Search results for: particle tracking velocimetry
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2463

Search results for: particle tracking velocimetry

633 A Coupled Extended-Finite-Discrete Element Method: On the Different Contact Schemes between Continua and Discontinua

Authors: Shervin Khazaeli, Shahab Haj-zamani

Abstract:

Recently, advanced geotechnical engineering problems related to soil movement, particle loss, and modeling of local failure (i.e. discontinua) as well as modeling the in-contact structures (i.e. continua) are of the great interest among researchers. The aim of this research is to meet the requirements with respect to the modeling of the above-mentioned two different domains simultaneously. To this end, a coupled numerical method is introduced based on Discrete Element Method (DEM) and eXtended-Finite Element Method (X-FEM). In the coupled procedure, DEM is employed to capture the interactions and relative movements of soil particles as discontinua, while X-FEM is utilized to model in-contact structures as continua, which may consist of different types of discontinuities. For verification purposes, the new coupled approach is utilized to examine benchmark problems including different contacts between/within continua and discontinua. Results are validated by comparison with those of existing analytical and numerical solutions. This study proves that extended-finite-discrete element method can be used to robustly analyze not only contact problems, but also other types of discontinuities in continua such as (i) crack formations and propagations, (ii) voids and bimaterial interfaces, and (iii) combination of previous cases. In essence, the proposed method can be used vastly in advanced soil-structure interaction problems to investigate the micro and macro behaviour of the surrounding soil and the response of the embedded structure that contains discontinuities.

Keywords: contact problems, discrete element method, extended-finite element method, soil-structure interaction

Procedia PDF Downloads 490
632 Improvement of the Robust Proportional–Integral–Derivative (PID) Controller Parameters for Controlling the Frequency in the Intelligent Multi-Zone System at the Present of Wind Generation Using the Seeker Optimization Algorithm

Authors: Roya Ahmadi Ahangar, Hamid Madadyari

Abstract:

The seeker optimization algorithm (SOA) is increasingly gaining popularity among the researchers society due to its effectiveness in solving some real-world optimization problems. This paper provides the load-frequency control method based on the SOA for removing oscillations in the power system. A three-zone power system includes a thermal zone, a hydraulic zone and a wind zone equipped with robust proportional-integral-differential (PID) controllers. The result of simulation indicates that load-frequency changes in the wind zone for the multi-zone system are damped in a short period of time. Meanwhile, in the oscillation period, the oscillations amplitude is not significant. The result of simulation emphasizes that the PID controller designed using the seeker optimization algorithm has a robust function and a better performance for oscillations damping compared to the traditional PID controller. The proposed controller’s performance has been compared to the performance of PID controller regulated with Particle Swarm Optimization (PSO) and. Genetic Algorithm (GA) and Artificial Bee Colony (ABC) algorithms in order to show the superior capability of the proposed SOA in regulating the PID controller. The simulation results emphasize the better performance of the optimized PID controller based on SOA compared to the PID controller optimized with PSO, GA and ABC algorithms.

Keywords: load-frequency control, multi zone, robust PID controller, wind generation

Procedia PDF Downloads 291
631 LTE Performance Analysis in the City of Bogota Northern Zone for Two Different Mobile Broadband Operators over Qualipoc

Authors: Víctor D. Rodríguez, Edith P. Estupiñán, Juan C. Martínez

Abstract:

The evolution in mobile broadband technologies has allowed to increase the download rates in users considering the current services. The evaluation of technical parameters at the link level is of vital importance to validate the quality and veracity of the connection, thus avoiding large losses of data, time and productivity. Some of these failures may occur between the eNodeB (Evolved Node B) and the user equipment (UE), so the link between the end device and the base station can be observed. LTE (Long Term Evolution) is considered one of the IP-oriented mobile broadband technologies that work stably for data and VoIP (Voice Over IP) for those devices that have that feature. This research presents a technical analysis of the connection and channeling processes between UE and eNodeB with the TAC (Tracking Area Code) variables, and analysis of performance variables (Throughput, Signal to Interference and Noise Ratio (SINR)). Three measurement scenarios were proposed in the city of Bogotá using QualiPoc, where two operators were evaluated (Operator 1 and Operator 2). Once the data were obtained, an analysis of the variables was performed determining that the data obtained in transmission modes vary depending on the parameters BLER (Block Error Rate), performance and SNR (Signal-to-Noise Ratio). In the case of both operators, differences in transmission modes are detected and this is reflected in the quality of the signal. In addition, due to the fact that both operators work in different frequencies, it can be seen that Operator 1, despite having spectrum in Band 7 (2600 MHz), together with Operator 2, is reassigning to another frequency, a lower band, which is AWS (1700 MHz), but the difference in signal quality with respect to the establishment with data by the provider Operator 2 and the difference found in the transmission modes determined by the eNodeB in Operator 1 is remarkable.

