Search results for: thermal response parameter (TRP)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10132

Search results for: thermal response parameter (TRP)

8302 Microwave Assisted Synthesis and Metal Complexes of Some Copolymers Based on Itaconic Acid

Authors: Mohamed H. El-Newehy, Sameh M. Osman, Moamen S. Refat, Salem S. Al-Deyab, Ayman El-Faham

Abstract:

The two copolymers itaconic acid-methyl methacrylate and itaconic acid-acrylamide have been prepared in different ratio by radical copolymerization in the presence of azobisisobutyronitrile (AIBN) as initiator and using 2-butanone as reaction medium using microwave irradiation. The microwave technique is safe, fast, and gives high yield of the products with high purity in an optimum time, comparing to the traditional conventional heating. All the prepared copolymers were characterized by FT-IR, thermal analysis and elemental microanalysis. The itaconic acid-based copolymers showed a good sensitivity in alkaline media for scavenging Cu (II) and Pb (II). The chelation behavior of both Cu (II) and Pb (II) complexes were checked using FT-IR, thermogravimetric analysis (TGA), and differential scanning calorimetery (DSC). The infrared data are in a good agreement with the coordination through carboxylate-to-metal, in which the copolymers acting as a bidentate ligand.

Keywords: microwave synthesis, itaconic acid, copolymerization, scavenging, thermal stability

Procedia PDF Downloads 437
8301 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data

Authors: M. Mueller, M. Kuehn, M. Voelker

Abstract:

In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).

Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing

Procedia PDF Downloads 114
8300 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Pegah Eshraghi, Zahra Sadat Zomorodian, Mohammad Tahsildoost

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 69
8299 Diffusion Dynamics of Leech-Heart Inter-Neuron Model

Authors: Arnab Mondal, Sanjeev Kumar Sharma, Ranjit Kumar Upadhyay

Abstract:

We study the spatiotemporal dynamics of a neuronal cable. The processes of one- dimensional (1D) and 2D diffusion are considered for a single variable, which is the membrane voltage, i.e., membrane voltage diffusively interacts for spatiotemporal pattern formalism. The recovery and other variables interact through the membrane voltage. A 3D Leech-Heart (LH) model is introduced to investigate the nonlinear responses of an excitable neuronal cable. The deterministic LH model shows different types of firing properties. We explore the parameter space of the uncoupled LH model and based on the bifurcation diagram, considering v_k2_ashift as a bifurcation parameter, we analyze the 1D diffusion dynamics in three regimes: bursting, regular spiking, and a quiescent state. Depending on parameters, it is shown that the diffusive system may generate regular and irregular bursting or spiking behavior. Further, it is explored a 2D diffusion acting on the membrane voltage, where different types of patterns can be observed. The results show that the LH neurons with different firing characteristics depending on the control parameters participate in a collective behavior of an information processing system that depends on the overall network.

Keywords: bifurcation, pattern formation, spatio-temporal dynamics, stability analysis

Procedia PDF Downloads 202
8298 Non-Singular Gravitational Collapse of a Homogeneous Scalar Field in Deformed Phase Space

Authors: Amir Hadi Ziaie

Abstract:

In the present work, we revisit the collapse process of a spherically symmetric homogeneous scalar field (in FRW background) minimally coupled to gravity, when the phase-space deformations are taken into account. Such a deformation is mathematically introduced as a particular type of noncommutativity between the canonical momenta of the scale factor and of the scalar field. In the absence of such deformation, the collapse culminates in a spacetime singularity. However, when the phase-space is deformed, we find that the singularity is removed by a non-singular bounce, beyond which the collapsing cloud re-expands to infinity. More precisely, for negative values of the deformation parameter, we identify the appearance of a negative pressure, which decelerates the collapse to finally avoid the singularity formation. While in the un-deformed case, the horizon curve monotonically decreases to finally cover the singularity, in the deformed case the horizon has a minimum value that this value depends on deformation parameter and initial configuration of the collapse. Such a setting predicts a threshold mass for black hole formation in stellar collapse and manifests the role of non-commutative geometry in physics and especially in stellar collapse and supernova explosion.

Keywords: gravitational collapse, non-commutative geometry, spacetime singularity, black hole physics

Procedia PDF Downloads 328
8297 Evaluation of Forming Properties on AA 5052 Aluminium Alloy by Incremental Forming

Authors: A. Anbu Raj, V. Mugendiren

Abstract:

Sheet metal forming is a vital manufacturing process used in automobile, aerospace, agricultural industries, etc. Incremental forming is a promising process providing a short and inexpensive way of forming complex three-dimensional parts without using die. The aim of this research is to study the forming behaviour of AA 5052, Aluminium Alloy, using incremental forming and also to study the FLD of cone shape AA 5052 Aluminium Alloy at room temperature and various annealing temperature. Initially the surface roughness and wall thickness through incremental forming on AA 5052 Aluminium Alloy sheet at room temperature is optimized by controlling the effects of forming parameters. The central composite design (CCD) was utilized to plan the experiment. The step depth, feed rate, and spindle speed were considered as input parameters in this study. The surface roughness and wall thickness were used as output response. The process performances such as average thickness and surface roughness were evaluated. The optimized results are taken for minimum surface roughness and maximum wall thickness. The optimal results are determined based on response surface methodology and the analysis of variance. Formability Limit Diagram is constructed on AA 5052 Aluminium Alloy at room temperature and various annealing temperature by using optimized process parameters from the response surface methodology. The cone has higher formability than the square pyramid and higher wall thickness distribution. Finally the FLD on cone shape and square pyramid shape at room temperature and the various annealing temperature is compared experimentally and simulated with Abaqus software.

