3+ were conducted by using EDTA. The binding site of Fe3+ to S1 was determined by using 13 C NMR and Molecular Modelling studies. Complexation was suggested to occur between the lone-pair of electrons from the coumarin-carbonyl and the triazole-carbon double bond.

Keywords: chemosensor, "click" chemistry, coumarin, fluorescence, static quenching, triazole

Procedia PDF Downloads 163
3881 Malate Dehydrogenase Enabled ZnO Nanowires as an Optical Tool for Malic Acid Detection in Horticultural Products

Authors: Rana Tabassum, Ravi Kant, Banshi D. Gupta

Abstract:

Malic acid is an extensively distributed organic acid in numerous horticultural products in minute amounts which significantly contributes towards taste determination by balancing sugar and acid fractions. An enhanced concentration of malic acid is utilized as an indicator of fruit maturity. In addition, malic acid is also a crucial constituent of several cosmetics and pharmaceutical products. An efficient detection and quantification protocol for malic acid is thus highly demanded. In this study, we report a novel detection scheme for malic acid by synergistically collaborating fiber optic surface plasmon resonance (FOSPR) and distinctive features of nanomaterials favorable for sensing applications. The design blueprint involves the deposition of an assembly of malate dehydrogenase enzyme entrapped in ZnO nanowires forming the sensing route over silver coated central unclad core region of an optical fiber. The formation and subsequent decomposition of the enzyme-analyte complex on exposure of the sensing layer to malic acid solutions of diverse concentration results in modification of the dielectric function of the sensing layer which is manifested in terms of shift in resonance wavelength. Optimization of experimental variables such as enzyme concentration entrapped in ZnO nanowires, dip time of probe for deposition of sensing layer and working pH range of the sensing probe have been accomplished through SPR measurements. The optimized sensing probe displays high sensitivity, broad working range and a minimum limit of detection value and has been successfully tested for malic acid determination in real samples of fruit juices. The current work presents a novel perspective towards malic acid determination as the unique and cooperative combination of FOSPR and nanomaterials provides myriad advantages such as enhanced sensitivity, specificity, compactness together with the possibility of online monitoring and remote sensing.

Keywords: surface plasmon resonance, optical fiber, sensor, malic acid

Procedia PDF Downloads 380
3880 Colored Image Classification Using Quantum Convolutional Neural Networks Approach

Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins

Abstract:

Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.

Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning

Procedia PDF Downloads 129
3879 Ultrasensitive Detection and Discrimination of Cancer-Related Single Nucleotide Polymorphisms Using Poly-Enzyme Polymer Bead Amplification

Authors: Lorico D. S. Lapitan Jr., Yihan Xu, Yuan Guo, Dejian Zhou

Abstract:

The ability of ultrasensitive detection of specific genes and discrimination of single nucleotide polymorphisms is important for clinical diagnosis and biomedical research. Herein, we report the development of a new ultrasensitive approach for label-free DNA detection using magnetic nanoparticle (MNP) assisted rapid target capture/separation in combination with signal amplification using poly-enzyme tagged polymer nanobead. The sensor uses an MNP linked capture DNA and a biotin modified signal DNA to sandwich bind the target followed by ligation to provide high single-nucleotide polymorphism discrimination. Only the presence of a perfect match target DNA yields a covalent linkage between the capture and signal DNAs for subsequent conjugation of a neutravidin-modified horseradish peroxidase (HRP) enzyme through the strong biotin-nuetravidin interaction. This converts each captured DNA target into an HRP which can convert millions of copies of a non-fluorescent substrate (amplex red) to a highly fluorescent product (resorufin), for great signal amplification. The use of polymer nanobead each tagged with thousands of copies of HRPs as the signal amplifier greatly improves the signal amplification power, leading to greatly improved sensitivity. We show our biosensing approach can specifically detect an unlabeled DNA target down to 10 aM with a wide dynamic range of 5 orders of magnitude (from 0.001 fM to 100.0 fM). Furthermore, our approach has a high discrimination between a perfectly matched gene and its cancer-related single-base mismatch targets (SNPs): It can positively detect the perfect match DNA target even in the presence of 100 fold excess of co-existing SNPs. This sensing approach also works robustly in clinical relevant media (e.g. 10% human serum) and gives almost the same SNP discrimination ratio as that in clean buffers. Therefore, this ultrasensitive SNP biosensor appears to be well-suited for potential diagnostic applications of genetic diseases.