Keywords: BLER, LTE, network, qualipoc, SNR.

Procedia PDF Downloads 106
630 Physical Properties of Crushed Aggregates in Some Selected Quarries in Kwara State, Nigeria

Authors: S. A. Agbalajobi, W. A. Bello

Abstract:

This study examines rock properties of crushed aggregate in some selected quarries in Kwara state, Nigeria. Some physical properties (chemical composition, mineral composition, particle size distribution) of gneiss sample were determined using ISRM standards. The physicomechanical properties (specific gravity, dry density, porosity, water absorption, point load index, tensile, and compressive strength) of the gneiss rock were evaluated. The analysis on the gneiss samples revealed the mean dry density and the unit weight are 2.52 g/m3, 2.63 g/m3, 2.38 g/m3; and 24.1 kN/m3, 25.78 kN/m3, 23.33 kN/m3, respectively (for locations A,B,C). The water absorption level of the gneiss rock sample ranged from 0.38 % – 0.57 % for the three locations. The mean Schmidt hammer rebound value ranged from 51.0 – 52.4 for the three locations and mean point load index values ranged from 9.89 – 10.56 MPa classified as very high strength while the uniaxial compressive strength of the rock samples revealed that its strength ranged from 120 - 139 MPa (for location A, B, and C) classified as strong rock. The aggregate impact value test and aggregate crushing value test conducted on the gneiss aggregates from the three locations in accordance with British Standard. The gneiss sample from the three locations (A, B, and C) is a good material for the production of construction works such as concrete, bricks, pavement, embankment among others, the compressive strength of the material is within the accepted limit.

Keywords: gneiss, aggregate impact, aggregate crushing, physic-mechanical properties, rock hardness

Procedia PDF Downloads 297
629 Preparation and Physicochemical Characterization of Non-ionic Surfactant Vesicles Containing Itraconazole

Authors: S. Ataei, F. Sarrafzadeh Javadi, K. Gilani, E. Moazeni

Abstract:

Drug delivery systems using colloidal particulate carriers such as niosomes or liposomes have distinct advantages over conventional dosage forms because the particles can act as drug-containing reservoirs. These carriers play an increasingly important role in drug delivery. Niosomes are vesicular delivery systems which result from the self-assembly of hydrated surfactant. Niosomes are now widely studied as an attractive to liposomes because they alleviate the disadvantages associated with liposomes, such as chemical instability, variable purity of phospholipids and high cost. The encapsulation of drugs in niosomes can decrease drug toxicity, increase the stability of drug and increase the penetrability of drug in the location of application, and may reduce the dose and systemic side effect. Nowadays, Niosomes are used by the pharmaceutical industry in manufacturing skin medications, eye medication, in cosmetic formulas and these vesicular systems can be used to deliver aspiratory drugs. One way of improving dispersion in the water phase and solubility of the hydrophobic drug is to formulate in into niosomes. Itraconazole (ITZ) was chosen as a model hydrophobic drug. This drug is water insoluble (solubility ~ 1 ng/ml at neutral pH), is a broad-spectrum triazole antifungal agent and is used to treat various fungal disease. This study aims to investigate the capability of forming itraconazole niosomes with Spans, Tweens, Brijs as non-ionic surfactants. To this end, various formulations of niosomes have been studied with regard to parameters such as the degree of containment and particle size.

Keywords: physicochemical, non-ionic surfactant vesicles, itraconazole

Procedia PDF Downloads 453
628 Review on Implementation of Artificial Intelligence and Machine Learning for Controlling Traffic and Avoiding Accidents

Authors: Neha Singh, Shristi Singh

Abstract:

Accidents involving motor vehicles are more likely to cause serious injuries and fatalities. It also has a host of other perpetual issues, such as the regular loss of life and goods in accidents. To solve these issues, appropriate measures must be implemented, such as establishing an autonomous incident detection system that makes use of machine learning and artificial intelligence. In order to reduce traffic accidents, this article examines the overview of artificial intelligence and machine learning in autonomous event detection systems. The paper explores the major issues, prospective solutions, and use of artificial intelligence and machine learning in road transportation systems for minimising traffic accidents. There is a lot of discussion on additional, fresh, and developing approaches that less frequent accidents in the transportation industry. The study structured the following subtopics specifically: traffic management using machine learning and artificial intelligence and an incident detector with these two technologies. The internet of vehicles and vehicle ad hoc networks, as well as the use of wireless communication technologies like 5G wireless networks and the use of machine learning and artificial intelligence for the planning of road transportation systems, are elaborated. In addition, safety is the primary concern of road transportation. Route optimization, cargo volume forecasting, predictive fleet maintenance, real-time vehicle tracking, and traffic management, according to the review's key conclusions, are essential for ensuring the safety of road transportation networks. In addition to highlighting research trends, unanswered problems, and key research conclusions, the study also discusses the difficulties in applying artificial intelligence to road transport systems. Planning and managing the road transportation system might use the work as a resource.