Keywords: incremental forming, response surface methodology, optimization, wall thickness, surface roughness

Procedia PDF Downloads 326
8296 The Economic Value of Mastitis Resistance in Dairy Cattle in Kenya

Authors: Caleb B. Sagwa, Tobias O. Okeno, Alexander K. Kahi

Abstract:

Dairy cattle production plays an important role in the Kenyan economy. However, high incidences of mastitis is a major setback to the productivity in this industry. The current dairy cattle breeding objective in Kenya does not include mastitis resistance, mainly because the economic value of mastitis resistance has not been determined. Therefore this study aimed at estimating the economic value of mastitis resistance in dairy cattle in Kenya. Initial input parameters were obtained from literature on dairy cattle production systems in the tropics. Selection index methodology was used to derive the economic value of mastitis resistance. Somatic cell count (SCC) was used an indicator trait for mastitis resistance. The economic value was estimated relative to milk yield (MY). Economic values were assigned to SCC in a selection index such that the overall gain in the breeding goal trait was maximized. The option of estimating the economic value for SCC by equating the response in the trait of interest to its index response was considered. The economic value of mastitis resistance was US $23.64 while maximum response to selection for MY was US $66.01. The findings of this study provide vital information that is a pre-requisite for the inclusion of mastitis resistance in the current dairy cattle breeding goal in Kenya.

Keywords: somatic cell count, milk quality, payment system, breeding goal

Procedia PDF Downloads 245
8295 An Efficient Discrete Chaos in Generalized Logistic Maps with Applications in Image Encryption

Authors: Ashish Ashish

Abstract:

In the last few decades, the discrete chaos of difference equations has gained a massive attention of academicians and scholars due to its tremendous applications in each and every branch of science, such as cryptography, traffic control models, secure communications, weather forecasting, and engineering. In this article, a generalized logistic discrete map is established and discrete chaos is reported through period doubling bifurcation, period three orbit and Lyapunov exponent. It is interesting to see that the generalized logistic map exhibits superior chaos due to the presence of an extra degree of freedom of an ordered parameter. The period doubling bifurcation and Lyapunov exponent are demonstrated for some particular values of parameter and the discrete chaos is determined in the sense of Devaney's definition of chaos theoretically as well as numerically. Moreover, the study discusses an extended chaos based image encryption and decryption scheme in cryptography using this novel system. Surprisingly, a larger key space for coding and more sensitive dependence on initial conditions are examined for encryption and decryption of text messages, images and videos which secure the system strongly from external cyber attacks, coding attacks, statistic attacks and differential attacks.

Keywords: chaos, period-doubling, logistic map, Lyapunov exponent, image encryption

Procedia PDF Downloads 135
8294 A Review on the Use of Salt in Building Construction

Authors: Vesna Pungercar, Florian Musso

Abstract:

Identifying materials that can substitute rare or expensive natural resources is one of the key challenges for improving resource efficiency in the building sector. With a growing world population and rising living standards, more and more salt is produced as waste through seawater desalination and potash mining processes. Unfortunately, most of the salt is directly disposed of into nature, where it causes environmental pollution. On the other hand, salt is affordable, is used therapeutically in various respiratory treatments, and can store humidity and heat. It was, therefore, necessary to determine salt materials already in use in building construction and their hygrothermal properties. This research aims to identify salt materials from different scientific branches and historically, to investigate their properties and prioritize the most promising salt materials for indoor applications in a thermal envelope. This was realized through literature review and classification of salt materials into three groups (raw salt materials, composite salt materials, and processed salt materials). The outcome of this research shows that salt has already been used as a building material for centuries and has a potential for future applications due to its hygrothermal properties in a thermal envelope.

Keywords: salt, building material, hygrothermal properties, environment

Procedia PDF Downloads 150
8293 Mapping Structurally Significant Areas of G-CSF during Thermal Degradation with NMR

Authors: Mark-Adam Kellerman

Abstract:

Proteins are capable of exploring vast mutational spaces. This makes it difficult for protein engineers to devise rational methods to improve stability and function via mutagenesis. Deciding which residues to mutate requires knowledge of the characteristics they elicit. We probed the characteristics of residues in granulocyte-colony stimulating factor (G-CSF) using a thermal melt (from 295K to 323K) to denature it in a 700 MHz Bruker spectrometer. These characteristics included dynamics, micro-environmental changes experienced/ induced during denaturing and structure-function relationships. 15N-1H HSQC experiments were performed at 2K increments along with this thermal melt. We observed that dynamic residues that also undergo a lot of change in their microenvironment were predominantly in unstructured regions. Moreover, we were able to identify four residues (G4, A6, T133 and Q134) that we class as high priority targets for mutagenesis, given that they all appear in both the top 10% of measures for environmental changes and dynamics (∑Δ and ∆PI). We were also able to probe these NMR observables and combine them with molecular dynamics (MD) to elucidate what appears to be an opening motion of G-CSFs binding site III. V48 appears to be pivotal to this opening motion, which also seemingly distorts the loop region between helices A and B. This observation is in agreement with previous findings that the conformation of this loop region becomes altered in an aggregation-prone state of G-CSF. Hence, we present here an approach to profile the characteristics of residues in order to highlight their potential as rational mutagenesis targets and their roles in important conformational changes. These findings present not only an opportunity to effectively make biobetters, but also open up the possibility to further understand epistasis and machine learn residue behaviours.