Keywords: DNA detection, polymer beads, signal amplification, single nucleotide polymorphisms

Procedia PDF Downloads 249
3878 Rapid, Direct, Real-Time Method for Bacteria Detection on Surfaces

Authors: Evgenia Iakovleva, Juha Koivisto, Pasi Karppinen, J. Inkinen, Mikko Alava

Abstract:

Preventing the spread of infectious diseases throughout the worldwide is one of the most important tasks of modern health care. Infectious diseases not only account for one fifth of the deaths in the world, but also cause many pathological complications for the human health. Touch surfaces pose an important vector for the spread of infections by varying microorganisms, including antimicrobial resistant organisms. Further, antimicrobial resistance is reply of bacteria to the overused or inappropriate used of antibiotics everywhere. The biggest challenges in bacterial detection by existing methods are non-direct determination, long time of analysis, the sample preparation, use of chemicals and expensive equipment, and availability of qualified specialists. Therefore, a high-performance, rapid, real-time detection is demanded in rapid practical bacterial detection and to control the epidemiological hazard. Among the known methods for determining bacteria on the surfaces, Hyperspectral methods can be used as direct and rapid methods for microorganism detection on different kind of surfaces based on fluorescence without sampling, sample preparation and chemicals. The aim of this study was to assess the relevance of such systems to remote sensing of surfaces for microorganisms detection to prevent a global spread of infectious diseases. Bacillus subtilis and Escherichia coli with different concentrations (from 0 to 10x8 cell/100µL) were detected with hyperspectral camera using different filters as visible visualization of bacteria and background spots on the steel plate. A method of internal standards was applied for monitoring the correctness of the analysis results. Distances from sample to hyperspectral camera and light source are 25 cm and 40 cm, respectively. Each sample is optically imaged from the surface by hyperspectral imaging system, utilizing a JAI CM-140GE-UV camera. Light source is BeamZ FLATPAR DMX Tri-light, 3W tri-colour LEDs (red, blue and green). Light colors are changed through DMX USB Pro interface. The developed system was calibrated following a standard procedure of setting exposure and focused for light with λ=525 nm. The filter is ThorLabs KuriousTM hyperspectral filter controller with wavelengths from 420 to 720 nm. All data collection, pro-processing and multivariate analysis was performed using LabVIEW and Python software. The studied human eye visible and invisible bacterial stains clustered apart from a reference steel material by clustering analysis using different light sources and filter wavelengths. The calculation of random and systematic errors of the analysis results proved the applicability of the method in real conditions. Validation experiments have been carried out with photometry and ATP swab-test. The lower detection limit of developed method is several orders of magnitude lower than for both validation methods. All parameters of the experiments were the same, except for the light. Hyperspectral imaging method allows to separate not only bacteria and surfaces, but also different types of bacteria, such as Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. Developed method allows skipping the sample preparation and the use of chemicals, unlike all other microbiological methods. The time of analysis with novel hyperspectral system is a few seconds, which is innovative in the field of microbiological tests.

Keywords: Escherichia coli, Bacillus subtilis, hyperspectral imaging, microorganisms detection

Procedia PDF Downloads 225
3877 Coupling of Microfluidic Droplet Systems with ESI-MS Detection for Reaction Optimization

Authors: Julia R. Beulig, Stefan Ohla, Detlev Belder

Abstract:

In contrast to off-line analytical methods, lab-on-a-chip technology delivers direct information about the observed reaction. Therefore, microfluidic devices make an important scientific contribution, e.g. in the field of synthetic chemistry. Herein, the rapid generation of analytical data can be applied for the optimization of chemical reactions. These microfluidic devices enable a fast change of reaction conditions as well as a resource saving method of operation. In the presented work, we focus on the investigation of multiphase regimes, more specifically on a biphasic microfluidic droplet systems. Here, every single droplet is a reaction container with customized conditions. The biggest challenge is the rapid qualitative and quantitative readout of information as most detection techniques for droplet systems are non-specific, time-consuming or too slow. An exception is the electrospray mass spectrometry (ESI-MS). The combination of a reaction screening platform with a rapid and specific detection method is an important step in droplet-based microfluidics. In this work, we present a novel approach for synthesis optimization on the nanoliter scale with direct ESI-MS detection. The development of a droplet-based microfluidic device, which enables the modification of different parameters while simultaneously monitoring the effect on the reaction within a single run, is shown. By common soft- and photolithographic techniques a polydimethylsiloxane (PDMS) microfluidic chip with different functionalities is developed. As an interface for the MS detection, we use a steel capillary for ESI and improve the spray stability with a Teflon siphon tubing, which is inserted underneath the steel capillary. By optimizing the flow rates, it is possible to screen parameters of various reactions, this is exemplarity shown by a Domino Knoevenagel Hetero-Diels-Alder reaction. Different starting materials, catalyst concentrations and solvent compositions are investigated. Due to the high repetition rate of the droplet production, each set of reaction condition is examined hundreds of times. As a result, of the investigation, we receive possible reagents, the ideal water-methanol ratio of the solvent and the most effective catalyst concentration. The developed system can help to determine important information about the optimal parameters of a reaction within a short time. With this novel tool, we make an important step on the field of combining droplet-based microfluidics with organic reaction screening.

Keywords: droplet, mass spectrometry, microfluidics, organic reaction, screening

Procedia PDF Downloads 301
3876 Spatial Rank-Based High-Dimensional Monitoring through Random Projection

Authors: Chen Zhang, Nan Chen

Abstract:

High-dimensional process monitoring becomes increasingly important in many application domains, where usually the process distribution is unknown and much more complicated than the normal distribution, and the between-stream correlation can not be neglected. However, since the process dimension is generally much bigger than the reference sample size, most traditional nonparametric multivariate control charts fail in high-dimensional cases due to the curse of dimensionality. Furthermore, when the process goes out of control, the influenced variables are quite sparse compared with the whole dimension, which increases the detection difficulty. Targeting at these issues, this paper proposes a new nonparametric monitoring scheme for high-dimensional processes. This scheme first projects the high-dimensional process into several subprocesses using random projections for dimension reduction. Then, for every subprocess with the dimension much smaller than the reference sample size, a local nonparametric control chart is constructed based on the spatial rank test to detect changes in this subprocess. Finally, the results of all the local charts are fused together for decision. Furthermore, after an out-of-control (OC) alarm is triggered, a diagnostic framework is proposed. using the square-root LASSO. Numerical studies demonstrate that the chart has satisfactory detection power for sparse OC changes and robust performance for non-normally distributed data, The diagnostic framework is also effective to identify truly changed variables. Finally, a real-data example is presented to demonstrate the application of the proposed method.

Keywords: random projection, high-dimensional process control, spatial rank, sequential change detection

Procedia PDF Downloads 299
3875 Big Data and Cardiovascular Healthcare Management: Recent Advances, Future Potential and Pitfalls

Authors: Maariyah Irfan

Abstract:

Intro: Current cardiovascular (CV) care faces challenges such as low budgets and high hospital admission rates. This review aims to evaluate Big Data in CV healthcare management through the use of wearable devices in atrial fibrillation (AF) detection. AF may present intermittently, thus it is difficult for a healthcare professional to capture and diagnose a symptomatic rhythm. Methods: The iRhythm ZioPatch, AliveCor portable electrocardiogram (ECG), and Apple Watch were chosen for review due to their involvement in controlled clinical trials, and their integration with smartphones. The cost-effectiveness and AF detection of these devices were compared against the 12-lead ambulatory ECG (Holter monitor) that the NHS currently employs for the detection of AF. Results: The Zio patch was found to detect more arrhythmic events than the Holter monitor over a 2-week period. When patients presented to the emergency department with palpitations, AliveCor portable ECGs detected 6-fold more symptomatic events compared to the standard care group over 3-months. Based off preliminary results from the Apple Heart Study, only 0.5% of participants received irregular pulse notifications from the Apple Watch. Discussion: The Zio Patch and AliveCor devices have promising potential to be implemented into the standard duty of care offered by the NHS as they compare well to current routine measures. Nonetheless, companies must address the discrepancy between their target population and current consumers as those that could benefit the most from the innovation may be left out due to cost and access.