Keywords: artificial intelligence, machine learning, incident detector, road transport systems, traffic management, automatic incident detection, deep learning

Procedia PDF Downloads 93
627 Impact of Zeolite NaY Synthesized from Kaolin on the Properties of Pyrolytic Oil Derived from Used Tire

Authors: Julius Ilawe Osayi, Peter Osifo

Abstract:

Solid waste disposal, such as used tires is a global challenge as well as energy crisis due to rising energy demand amidst price uncertainty and depleting fossil fuel reserves. Therefore, the effectiveness of pyrolysis as a disposal method that can transform used tires into liquid fuel and other end-products has made the process attractive to researchers. Although used tires have been converted to liquid fuel using pyrolysis, there is the need to improve on the liquid fuel properties. Hence, this paper reports the investigation of zeolite NaY synthesized from kaolin, a locally abundant soil material in the Benin metropolis as a suitable catalyst and its effect on the properties of pyrolytic oil produced from used tires. The pyrolysis process was conducted for a range of 1 to 10 wt.% of catalyst concentration to used tire at a temperature of 600 oC, a heating rate of 15oC/min and particle size of 6mm. Although no significant increase in pyrolytic oil yield was observed compared to the previously investigated non-catalytic pyrolysis of a used tire. However, the Fourier transform infrared (FTIR), Nuclear Magnetic Resonance (NMR); and Gas chromatography-mass spectrometry (GC-MS) characterization results revealed the pyrolytic oil to possess an improved physicochemical and fuel properties alongside valuable industrial chemical species. This confirms the possibility of transforming kaolin into a catalyst suitable for improved fuel properties of the liquid fraction obtainable from thermal cracking of hydrocarbon materials.

Keywords: catalytic pyrolysis, fossil fuel, kaolin, pyrolytic oil, used tyres, Zeolite NaY

Procedia PDF Downloads 164
626 Effects of Rockdust as a Soil Stabilizing Agent on Poor Subgrade Soil

Authors: Muhammad Munawar

Abstract:

Pavement destruction is normally associated with the horizontal relocation of subgrade because of pavement engrossing water and inordinate avoidance and differential settlement of material underneath the pavement. The aim of the research is to study the effect of the additives (rockdust) on the stability and the increase of bearing capacity of selected soils in Mardan City. The physical, chemical and designing properties of soil were contemplated, and the soil was treated with added admixture rockdust with the goal of stabilizing the local soil. The stabilization or modification of soil is done by blending of rock dust to soils in the scope of 0 to 85% by the rate increment of 5%, 10%, and 15% individually. The following test was done for treated sample: Atterberg limits (liquid limit, plasticity index, plastic limit), standard compaction test, the California bearing test and the direct shear test. The results demonstrated that the gradation of soil is narrow from the particle size analysis. Plasticity index (P.I), Liquid limit (L.L) and plastic limit (P.L) were shown reduction with the addition of Rock dust. It was concluded that the maximum dry density is increasing with the addition of rockdust up to 10%, beyond 10%, it shows reduction in their content. It was discovered that the Cohesion C diminished, the angle of internal friction and the California bearing ratio (C.B.R) was improved with the addition of Rock dust. The investigation demonstrated that the best stabilizer for the contextual investigation (Toru road Mardan) is the rock dust and the ideal dosage is 10 %.

Keywords: rockdust, stabilization, modification, CBR

Procedia PDF Downloads 267
625 Deep Reinforcement Learning for Advanced Pressure Management in Water Distribution Networks

Authors: Ahmed Negm, George Aggidis, Xiandong Ma

Abstract:

With the diverse nature of urban cities, customer demand patterns, landscape topologies or even seasonal weather trends; managing our water distribution networks (WDNs) has proved a complex task. These unpredictable circumstances manifest as pipe failures, intermittent supply and burst events thus adding to water loss, energy waste and increased carbon emissions. Whilst these events are unavoidable, advanced pressure management has proved an effective tool to control and mitigate them. Henceforth, water utilities have struggled with developing a real-time control method that is resilient when confronting the challenges of water distribution. In this paper we use deep reinforcement learning (DRL) algorithms as a novel pressure control strategy to minimise pressure violations and leakage under both burst and background leakage conditions. Agents based on asynchronous actor critic (A2C) and recurrent proximal policy optimisation (Recurrent PPO) were trained and compared to benchmarked optimisation algorithms (differential evolution, particle swarm optimisation. A2C manages to minimise leakage by 32.48% under burst conditions and 67.17% under background conditions which was the highest performance in the DRL algorithms. A2C and Recurrent PPO performed well in comparison to the benchmarks with higher processing speed and lower computational effort.