Keywords: protein engineering, rational mutagenesis, NMR, molecular dynamics

Procedia PDF Downloads 239
8292 A Recombinant Group a Streptococcus (GAS-2W) Strain Elicits Protective Immunity in Mice through Induction of an IFN-γ Dependent Humoral Response

Authors: Shiva Emami, Jenny Persson, Bengt Johansson Lindbom

Abstract:

Group A streptococcus (GAS) is a prevalent human pathogen, causing a wide range of infections and diseases. One of the most well-known virulence factors in GAS is M protein, a surface protein that facilitates bacterial invasion. In this study, we used a recombinant GAS strain (GAS-2W) expressing M protein containing a hyper immunogenic peptide (2W). Mice were immunized three times with heat-killed-GAS subcutaneously at three weeks intervals. Three weeks post last immunization, mice were challenged intraperitoneally with a lethal dose of live GAS. In order to investigate the impact of IFN-ƴ and antibodies in protection against GAS infection, we used a mouse model knock-out for IFN-ƴ (IFN-ƴ KO). We observed immunization with GAS-2W strain can increase protection against GAS infection in mice compared with the original GAS strain. Higher levels of antibodies against M1 protein were measured in GAS-2W-immunized mice. There was also a significant increase in IgG2c response in mice immunized with GAS2W. By using IFN-ƴ KO mice, we showed that not a high level of total IgG, but IgG2c was correlated with protection through the i.p challenge. It also emphasizes the importance of IFN-ƴ cytokine to combat GAS by isotype switching to IgG2c (which is opsonic for phagocytosis). Our data indicate the crucial role of IFN-ƴ in the protective immune response that, together with IgG2c, can induce protection against GAS.

Keywords: Group A streptococcus, IgG2c, IFN-γ, protection

Procedia PDF Downloads 75
8291 Predictors of Response to Interferone Therapy in Chronic Hepatitis C Virus Infection

Authors: Ali Kassem, Ehab Fawzy, Mahmoud Sef el-eslam, Fatma Salah- Eldeen, El zahraa Mohamed

Abstract:

Introduction: The combination of interferon (INF) and ribavirin is the preferred treatment for chronic hepatitis C viral (HCV) infection. However, nonresponse to this therapy remains common and is associated with several factors such as HCV genotype and HCV viral load in addition to host factors such as sex, HLA type and cytokine polymorphisms. Aim of the work: The aim of this study was to determine predictors of response to (INF) therapy in chronic HCV infected patients treated with INF alpha and ribavirin combination therapy. Patients and Methods: The present study included 110 patients (62 males, 48 females) with chronic HCV infection. Their ages ranged from 20-59 years. Inclusion criteria were organized according to the protocol of the Egyptian National Committee for control of viral hepatitis. Patients included in this study were recruited to receive INF ribavirin combination therapy; 54 patients received pegylated NF α-2a (180 μg) and weight based ribavirin therapy (1000 mg if < 75 kg, 1200 mg if > 75 kg) for 48 weeks and 53 patients received pegylated INF α-2b (1.5 ug/kg/week) and weight based ribavirin therapy (800 mg if < 65 kg, 1000 mg if 65-75 kg and 1200 mg if > 75kg). One hundred and seven liver biopsies were included in the study and submitted to histopathological examination. Hematoxylin and eosin (H&E) stained sections were done to assess both the grade and the stage of chronic viral hepatitis, in addition to the degree of steatosis. Modified hepatic activity index (HAI) grading, modified Ishak staging and Metavir grading and staging systems were used. Laboratory follow up including: HCV PCR at the 12th week to assess the early virologic response (EVR) and at the 24th week were done. At the end of the course: HCV PCR was done at the end of the course and tested 6 months later to document end virologic response (ETR) and sustained virologic response (SVR) respectively. Results One hundred seven patients; 62 males (57.9 %) and 45 females (42.1%) completed the course and included in this study. The age of patients ranged from 20-59 years with a mean of 40.39±10.03 years. Six months after the end of treatment patients were categorized into two groups: Group (1): patients who achieved sustained virological response (SVR). Group (2): patients who didn't achieve sustained virological response (non SVR) including non-responders, breakthrough and relapsers. In our study, 58 (54.2%) patients showed SVR, 18 (16.8%) patients were non-responders, 15 (14%) patients showed break-through and 16 (15 %) patients were relapsers. Univariate binary regression analysis of the possible risk factors of non SVR showed that the significant factors were higher age, higher fasting insulin level, higher Metavir stage and higher grade of hepatic steatosis. Multivariate binary regression analysis showed that the only independent risk factor for non SVR was high fasting insulin level. Conclusion: Younger age, lower Metavir stage, lower steatosis grade and lower fasting insulin level are good predictors of SVR and could be used in predicting the treatment response of pegylated interferon/ribavirin therapy.