Keywords: atrial fibrillation, big data, cardiovascular healthcare management, wearable devices

Procedia PDF Downloads 132
3874 Best Timing for Capturing Satellite Thermal Images, Asphalt, and Concrete Objects

Authors: Toufic Abd El-Latif Sadek

Abstract:

The asphalt object represents the asphalted areas like roads, and the concrete object represents the concrete areas like concrete buildings. The efficient extraction of asphalt and concrete objects from one satellite thermal image occurred at a specific time, by preventing the gaps in times which give the close and same brightness values between asphalt and concrete, and among other objects. So that to achieve efficient extraction and then better analysis. Seven sample objects were used un this study, asphalt, concrete, metal, rock, dry soil, vegetation, and water. It has been found that, the best timing for capturing satellite thermal images to extract the two objects asphalt and concrete from one satellite thermal image, saving time and money, occurred at a specific time in different months. A table is deduced shows the optimal timing for capturing satellite thermal images to extract effectively these two objects.

Keywords: asphalt, concrete, satellite thermal images, timing

Procedia PDF Downloads 322
3873 A Validated High-Performance Liquid Chromatography-UV Method for Determination of Malondialdehyde-Application to Study in Chronic Ciprofloxacin Treated Rats

Authors: Anil P. Dewani, Ravindra L. Bakal, Anil V. Chandewar

Abstract:

Present work demonstrates the applicability of high-performance liquid chromatography (HPLC) with UV detection for the determination of malondialdehyde as malondialdehyde-thiobarbituric acid complex (MDA-TBA) in-vivo in rats. The HPLC-UV method for MDA-TBA was achieved by isocratic mode on a reverse-phase C18 column (250mm×4.6mm) at a flow rate of 1.0mLmin−1 followed by UV detection at 278 nm. The chromatographic conditions were optimized by varying the concentration and pH followed by changes in percentage of organic phase optimal mobile phase consisted of mixture of water (0.2% Triethylamine pH adjusted to 2.3 by ortho-phosphoric acid) and acetonitrile in ratio (80:20 % v/v). The retention time of MDA-TBA complex was 3.7 min. The developed method was sensitive as limit of detection and quantification (LOD and LOQ) for MDA-TBA complex were (standard deviation and slope of calibration curve) 110 ng/ml and 363 ng/ml respectively. The method was linear for MDA spiked in plasma and subjected to derivatization at concentrations ranging from 100 to 1000 ng/ml. The precision of developed method measured in terms of relative standard deviations for intra-day and inter-day studies was 1.6–5.0% and 1.9–3.6% respectively. The HPLC method was applied for monitoring MDA levels in rats subjected to chronic treatment of ciprofloxacin (CFL) (5mg/kg/day) for 21 days. Results were compared by findings in control group rats. Mean peak areas of both study groups was subjected for statistical treatment to unpaired student t-test to find p-values. The p value was < 0.001 indicating significant results and suggesting increased MDA levels in rats subjected to chronic treatment of CFL of 21 days.

Keywords: MDA, TBA, ciprofloxacin, HPLC-UV

Procedia PDF Downloads 325
3872 New Method to Increase Contrast of Electromicrograph of Rat Tissues Sections

Authors: Lise Paule Labéjof, Raíza Sales Pereira Bizerra, Galileu Barbosa Costa, Thaísa Barros dos Santos

Abstract:

Since the beginning of the microscopy, improving the image quality has always been a concern of its users. Especially for transmission electron microscopy (TEM), the problem is even more important due to the complexity of the sample preparation technique and the many variables that can affect the conservation of structures, proper operation of the equipment used and then the quality of the images obtained. Animal tissues being transparent it is necessary to apply a contrast agent in order to identify the elements of their ultrastructural morphology. Several methods of contrastation of tissues for TEM imaging have already been developed. The most used are the “in block” contrastation and “in situ” contrastation. This report presents an alternative technique of application of contrast agent in vivo, i.e. before sampling. By this new method the electromicrographies of the tissue sections have better contrast compared to that in situ and present no artefact of precipitation of contrast agent. Another advantage is that a small amount of contrast is needed to get a good result given that most of them are expensive and extremely toxic.