Keywords: deep reinforcement learning, pressure management, water distribution networks, leakage management

Procedia PDF Downloads 70
624 Numerical and Experimental Investigation of Airflow Inside Car Cabin

Authors: Mokhtar Djeddou, Amine Mehel, Georges Fokoua, Anne Tanière, Patrick Chevrier

Abstract:

Commuters' exposure to air pollution, particularly to particle matter, inside vehicles is a significant health issue. Assessing particles concentrations and characterizing their distribution is an important first step to understand and propose solutions to improve car cabin air quality. It is known that particles dynamics is intimately driven by particles-turbulence interactions. In order to analyze and model pollutants distribution inside the car the cabin, it is crucialto examine first the single-phase flow topology and turbulence characteristics. Within this context, Computational Fluid Dynamics (CFD) simulations were conducted to model airflow inside a full-scale car cabin using Reynolds Averaged Navier-Stokes (RANS)approach combined with the first order Realizable k- εmodel to close the RANS equations. To validate the numerical model, a campaign of velocity field measurements at different locations in the front and back of the car cabin has been carried out using hot-wire anemometry technique. Comparison between numerical and experimental results shows a good agreement of velocity profiles. Additionally, visualization of streamlines shows the formation of jet flow developing out of the dashboard air vents and the formation of large vortex structures, particularly in the back seats compartment. These vortex structures could play a key role in the accumulation and clustering of particles in a turbulent flow

Keywords: car cabin, CFD, hot wire anemometry, vortical flow

Procedia PDF Downloads 274
623 Characterization of Aluminosilicates and Verification of Their Impact on Quality of Ceramic Proppants Intended for Shale Gas Output

Authors: Joanna Szymanska, Paulina Wawulska-Marek, Jaroslaw Mizera

Abstract:

Nowadays, the rapid growth of global energy consumption and uncontrolled depletion of natural resources become a serious problem. Shale rocks are the largest and potential global basins containing hydrocarbons, trapped in closed pores of the shale matrix. Regardless of the shales origin, mining conditions are extremely unfavourable due to high reservoir pressure, great depths, increased clay minerals content and limited permeability (nanoDarcy) of the rocks. Taking into consideration such geomechanical barriers, effective extraction of natural gas from shales with plastic zones demands effective operations. Actually, hydraulic fracturing is the most developed technique based on the injection of pressurized fluid into a wellbore, to initiate fractures propagation. However, a rapid drop of pressure after fluid suction to the ground induces a fracture closure and conductivity reduction. In order to minimize this risk, proppants should be applied. They are solid granules transported with hydraulic fluids to locate inside the rock. Proppants act as a prop for the closing fracture, thus gas migration to a borehole is effective. Quartz sands are commonly applied proppants only at shallow deposits (USA). Whereas, ceramic proppants are designed to meet rigorous downhole conditions to intensify output. Ceramic granules predominate with higher mechanical strength, stability in strong acidic environment, spherical shape and homogeneity as well. Quality of ceramic proppants is conditioned by raw materials selection. Aim of this study was to obtain the proppants from aluminosilicates (the kaolinite subgroup) and mix of minerals with a high alumina content. These loamy minerals contain a tubular and platy morphology that improves mechanical properties and reduces their specific weight. Moreover, they are distinguished by well-developed surface area, high porosity, fine particle size, superb dispersion and nontoxic properties - very crucial for particles consolidation into spherical and crush-resistant granules in mechanical granulation process. The aluminosilicates were mixed with water and natural organic binder to improve liquid-bridges and pores formation between particles. Afterward, the green proppants were subjected to sintering at high temperatures. Evaluation of the minerals utility was based on their particle size distribution (laser diffraction study) and thermal stability (thermogravimetry). Scanning Electron Microscopy was useful for morphology and shape identification combined with specific surface area measurement (BET). Chemical composition was verified by Energy Dispersive Spectroscopy and X-ray Fluorescence. Moreover, bulk density and specific weight were measured. Such comprehensive characterization of loamy materials confirmed their favourable impact on the proppants granulation. The sintered granules were analyzed by SEM to verify the surface topography and phase transitions after sintering. Pores distribution was identified by X-Ray Tomography. This method enabled also the simulation of proppants settlement in a fracture, while measurement of bulk density was essential to predict their amount to fill a well. Roundness coefficient was also evaluated, whereas impact on mining environment was identified by turbidity and solubility in acid - to indicate risk of the material decay in a well. The obtained outcomes confirmed a positive influence of the loamy minerals on ceramic proppants properties with respect to the strict norms. This research is perspective for higher quality proppants production with costs reduction.