Keywords: chronic HCV infection, interferon ribavirin combination therapy, predictors to antiviral therapy, treatment response

Procedia PDF Downloads 381
8290 Evaluation of Corrosion by Impedance Spectroscopy of Embedded Steel in an Alternative Concrete Exposed a Chloride Ion

Authors: E. Ruíz, W. Aperador

Abstract:

In this article evaluates the protective effect of the concrete alternative obtained from the fly ash and iron and steel slag mixed in binary form and were placed on structural steel ASTM A 706. The study was conducted comparatively with specimens exposed to natural conditions free of chloride ion. The effect of chloride ion on the specimens was generated of form accelerated under controlled conditions (3.5% NaCl and 25 ° C temperature). The Impedance data were acquired over a range of 1 mHz to 100 kHz. At frequencies high is found the response of the interface means of the exposure-concrete and to frequency low the response of the interface corresponding to concrete-steel.

Keywords: alternative concrete, corrosion, alkaline activation, impedance spectroscopy

Procedia PDF Downloads 344
8289 Defining Priority Areas for Biodiversity Conservation to Support for Zoning Protected Areas: A Case Study from Vietnam

Authors: Xuan Dinh Vu, Elmar Csaplovics

Abstract:

There has been an increasing need for methods to define priority areas for biodiversity conservation since the effectiveness of biodiversity conservation in protected areas largely depends on the availability of material resources. The identification of priority areas requires the integration of biodiversity data together with social data on human pressures and responses. However, the deficit of comprehensive data and reliable methods becomes a key challenge in zoning where the demand for conservation is most urgent and where the outcomes of conservation strategies can be maximized. In order to fill this gap, the study applied an environmental model Condition–Pressure–Response to suggest a set of criteria to identify priority areas for biodiversity conservation. Our empirical data has been compiled from 185 respondents, categorizing into three main groups: governmental administration, research institutions, and protected areas in Vietnam by using a well - designed questionnaire. Then, the Analytic Hierarchy Process (AHP) theory was used to identify the weight of all criteria. Our results have shown that priority level for biodiversity conservation could be identified by three main indicators: condition, pressure, and response with the value of the weight of 26%, 41%, and 33%, respectively. Based on the three indicators, 7 criteria and 15 sub-criteria were developed to support for defining priority areas for biodiversity conservation and zoning protected areas. In addition, our study also revealed that the groups of governmental administration and protected areas put a focus on the 'Pressure' indicator while the group of Research Institutions emphasized the importance of 'Response' indicator in the evaluation process. Our results provided recommendations to apply the developed criteria for identifying priority areas for biodiversity conservation in Vietnam.

Keywords: biodiversity conservation, condition–pressure–response model, criteria, priority areas, protected areas

Procedia PDF Downloads 148
8288 Production of Low-Density Nanocellular Foam Based on PMMA/PEBAX Blends

Authors: Nigus Maregu Demewoz, Shu-Kai Yeh

Abstract:

Low-density nanocellular foam is a fascinating new-generation advanced material due to its mechanical strength and thermal insulation properties. In nanocellular foam, reducing the density increases the insulation ability. However, producing a nanocellular foam of densities less than 0.3 with a cell size of less than 100 nm is very challenging. In this study, poly (methyl methacrylate) (PMMA) was blended with Polyether block amide (PEBAX) to study the effects of PEBAX on the nanocellular foam structure of the PMMA matrix. We added 2 wt% of PEBAX in the PMMA matrix, and the PEBAX nanostructured domain size of 45 nm was well dispersed in the PMMA matrix. The foaming result produced a new generation special bouquet-like nanocellular foam of cell size less than 50 nm with a relative density of 0.24. Also, we were able to produce a nanocellular foam of a relative density of about 0.17. In addition to thermal insulation applications, bouquet-like nanocellular foam may be expected for filtration applications.

Keywords: nanocellular foam, low-density, cell size, relative density, PMMA/PEBAX blend

Procedia PDF Downloads 73
8287 Hourly Solar Radiations Predictions for Anticipatory Control of Electrically Heated Floor: Use of Online Weather Conditions Forecast

Authors: Helene Thieblemont, Fariborz Haghighat

Abstract:

Energy storage systems play a crucial role in decreasing building energy consumption during peak periods and expand the use of renewable energies in buildings. To provide a high building thermal performance, the energy storage system has to be properly controlled to insure a good energy performance while maintaining a satisfactory thermal comfort for building’s occupant. In the case of passive discharge storages, defining in advance the required amount of energy is required to avoid overheating in the building. Consequently, anticipatory supervisory control strategies have been developed forecasting future energy demand and production to coordinate systems. Anticipatory supervisory control strategies are based on some predictions, mainly of the weather forecast. However, if the forecasted hourly outdoor temperature may be found online with a high accuracy, solar radiations predictions are most of the time not available online. To estimate them, this paper proposes an advanced approach based on the forecast of weather conditions. Several methods to correlate hourly weather conditions forecast to real hourly solar radiations are compared. Results show that using weather conditions forecast allows estimating with an acceptable accuracy solar radiations of the next day. Moreover, this technique allows obtaining hourly data that may be used for building models. As a result, this solar radiation prediction model may help to implement model-based controller as Model Predictive Control.