Keywords: image quality, microscopy research, staining technique, ultra thin section

Procedia PDF Downloads 434
3871 Development of a Mobile Image-Based Reminder Application to Support Tuberculosis Treatment in Africa

Authors: Haji Ali Haji, Hussein Suleman, Ulrike Rivett

Abstract:

This paper presents the design, development and evaluation of an application prototype developed to support tuberculosis (TB) patients’ treatment adherence. The system makes use of graphics and voice reminders as opposed to text messaging to encourage patients to follow their medication routine. To evaluate the effect of the prototype applications, participants were given mobile phones on which the reminder system was installed. Thirty-eight people, including TB health workers and patients from Zanzibar, Tanzania, participated in the evaluation exercises. The results indicate that the participants found the mobile graphic-based application is useful to support TB treatment. All participants understood and interpreted the intended meaning of every image correctly. The study findings revealed that the use of a mobile visual-based application may have potential benefit to support TB patients (both literate and illiterate) in their treatment processes.

Keywords: ICT4D, mobile technology, tuberculosis, visual-based reminder

Procedia PDF Downloads 430
3870 Deep Learning-Based Liver 3D Slicer for Image-Guided Therapy: Segmentation and Needle Aspiration

Authors: Ahmedou Moulaye Idriss, Tfeil Yahya, Tamas Ungi, Gabor Fichtinger

Abstract:

Image-guided therapy (IGT) plays a crucial role in minimally invasive procedures for liver interventions. Accurate segmentation of the liver and precise needle placement is essential for successful interventions such as needle aspiration. In this study, we propose a deep learning-based liver 3D slicer designed to enhance segmentation accuracy and facilitate needle aspiration procedures. The developed 3D slicer leverages state-of-the-art convolutional neural networks (CNNs) for automatic liver segmentation in medical images. The CNN model is trained on a diverse dataset of liver images obtained from various imaging modalities, including computed tomography (CT) and magnetic resonance imaging (MRI). The trained model demonstrates robust performance in accurately delineating liver boundaries, even in cases with anatomical variations and pathological conditions. Furthermore, the 3D slicer integrates advanced image registration techniques to ensure accurate alignment of preoperative images with real-time interventional imaging. This alignment enhances the precision of needle placement during aspiration procedures, minimizing the risk of complications and improving overall intervention outcomes. To validate the efficacy of the proposed deep learning-based 3D slicer, a comprehensive evaluation is conducted using a dataset of clinical cases. Quantitative metrics, including the Dice similarity coefficient and Hausdorff distance, are employed to assess the accuracy of liver segmentation. Additionally, the performance of the 3D slicer in guiding needle aspiration procedures is evaluated through simulated and clinical interventions. Preliminary results demonstrate the effectiveness of the developed 3D slicer in achieving accurate liver segmentation and guiding needle aspiration procedures with high precision. The integration of deep learning techniques into the IGT workflow shows great promise for enhancing the efficiency and safety of liver interventions, ultimately contributing to improved patient outcomes.

Keywords: deep learning, liver segmentation, 3D slicer, image guided therapy, needle aspiration

Procedia PDF Downloads 49
3869 A Novel Method For Non-Invasive Diagnosis Of Hepatitis C Virus Using Electromagnetic Signal Detection: A Multicenter International Study

Authors: Gamal Shiha, Waleed Samir, Zahid Azam, Premashis Kar, Saeed Hamid, Shiv Sarin

Abstract:

A simple, rapid and non-invasive electromagnetic sensor (C-FAST device) was- patented; for diagnosis of HCV RNA. Aim: To test the validity of the device compared to standard HCV PCR. Subjects and Methods: The first phase was done as pilot in Egypt on 79 participants; the second phase was done in five centers: one center from Egypt, two centers from Pakistan and two centers from India (800, 92 and 113 subjects respectively). The third phase was done nationally as multicenter study on (1600) participants for ensuring its representativeness. Results: When compared to PCR technique, C-FAST device revealed sensitivity 95% to 100%, specificity 95.5% to 100%, PPV 89.5% to 100%, NPV 95% to 100% and positive likelihood ratios 21.8% to 38.5%. Conclusion: It is practical evidence that HCV nucleotides emit electromagnetic signals that can be used for its identification. As compared to PCR, C-FAST is an accurate, valid and non-invasive device.