Keywords: aluminosilicates, ceramic proppants, mechanical granulation, shale gas

Procedia PDF Downloads 155
622 Inulinase Immobilization on Functionalized Magnetic Nanoparticles Prepared with Soy Protein Isolate Conjugated Bovine Serum Albumin for High Fructose Syrup Production

Authors: Homa Torabizadeh, Mohaddeseh Mikani

Abstract:

Inulinase from Aspergillus niger was covalently immobilized on magnetic nanoparticles (MNPs/Fe3O4) covered with soy protein isolate (SPI/Fe3O4) functionalized by bovine serum albumin (BSA) nanoparticles. MNPs are promising enzyme carriers because they separate easily under external magnetic fields and have enhanced immobilized enzyme reusability. As MNPs aggregate simply, surface coating strategy was employed. SPI functionalized by BSA was a suitable candidate for nanomagnetite coating due to its superior biocompatibility and hydrophilicity. Fe3O4@SPI-BSA nanoparticles were synthesized as a novel carrier with narrow particle size distribution. Step by step fabrication monitoring of Fe3O4@SPI-BSA nanoparticles was performed using field emission scanning electron microscopy and dynamic light scattering. The results illustrated that nanomagnetite with the spherical morphology was well monodispersed with the diameter of about 35 nm. The average size of the SPI-BSA nanoparticles was 80 to 90 nm, and their zeta potential was around −34 mV. Finally, the mean diameter of fabricated Fe3O4@SPI-BSA NPs was less than 120 nm. Inulinase enzyme from Aspergillus niger was covalently immobilized through gluteraldehyde on Fe3O4@SPI-BSA nanoparticles successfully. Fourier transform infrared spectra and field emission scanning electron microscopy images provided sufficient proof for the enzyme immobilization on the nanoparticles with 80% enzyme loading.

Keywords: high fructose syrup, inulinase immobilization, functionalized magnetic nanoparticles, soy protein isolate

Procedia PDF Downloads 282
621 Building Tutor and Tutee Pedagogical Agents to Enhance Learning in Adaptive Educational Games

Authors: Ogar Ofut Tumenayu, Olga Shabalina

Abstract:

This paper describes the application of two types of pedagogical agents’ technology with different functions in an adaptive educational game with the sole aim of improving learning and enhancing interactivities in Digital Educational Games (DEG). This idea could promote the elimination of some problems of DEG, like isolation in game-based learning, by introducing a tutor and tutee pedagogical agents. We present an analysis of a learning companion interacting in a peer tutoring environment as a step toward improving social interactions in the educational game environment. We show that tutor and tutee agents use different interventions and interactive approaches: the tutor agent is engaged in tracking the learner’s activities and inferring the learning state, while the tutee agent initiates interactions with the learner at the appropriate times and in appropriate manners. In order to provide motivation to prevent mistakes and clarity a game task, the tutor agent uses the help dialog tool to provide assistance, while the tutee agent provides collaboration assistance by using the hind tool. We presented our idea on a prototype game called “Pyramid Programming Game,” a 2D game that was developed using Libgdx. The game's Pyramid component symbolizes a programming task that is presented to the player in the form of a puzzle. During gameplay, the Agents can instruct, direct, inspire, and communicate emotions. They can also rapidly alter the instructional pattern in response to the learner's performance and knowledge. The pyramid must be effectively destroyed in order to win the game. The game also teaches and illustrates the advantages of utilizing educational agents such as TrA and TeA to assist and motivate students. Our findings support the idea that the functionality of a pedagogical agent should be dualized into an instructional and learner’s companion agent in order to enhance interactivity in a game-based environment.