Keywords: anticipatory control, model predictive control, solar radiation forecast, thermal storage

Procedia PDF Downloads 258
8286 Cost Efficient Receiver Tube Technology for Eco-Friendly Concentrated Solar Thermal Applications

Authors: M. Shiva Prasad, S. R. Atchuta, T. Vijayaraghavan, S. Sakthivel

Abstract:

The world is in need of efficient energy conversion technologies which are affordable, accessible, and sustainable with eco-friendly nature. Solar energy is one of the cornerstones for the world’s economic growth because of its abundancy with zero carbon pollution. Among the various solar energy conversion technologies, solar thermal technology has attracted a substantial renewed interest due to its diversity and compatibility in various applications. Solar thermal systems employ concentrators, tracking systems and heat engines for electricity generation which lead to high cost and complexity in comparison with photovoltaics; however, it is compatible with distinct thermal energy storage capability and dispatchable electricity which creates a tremendous attraction. Apart from that, employing cost-effective solar selective receiver tube in a concentrating solar thermal (CST) system improves the energy conversion efficiency and directly reduces the cost of technology. In addition, the development of solar receiver tubes by low cost methods which can offer high optical properties and corrosion resistance in an open-air atmosphere would be beneficial for low and medium temperature applications. In this regard, our work opens up an approach which has the potential to achieve cost-effective energy conversion. We have developed a highly selective tandem absorber coating through a facile wet chemical route by a combination of chemical oxidation, sol-gel, and nanoparticle coating methods. The developed tandem absorber coating has gradient refractive index nature on stainless steel (SS 304) and exhibited high optical properties (α ≤ 0.95 & ε ≤ 0.14). The first absorber layer (Cr-Mn-Fe oxides) developed by controlled oxidation of SS 304 in a chemical bath reactor. A second composite layer of ZrO2-SiO2 has been applied on the chemically oxidized substrate by So-gel dip coating method to serve as optical enhancing and corrosion resistant layer. Finally, an antireflective layer (MgF2) has been deposited on the second layer, to achieve > 95% of absorption. The developed tandem layer exhibited good thermal stability up to 250 °C in open air atmospheric condition and superior corrosion resistance (withstands for > 200h in salt spray test (ASTM B117)). After the successful development of a coating with targeted properties at a laboratory scale, a prototype of the 1 m tube has been demonstrated with excellent uniformity and reproducibility. Moreover, it has been validated under standard laboratory test condition as well as in field condition with a comparison of the commercial receiver tube. The presented strategy can be widely adapted to develop highly selective coatings for a variety of CST applications ranging from hot water, solar desalination, and industrial process heat and power generation. The high-performance, cost-effective medium temperature receiver tube technology has attracted many industries, and recently the technology has been transferred to Indian industry.

Keywords: concentrated solar thermal system, solar selective coating, tandem absorber, ultralow refractive index

Procedia PDF Downloads 78
8285 3-D Numerical Model for Wave-Induced Seabed Response around an Offshore Pipeline

Authors: Zuodong Liang, Dong-Sheng Jeng

Abstract:

Seabed instability around an offshore pipeline is one of key factors that need to be considered in the design of offshore infrastructures. Unlike previous investigations, a three-dimensional numerical model for the wave-induced soil response around an offshore pipeline is proposed in this paper. The numerical model was first validated with 2-D experimental data available in the literature. Then, a parametric study will be carried out to examine the effects of wave, seabed characteristics and confirmation of pipeline. Numerical examples demonstrate significant influence of wave obliquity on the wave-induced pore pressures and the resultant seabed liquefaction around the pipeline, which cannot be observed in 2-D numerical simulation.

Keywords: pore pressure, 3D wave model, seabed liquefaction, pipeline

Procedia PDF Downloads 354
8284 Application of Zeolite Nanoparticles in Biomedical Optics

Authors: Vladimir Hovhannisyan, Chen Yuan Dong

Abstract:

Recently nanoparticles (NPs) have been introduced in biomedicine as effective agents for cancer-targeted drug delivery and noninvasive tissue imaging. The most important requirements to these agents are their non-toxicity, biocompatibility and stability. In view of these criteria, the zeolite (ZL) nanoparticles (NPs) may be considered as perfect candidates for biomedical applications. ZLs are crystalline aluminosilicates consisting of oxygen-sharing SiO4 and AlO4 tetrahedral groups united by common vertices in three-dimensional framework and containing pores with diameters from 0.3 to 1.2 nm. Generally, the behavior and physical properties of ZLs are studied by SEM, X-ray spectroscopy, and AFM, whereas optical spectroscopic and microscopic approaches are not effective enough, because of strong scattering in common ZL bulk materials and powders. The light scattering can be reduced by using of ZL NPs. ZL NPs have large external surface area, high dispersibility in both aqueous and organic solutions, high photo- and thermal stability, and exceptional ability to adsorb various molecules and atoms in their nanopores. In this report, using multiphoton microscopy and nonlinear spectroscopy, we investigate nonlinear optical properties of clinoptilolite type of ZL micro- and nanoparticles with average diameters of 2200 nm and 240 nm, correspondingly. Multiphoton imaging is achieved using a laser scanning microscope system (LSM 510 META, Zeiss, Germany) coupled to a femtosecond titanium:sapphire laser (repetition rate- 80 MHz, pulse duration-120 fs, radiation wavelength- 720-820 nm) (Tsunami, Spectra-Physics, CA). Two Zeiss, Plan-Neofluar objectives (air immersion 20×∕NA 0.5 and water immersion 40×∕NA 1.2) are used for imaging. For the detection of the nonlinear response, we use two detection channels with 380-400 nm and 435-700 nm spectral bandwidths. We demonstrate that ZL micro- and nanoparticles can produce nonlinear optical response under the near-infrared femtosecond laser excitation. The interaction of hypericine, chlorin e6 and other dyes with ZL NPs and their photodynamic activity is investigated. Particularly, multiphoton imaging shows that individual ZL NPs particles adsorb Zn-tetraporphyrin molecules, but do not adsorb fluorescein molecules. In addition, nonlinear spectral properties of ZL NPs in native biotissues are studied. Nonlinear microscopy and spectroscopy may open new perspectives in the research and application of ZL NP in biomedicine, and the results may help to introduce novel approaches into the clinical environment.

Keywords: multiphoton microscopy, nanoparticles, nonlinear optics, zeolite

Procedia PDF Downloads 403
8283 Effects of Heat Source Position on Heat Transfer in an Inclined Square Enclosure Filled with Nanofluids

Authors: Khamis Al Kalbani

Abstract:

The effects of a uniform heat source position on the heat transfer flow inside an inclined square enclosure filled with different types of nanofluids having various shapes of the nanoparticles are investigated numerically following one component thermal equilibrium model. The effects of the Brownian diffusion of the nanoparticles, magnetic field intensity and orientation are taken into consideration in nanofluid modeling. The heat source is placed in the middle of a wall of the enclosure while the opposite wall of it is kept at different temperature. The other walls of the enclosure are kept insulated. The results indicate that the heat source position significantly controls the heat transfer rates of the nanofluids. The distributions of the average heat transfer rates varying the position of the heat source with respect to the geometry inclination angle are calculated for the first time. The outcomes of the present research may be helpful for designing solar thermal collectors, radiators, building insulators and advanced cooling of a nuclear system.

Keywords: heat source, inclined, square enclosure, nanofluids

Procedia PDF Downloads 294
8282 Effects of Surface Roughness on a Unimorph Piezoelectric Micro-Electro-Mechanical Systems Vibrational Energy Harvester Using Finite Element Method Modeling

Authors: Jean Marriz M. Manzano, Marc D. Rosales, Magdaleno R. Vasquez Jr., Maria Theresa G. De Leon

Abstract:

This paper discusses the effects of surface roughness on a cantilever beam vibrational energy harvester. A silicon sample was fabricated using MEMS fabrication processes. When etching silicon using deep reactive ion etching (DRIE) at large etch depths, rougher surfaces are observed as a result of increased response in process pressure, amount of coil power and increased helium backside cooling readings. To account for the effects of surface roughness on the characteristics of the cantilever beam, finite element method (FEM) modeling was performed using actual roughness data from fabricated samples. It was found that when etching about 550um of silicon, root mean square roughness parameter, Sq, varies by 1 to 3 um (at 100um thick) across a 6-inch wafer. Given this Sq variation, FEM simulations predict an 8 to148 Hz shift in the resonant frequency while having no significant effect on the output power. The significant shift in the resonant frequency implies that careful consideration of surface roughness from fabrication processes must be done when designing energy harvesters.

Keywords: deep reactive ion etching, finite element method, microelectromechanical systems, multiphysics analysis, surface roughness, vibrational energy harvester

Procedia PDF Downloads 109
8281 Support Vector Regression Combined with Different Optimization Algorithms to Predict Global Solar Radiation on Horizontal Surfaces in Algeria

Authors: Laidi Maamar, Achwak Madani, Abdellah El Ahdj Abdellah

Abstract:

The aim of this work is to use Support Vector regression (SVR) combined with dragonfly, firefly, Bee Colony and particle swarm Optimization algorithm to predict global solar radiation on horizontal surfaces in some cities in Algeria. Combining these optimization algorithms with SVR aims principally to enhance accuracy by fine-tuning the parameters, speeding up the convergence of the SVR model, and exploring a larger search space efficiently; these parameters are the regularization parameter (C), kernel parameters, and epsilon parameter. By doing so, the aim is to improve the generalization and predictive accuracy of the SVR model. Overall, the aim is to leverage the strengths of both SVR and optimization algorithms to create a more powerful and effective regression model for various cities and under different climate conditions. Results demonstrate close agreement between predicted and measured data in terms of different metrics. In summary, SVM has proven to be a valuable tool in modeling global solar radiation, offering accurate predictions and demonstrating versatility when combined with other algorithms or used in hybrid forecasting models.