Keywords: C-FAST- a valid and reliable device, distant cellular interaction, electromagnetic signal detection, non-invasive diagnosis of HCV

Procedia PDF Downloads 432
3868 Photomicrograph-Based Neuropathology Consultation in Tanzania; The Utility of Static-Image Neurotelepathology in Low- And Middle-Income Countries

Authors: Francis Zerd, Brian E. Moore, Atuganile E. Malango, Patrick W. Hosokawa, Kevin O. Lillehei, Laurence Lemery Mchome, D. Ryan Ormond

Abstract:

Introduction: Since neuropathologic diagnosis in the developing world is hampered by limitations in technical infrastructure, trained laboratory personnel, and subspecialty-trained pathologists, the use of telepathology for diagnostic support, second-opinion consultations, and ongoing training holds promise as a means of addressing these challenges. This research aims to assess the utility of static teleneuropathology in improving neuropathologic diagnoses in low- and middle-income countries. Methods: Consecutive neurosurgical biopsy and resection specimens obtained at Muhimbili National Hospital in Tanzania between July 1, 2018, and June 30, 2019, were selected for retrospective, blinded static-image neuropathologic review followed by on-site review by an expert neuropathologist. Results: A total of 75 neuropathologic cases were reviewed. The agreement of static images and on-site glass diagnosis was 71% with strict criteria and 88% with less stringent criteria. This represents an overall improvement in diagnostic accuracy from 36% by general pathologists to 71% by a neuropathologist using static telepathology (or 76% to 88% with less stringent criteria). Conclusions: Telepathology offers a suitable means of providing diagnostic support, second-opinion consultations, and ongoing training to pathologists practicing in resource-limited countries. Moreover, static digital teleneuropathology is an uncomplicated, cost-effective, and reliable way to achieve these goals.

Keywords: neuropathology, resource-limited settings, static image, Tanzania, teleneuropathology

Procedia PDF Downloads 102
3867 Multimodality in Storefront Windows: The Impact of Verbo-Visual Design on Consumer Behavior

Authors: Angela Bargenda, Erhard Lick, Dhoha Trabelsi

Abstract:

Research in retailing has identified the importance of atmospherics as an essential element in enhancing store image, store patronage intentions, and the overall shopping experience in a retail environment. However, in the area of atmospherics, store window design, which represents an essential component of external store atmospherics, remains a vastly underrepresented phenomenon in extant scholarship. This paper seeks to fill this gap by exploring the relevance of store window design as an atmospheric tool. In particular, empirical evidence of theme-based theatrical store front windows, which put emphasis on the use of verbo-visual design elements, was found in Paris and New York. The purpose of this study was to identify to what extent such multimodal window designs of high-end department stores in metropolitan cities have an impact on store entry decisions and attitudes towards the retailer’s image. As theoretical construct, the linguistic concept of multimodality and Mehrabian’s and Russell’s model in environmental psychology were applied. To answer the research question, two studies were conducted. For Study 1 a case study approach was selected to define three different types of store window designs based on different types of visual-verbal relations. Each of these types of store window design represented a different level of cognitive elaboration required for the decoding process. Study 2 consisted of an on-line survey carried out among more than 300 respondents to examine the influence of these three types of store window design on the consumer behavioral variables mentioned above. The results of this study show that the higher the cognitive elaboration needed to decode the message of the store window, the lower the store entry propensity. In contrast, the higher the cognitive elaboration, the higher the perceived image of the retailer’s image. One important conclusion is that in order to increase consumers’ propensity to enter stores with theme-based theatrical store front windows, retailers need to limit the cognitive elaboration required to decode their verbo-visual window design.