Keywords: tutor agent, tutee agent, learner’s companion interaction, agent collaboration

Procedia PDF Downloads 58
620 Female Sex Workers and Their Association with Self-Help Groups in Thane, Maharashtra, India: A Comparative Analysis in the Context of HIV Program Outcome

Authors: Awdhesh Yadav, P. S. Saravanamurthy, Shaikh Tayyaba, Uma Shah, Ashok Agarwal

Abstract:

Objectives: HIV interventions in India has leveraged Self-Help Group (SHG) as one of the key strategies under structural intervention to empower female sex workers (FSW) to reduce their risk exposure and vulnerability to STI/HIV. Understanding the role of SHGs in light of the evolving dynamics of sex work needs to be delved into to strategize HIV interventions among FSWs in India. This paper aims to study the HIV program outcome among the FSWs associated with SHGs and FSWs not associated with SHGs in Thane, Maharashtra. Study Design: This cross-sectional study, was undertaken from the Behavioral Tracking Survey (BTS) conducted among 503 FSWs in Thane in 2015. Two-stage probability based conventional sampling was done for selection of brothel and bar based FSWs, while Time Location Cluster (TLC) sampling was done for home, lodge and street-based sex workers. Methods: Bivariate and multivariate logistic regression were performed to compare and contrast between FSWs associated with SHG and those not associated with SHG with respect to the utilization of HIV related services by them. ‘Condom use’, ‘consistent condom use’, ‘contact with peer-educators’, ‘counseling sessions’ and ‘HIV testing’ were chosen as indicators on HIV service utilization. Results: 8% (38) of FSWs are registered with SHG; 92% aged ≥ 25 years, 47% illiterate, and 71% are currently married. The likelihood of utilizing HIV services including, knowledge on HIV/AIDS and its mode of transmission (OR:5.54; CI: 1.87-16.60; p < 0.05),accessed drop-in Centre (OR: 6.53; CI: 2.15-19.88; p < 0.10), heard about joint health camps (OR: 4.71; CI:2.12-10.46); p < 0.05), negotiated or stood up against police/broker/local goonda/clients (OR: 2.26; CI: 1.08-4.73; p < 0.05), turned away clients when they refused to use condom during sex (OR: 3.76; CI: 1.27-11.15; p < 0.05) and heard of ART (OR; 4.55; CI: 2.18-9.48; p < 0.01) were higher among FSWs associated with SHG in comparison to FSWs not associated with SHG. Conclusions: Considering the improved HIV program outcomes among FSWs associated with SHG; HIV interventions among FSWs could consider facilitating the formation of SHGs with FSWs as one of the key strategies to empower the community for ensuring better program outcomes.

Keywords: empowerment, female sex workers, HIV, Thane, self-help group

Procedia PDF Downloads 227
619 Diagnosis of the Heart Rhythm Disorders by Using Hybrid Classifiers

Authors: Sule Yucelbas, Gulay Tezel, Cuneyt Yucelbas, Seral Ozsen

Abstract:

In this study, it was tried to identify some heart rhythm disorders by electrocardiography (ECG) data that is taken from MIT-BIH arrhythmia database by subtracting the required features, presenting to artificial neural networks (ANN), artificial immune systems (AIS), artificial neural network based on artificial immune system (AIS-ANN) and particle swarm optimization based artificial neural network (PSO-NN) classifier systems. The main purpose of this study is to evaluate the performance of hybrid AIS-ANN and PSO-ANN classifiers with regard to the ANN and AIS. For this purpose, the normal sinus rhythm (NSR), atrial premature contraction (APC), sinus arrhythmia (SA), ventricular trigeminy (VTI), ventricular tachycardia (VTK) and atrial fibrillation (AF) data for each of the RR intervals were found. Then these data in the form of pairs (NSR-APC, NSR-SA, NSR-VTI, NSR-VTK and NSR-AF) is created by combining discrete wavelet transform which is applied to each of these two groups of data and two different data sets with 9 and 27 features were obtained from each of them after data reduction. Afterwards, the data randomly was firstly mixed within themselves, and then 4-fold cross validation method was applied to create the training and testing data. The training and testing accuracy rates and training time are compared with each other. As a result, performances of the hybrid classification systems, AIS-ANN and PSO-ANN were seen to be close to the performance of the ANN system. Also, the results of the hybrid systems were much better than AIS, too. However, ANN had much shorter period of training time than other systems. In terms of training times, ANN was followed by PSO-ANN, AIS-ANN and AIS systems respectively. Also, the features that extracted from the data affected the classification results significantly.