Keywords: support vector regression (SVR), optimization algorithms, global solar radiation prediction, hybrid forecasting models

Procedia PDF Downloads 17
8280 Mecano-Reliability Coupled of Reinforced Concrete Structure and Vulnerability Analysis: Case Study

Authors: Kernou Nassim

Abstract:

The current study presents a vulnerability and a reliability-mechanical approach that focuses on evaluating the seismic performance of reinforced concrete structures to determine the probability of failure. In this case, the performance function reflecting the non-linear behavior of the structure is modeled by a response surface to establish an analytical relationship between the random variables (strength of concrete and yield strength of steel) and mechanical responses of the structure (inter-floor displacement) obtained by the pushover results of finite element simulations. The push over-analysis is executed by software SAP2000. The results acquired prove that properly designed frames will perform well under seismic loads. It is a comparative study of the behavior of the existing structure before and after reinforcement using the pushover method. The coupling indirect mechanical reliability by response surface avoids prohibitive calculation times. Finally, the results of the proposed approach are compared with Monte Carlo Simulation. The comparative study shows that the structure is more reliable after the introduction of new shear walls.

Keywords: finite element method, surface response, reliability, reliability mechanical coupling, vulnerability

Procedia PDF Downloads 109
8279 National Agency for Control of HIV/AIDS and International Response to its Scourge in Nigeria, 2000-2010

Authors: Ugwu Blessing Nkiruka

Abstract:

This paper seeks to examine Nigerian National Agency for the control of AIDS (NACA) and international response to the control of HIV/AIDS in Nigeria. The paper adopted the Functionalist theory alongside Liberalism and Idealism, but anchored extensively on functionalism. On the response of HIV/AIDS, Functionalist theory advocated for international corporation of both intergovernmental and non-governmental organisations as the basis for the reduction of the virus. the study adopted secondary source of data i.e journals, articles, newspapers and policy briefs to discuss the reduction of the pandemic (HIV/AIDS).This paper discovered that although HIV/AIDS is a global threat, especially to developing countries where the prevalence rate is still very high, yet international governmental and non-governmental organisation have been able to collaborate with National agencies like NACA in Nigeria and respond speedily through diverse initiatives and action plans to curb the spread of the virus. The study therefore recommends greater awareness on testing and early introduction of antiretroviral therapy, proper screening of blood before transfusion, absolute faithfulness among partners. Similarly, sharing of sharp objects like needles, knives and syringes should be avoided at all cost.

Keywords: HIV/AIDS, developing countries, Nigeria, international organizations, NACA

Procedia PDF Downloads 164
8278 Effects of Kinesio Taping on Postural Stability in Young Soccer Players

Authors: Mustafa Gulsen, Nihan Pekyavas, Emine Atıcı

Abstract:

Purpose: The aim of this study is to investigate the effects of Kinesio taping on postural stability and in young soccer players. Subjects and Methods: 62 volunteered soccer players from Cayyolu Sports Club were included in our study. Permissions were also taken from the club directors about the inclusion of their players to our study. Soccer players between the age of 12 and 16 were included in our study. Players that had previous injury on lower extremities were excluded from the study. Players were randomly divided into two groups: Kinesio taping (KT) (n=31), and control group (n = 31). KT application including gastrocnemius and quadriceps femoris muscle facilitation techniques were applied to the first group. A rest time for 45 minutes was given in order to see the best effectiveness of the tape. The second group was set as the control group and no application was made. All participants were assessed before the application and 45 minutes later. In order to provide the double-blind design of the study, an experienced physiotherapist has done the assessments and another experienced physiotherapist has done the taping. The patients were randomly assigned to one of the two groups using an online random allocation software program. Postural stability was assessed by using Tetrax Interactive Balance System. Thermographic assessment was done by using FLIR E5 (FLIR Systems AB, Sweden) thermal camera in order to see which muscles have the most thermal activity while maintaining postural stability. Results: Statistically significant differences were found in all assessment parameters in both Kinesio Taping and control groups (all p<0.05) except thermal imaging of dominant gastrocnemius muscle results (p=0.668) (Table 1). In comparison of the two groups, statistically significant differences were found in all parameters (all p<0.05). Conclusion: In this study, we investigated the effects of Kinesio taping on postural stability in young soccer players and found that KT application on Quadriceps and Gastrocnemius muscles may have decreased the risk of falling more than the control group. According to thermal imaging assessments, both Quadriceps and Gastrocnemius muscles may be active in maintaining postural stability but in KT group, the temperature of these muscles are higher which leads us to think that they are more activated.

Keywords: Kinesio taping, fall risk, muscle temperature, postural stability

Procedia PDF Downloads 223
8277 Effects of Applied Pressure and Heat Treatment on the Microstructure of Squeeze Cast Al-Si Alloy Were Examined

Authors: Mohamed Ben Amar, Henda Barhoumi, Hokia Siala, Foued Elhalouani

Abstract:

The present contribution consists of a purely experimental investigation on the effect of Squeeze casting on the micro structural and mechanical propriety of Al-Si alloys destined to automotive industry. Accordingly, we have proceeding, by ourselves, to all the thermal treatment consisting of solution treatment at 540°C for 8h and aging at 160°C for 4h. The various thermal treatment, have been carried out in order to monitor the processes of formation and dissolution accompanying the solid state phase transformations as well as the resulting changes in the mechanical proprieties. The examination of the micrographs of the aluminum alloys reveals the dominant presence of dendrite. Concerning the mechanical characteristic the Vickers micro-hardness curve an increase as a function of the pressure. As well as the heat treatment increase mechanical propriety such that pressure and micro hardness. The curves have been explained in terms of structural hardening resulting from the various compounds formation.