Keywords: consumer behavior, multimodality, store atmospherics, store window design

Procedia PDF Downloads 202
3866 Assessment of Urban Heat Island through Remote Sensing in Nagpur Urban Area Using Landsat 7 ETM+ Satellite Images

Authors: Meenal Surawar, Rajashree Kotharkar

Abstract:

Urban Heat Island (UHI) is found more pronounced as a prominent urban environmental concern in developing cities. To study the UHI effect in the Indian context, the Nagpur urban area has been explored in this paper using Landsat 7 ETM+ satellite images through Remote Sensing and GIS techniques. This paper intends to study the effect of LU/LC pattern on daytime Land Surface Temperature (LST) variation, contributing UHI formation within the Nagpur Urban area. Supervised LU/LC area classification was carried to study urban Change detection using ENVI 5. Change detection has been studied by carrying Normalized Difference Vegetation Index (NDVI) to understand the proportion of vegetative cover with respect to built-up ratio. Detection of spectral radiance from the thermal band of satellite images was processed to calibrate LST. Specific representative areas on the basis of urban built-up and vegetation classification were selected for observation of point LST. The entire Nagpur urban area shows that, as building density increases with decrease in vegetation cover, LST increases, thereby causing the UHI effect. UHI intensity has gradually increased by 0.7°C from 2000 to 2006; however, a drastic increase has been observed with difference of 1.8°C during the period 2006 to 2013. Within the Nagpur urban area, the UHI effect was formed due to increase in building density and decrease in vegetative cover.

Keywords: land use/land cover, land surface temperature, remote sensing, urban heat island

Procedia PDF Downloads 282
3865 Diagnostic Accuracy in the Detection of Cervical Lymph Node Metastases in Head and Neck Squamous Cell Carcinoma Patients: A Comparison of Sonography, CT, PET/CT and MRI

Authors: Di Luo, Maria Buchberger, Anja Pickhard

Abstract:

Objectives: The purpose of this study was to assess and compare the diagnostic accuracy of four common morphological approaches, including sonography, computed tomography (CT), positron emission tomography/computed tomography (PET/CT), and magnetic resonance imaging (MRI) for the evaluation of cervical lymph node metastases in head and neck squamous cell carcinoma (HNSCC) patients. Material and Methods: Included in this retrospective study were 26 patients diagnosed with HNSCC between 2010 and 2011 who all underwent sonography, CT, PET/CT, and MRI imaging before neck dissection. Morphological data were compared to the corresponding histopathological results. Statistical analysis was performed with SPSS statistic software (version 26.0), calculating sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for detection of cervical lymph node metastases. Results: The 5-year survival rate of the patient collective was 55.5%.Risk factors for survival included initial primary tumor stage, initial lymph node stage, initial metastasis status, and therapeutic approaches. Cox regression showed initial metastasis status(HR 8.671, 95%CI 1.316-57.123, p=0.025) and therapeutic approaches(HR 6.699, 95%CI 1.746-25.700, p=0.006)to be independent predictive risk factors for survival. Sensitivity was highest for MRI (96% compared to 85% for sonography and 89% for CT and PET/CT). Specificity was comparable with 95 % for CT and 98 % for sonography and PET/CT, but only 68% for MRI. While the MRI showed the least PPV (34%) compared to all other methods (85% for sonography,75% for CT, and 86% for PET/CT), the NPV was comparable in all methods(98-99%). The overall accuracy of cervical lymph node metastases detection was comparable for sonography, CT, and PET/CT with 96%,97%,94%, respectively, while MRI had only 72% accuracy. Conclusion: Since the initial status of metastasis is an independent predictive risk factor for patients’ survival, efficient detection is crucial to plan adequate therapeutic approaches. Sonography, CT, and PET/CT have better diagnostic accuracy than MRI for the evaluation of cervical lymph node metastases in HNSCC patients.

Keywords: cervical lymph node metastases, diagnostic accuracy, head and neck squamous carcinoma, risk factors, survival

Procedia PDF Downloads 133