Keywords: AIS, ANN, ECG, hybrid classifiers, PSO

Procedia PDF Downloads 430
618 Hydrodynamic Analysis of Fish Fin Kinematics of Oreochromis Niloticus Using Machine Learning and Image Processing

Authors: Paramvir Singh

Abstract:

The locomotion of aquatic organisms has long fascinated biologists and engineers alike, with fish fins serving as a prime example of nature's remarkable adaptations for efficient underwater propulsion. This paper presents a comprehensive study focused on the hydrodynamic analysis of fish fin kinematics, employing an innovative approach that combines machine learning and image processing techniques. Through high-speed videography and advanced computational tools, we gain insights into the complex and dynamic motion of the fins of a Tilapia (Oreochromis Niloticus) fish. This study was initially done by experimentally capturing videos of the various motions of a Tilapia in a custom-made setup. Using deep learning and image processing on the videos, the motion of the Caudal and Pectoral fin was extracted. This motion included the fin configuration (i.e., the angle of deviation from the mean position) with respect to time. Numerical investigations for the flapping fins are then performed using a Computational Fluid Dynamics (CFD) solver. 3D models of the fins were created, mimicking the real-life geometry of the fins. Thrust Characteristics of separate fins (i.e., Caudal and Pectoral separately) and when the fins are together were studied. The relationship and the phase between caudal and pectoral fin motion were also discussed. The key objectives include mathematical modeling of the motion of a flapping fin at different naturally occurring frequencies and amplitudes. The interactions between both fins (caudal and pectoral) were also an area of keen interest. This work aims to improve on research that has been done in the past on similar topics. Also, these results can help in the better and more efficient design of the propulsion systems for biomimetic underwater vehicles that are used to study aquatic ecosystems, explore uncharted or challenging underwater regions, do ocean bed modeling, etc.

Keywords: biomimetics, fish fin kinematics, image processing, fish tracking, underwater vehicles

Procedia PDF Downloads 74
617 Preparation and Characterization of Water-in-Oil Nanoemulsion of 5-Fluorouracil to Enhance Skin Permeation for Treatment of Skin Diseases.

Authors: P. S. Rajinikanth, Shobana Mariappan, Jestin Chellian

Abstract:

The objective of the study was to prepare and characterize a water-in-oil nano emulsion of 5-Fluorouracil (5FU) to enhance the skin penetration. The present study describes a nano emulsion of 5FU using Capyrol PGMC, Transcutol HP and PEG 400 as oil, surfactant and co-surfactant, respectively. The optimized formulations were further evaluated for heating cooling cycle, centrifugation studies, freeze thaw cycling, particle size distribution and zeta potential in order to confirm the stability of the optimized nano emulsions. The in-vitro characterization results showed that the droplets of prepared formulation were ~100 nm with ± 15 zeta potential. In vitro skin permeation studies was conducted in albino mice skin. Significant increase in permeability parameters was also observed in nano emulsion formulations (P<0.05). The steady-state flux (Jss), enhancement ration and permeability coefficient (Kp) for optimized nano emulsion formulation (FU2, FU1, 1:1 S mix were found to be 24.21 ±2.45 μg/cm2/h, 3.28±0.87 & 19.52±1.87 cm/h, respectively), which were significant compared with conventional gel. The in vitro and in vivo skin deposition studies in rat indicated that the amount of drug deposited from the nano emulsion (292.45 µg/cm2) in skin was significant (P<0.05) an increased as compared to a conventional 5FU gel (121.42 µg/cm2). The skin irritation study using rat skin showed that the mean irritation index of the nano emulsion reduced significantly (P<0.05) as compared with conventional gel contain 1% 5FU. The results from this study suggest that a water-in-oil nano emulsion could be safely used to promote skin penetration of 5FU following topical application.

Keywords: nano emulsion, controlled release, 5 fluorouracil, skin penetration, skin irritation

Procedia PDF Downloads 491
616 1D PIC Simulation of Cold Plasma Electrostatic Waves beyond Wave-Breaking Limit

Authors: Prabal Singh Verma

Abstract:

Electrostatic Waves in plasma have emerged as a new source for the acceleration of charged particles. The accelerated particles have a wide range of applications, for example in cancer therapy to cutting and melting of hard materials. The maximum acceleration can only be achieved when the amplitude of the plasma wave stays below a critical limit known as wave-breaking amplitude. Beyond this limit amplitude of the wave diminishes dramatically as the coherent energy of the wave starts to convert into random kinetic energy. In this work, spatiotemporal evolution of non-relativistic electrostatic waves in a cold plasma has been studied in the wave-breaking regime using a 1D particle-in-cell simulation (PIC). It is found that plasma gets heated after the wave-breaking but a fraction of initial energy always remains with the remnant wave in the form of Bernstein-Greene-Kruskal (BGK) mode in warm plasma. Another interesting finding of this work is that the frequency of the resultant BGK wave is found be below electron plasma frequency which decreases with increasing initial amplitude and the acceleration mechanism after the wave-breaking is also found to be different from the previous work. In order to explain the results observed in the numerical experiments, a simplified theoretical model is constructed which exhibits a good agreement with the simulation. In conclusion, it is shown in this work that electrostatic waves get shower after the wave-breaking and a fraction of initial coherent energy always remains with remnant wave. These investigations have direct relevance in wakefield acceleration experiments.