Keywords: squeeze casting, process parameters, heat treatment, ductility, microstructure

Procedia PDF Downloads 417
8276 Fabrication and Assessment of Poly (butylene succinate)/ Poly (ԑ-caprolactone)/Eucomis Autumnalis Cellulose Bio-Composites for Tissue Engineering Applications

Authors: Kumalo F. I., Malimabe M. A., Gumede T. P., Mosoabisane M. F. T.

Abstract:

This study investigates the fabrication and characterization of bio-nanocomposites consisting of poly (butylene succinate) (PBS) and poly (ԑ-caprolactone) (PCL), reinforced with cellulose extracted from Eucomis autumnalis, a medicinal plant. Bio-nanocomposite films were prepared using the solvent casting method, with cellulose content ranging from 1 to 3 wt%. Comprehensive analysis was conducted using FTIR, SEM, TEM, DSC, TGA, and XRD, to assess morphological, thermal, and structural properties. The results indicated significant improvements in the thermal stability and morphological properties with increasing cellulose content, showcasing the potential of these materials for tissue engineering applications. The use of cellulose extracted from a medicinal plant highlight the potential for sustainable and biocompatible materials in biomedical applications.

Keywords: Bionanocomposites, poly(butylene succinate), poly(caprolactone), eucomis autumnalis, medicinal plant

Procedia PDF Downloads 36
8275 Investigation of Heat Transfer of Nanofluids in Circular Microchannels

Authors: Bayram Sahin, Hourieh Bayramian, Emre Mandev, Murat Ceylan

Abstract:

In industrial applications, the demand for the enhancement of heat transfer is a common engineering problem. The use of additives to heat transfer fluid is a technique applied to enhance the heat transfer performance of base fluids. In this study, the thermal performance of nanofluids consisting of SiO2 particles and deionized water in circular microchannels was investigated experimentally. SiO2 nanoparticles with diameter of 15 nm were added to water to prepare nanofluids with 0.2% and 0.4% volume fractions. Heat transfer characteristics were calculated by using temperature, flow and pressure measurements. The thermal conductivity and viscosity values required for the calculations are measured separately. It is observed that the Nusselt number increases at the all volume fraction of particles, by increasing the Reynolds number and the volumetric ratios of the particles. The highest heat transfer enhancement is obtained at Re = 2160 and 0.4 % vol. by 14% under the condition of a constant pumping power.

Keywords: nanofluid, microchannel, heat transfer, SiO2-water nanofluid

Procedia PDF Downloads 368
8274 Mechanical Properties, Vibrational Response and Flow-Field Analysis of Staghorn Coral Skeleton, Acropora cervicornis

Authors: Alejandro Carrasco-Pena, Mahmoud Omer, Nina Orlovskaya

Abstract:

The results of studies of microstructure, mechanical behavior, vibrational response, and flow field analysis of critically endangered staghorn coral (Acropora cervicornis) skeletons are reported. The CaCO₃ aragonite structure of a chemically-cleaned coral skeleton of A. cervicornis was studied by optical microscopy and computer tomography. The mechanical behavior was studied using uniaxial compression and Vickers hardness technique. The average maximum stress measured during skeleton uniaxial compression was 10.7 ± 2.24 MPa and Vickers hardness was 3.56 ± 0.31 GPa. The vibrational response of the aragonite structure was studied by micro-Raman spectroscopy, which showed a substantial dependence of the structure on applied compressive stress. The flow-field around a single coral skeleton forming vortices in the wake of the moving skeleton was measured using Particle Image Velocimetry (PIV). The results are important for further analysis of time-dependent mechanical fatigue behavior and predicting the lifetime of staghorn corals.

Keywords: failure, mechanical properties, microstructure, Raman spectroscopy

Procedia PDF Downloads 140
8273 Liquid Crystal Based Reconfigurable Reflectarray Antenna Design

Authors: M. Y. Ismail, M. Inam

Abstract:

This paper presents the design and analysis of Liquid Crystal (LC) based tunable reflectarray antenna with slot embedded patch element configurations within X-band frequency range. The slots are shown to modify the surface current distribution on the patch element of reflectarray which causes the resonant patch element to provide different resonant frequencies depending on the slot dimensions. The simulated results are supported and verified by waveguide scattering parameter measurements of different reflectarray unit cells. Different rectangular slots on patch element have been fabricated and a change in resonant frequency from 10.46GHz to 8.78GHz has been demonstrated as the width of the rectangular slot is varied from 0.2W to 0.6W. The rectangular slot in the center of the patch element has also been utilized for the frequency tunable reflectarray antenna design based on K-15 Nematic LC. For the active reflectarray antenna design, a frequency tunability of 1.2% from 10GHz to 9.88GHz has been demonstrated with a dynamic phase range of 103° provided by the measured scattering parameter results. Time consumed by liquid crystals for reconfiguration, which is one of the drawback of LC based design, has also been disused in this paper.

Keywords: liquid crystal, tunable reflectarray, frequency tunability, dynamic phase range

Procedia PDF Downloads 321