Keywords: nonlinear plasma waves, longitudinal, wave-breaking, wake-field acceleration

Procedia PDF Downloads 368
615 Human Factors Integration of Chemical, Biological, Radiological and Nuclear Response: Systems and Technologies

Authors: Graham Hancox, Saydia Razak, Sue Hignett, Jo Barnes, Jyri Silmari, Florian Kading

Abstract:

In the event of a Chemical, Biological, Radiological and Nuclear (CBRN) incident rapidly gaining, situational awareness is of paramount importance and advanced technologies have an important role to play in improving detection, identification, monitoring (DIM) and patient tracking. Understanding how these advanced technologies can fit into current response systems is essential to ensure they are optimally designed, usable and meet end-users’ needs. For this reason, Human Factors (Ergonomics) methods have been used within an EU Horizon 2020 project (TOXI-Triage) to firstly describe (map) the hierarchical structure in a CBRN response with adapted Accident Map (AcciMap) methodology. Secondly, Hierarchical Task Analysis (HTA) has been used to describe and review the sequence of steps (sub-tasks) in a CBRN scenario response as a task system. HTA methodology was then used to map one advanced technology, ‘Tag and Trace’, which tags an element (people, sample and equipment) with a Near Field Communication (NFC) chip in the Hot Zone to allow tracing of (monitoring), for example casualty progress through the response. This HTA mapping of the Tag and Trace system showed how the provider envisaged the technology being used, allowing for review and fit with the current CBRN response systems. These methodologies have been found to be very effective in promoting and supporting a dialogue between end-users and technology providers. The Human Factors methods have given clear diagrammatic (visual) representations of how providers see their technology being used and how end users would actually use it in the field; allowing for a more user centered approach to the design process. For CBRN events usability is critical as sub-optimum design of technology could add to a responders’ workload in what is already a chaotic, ambiguous and safety critical environment.

Keywords: AcciMap, CBRN, ergonomics, hierarchical task analysis, human factors

Procedia PDF Downloads 198
614 Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Neem (Azadiractha Indica) Leaf Extract and Investigate Its Antibacterial Activities

Authors: Elmineh Tsegahun Gedif

Abstract:

Zinc oxide nanoparticles (ZnO NPs) have attracted huge attention due to catalytic, optical, photonic, and antibacterial activity. Zinc oxide nanoparticles were successfully synthesized via a fast, non-toxic, cost-effective, and eco-friendly method by biologically reducing Zn(NO3)2.6H2O solution with Neem (Azadirachta indica) leaf extract under optimum conditions (pH = 9). The presence of active flavonoids, phenolic groups, alkaloids, terpenoids, and tannins, which were in the biomass of the Neem leaf extract before and after reduction, was identified using qualitative screening methods (observing the color changes) and FT-IR Spectroscopy. The formation of ZnO NPs was visually indicated by the color changes from colorless to light yellow color. Biosynthesized nanoparticles were also characterized by UV-visible, FT-IR, and XRD spectroscopies. The reduction process was simple and convenient to handle and was monitored by UV-visible spectroscopy that showed surface plasmon resonance (SPR) of the ZnO NPs at 321 nm. This result clearly revealed the formation of ZnO NPs. X-ray diffraction was used to investigate the crystal structure. The average particle size of ZnO powder and around 20 nm using the line width of the plane, and the refraction peak using Scherrer’s equation. The synthesized zinc oxide nanoparticles were evaluated for antimicrobial activities against Gram-positive and Gram-negative bacteria. Zinc nanoparticles exhibited the maximum zone of inhibition against Escherichia coli (15 mm), while the least activity was seen against Staphylococcus aureus.

Keywords: antimicrobial activity, azadirachta indica, green synthesis, ZnO NPs

Procedia PDF Downloads 91
613 A Comparative Study on the Synthesis, Characterizations and Biological (Antibacterial and Antifungal) Activities of Zinc Doped Silica Oxide Nanoparticles Based on Various Solvents

Authors: Muhammad Arshad, Ghulam Hussain Bhatti, Abdul Qayyum

Abstract:

Zinc-doped silica oxide nanoparticles having size 7.93nm were synthesized by the deposition precipitation method by using different solvents (acetonitrile, n-hexane, isoamylalchol). Biological potential such as antibacterial activities against Bacillussubtilusand Escherichia coli, and antifungal activities against Candida parapsilosis and Aspergilusniger were also investigated by Disc diffusion method. Different characterizations techniques including Fournier Transmission Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), Thermo-gravimeteric Analysis (TGA), Atomic forced microscopy (AFM), and Dynamic Light Scattering (DLS) were used. FT-IR characterization confirmed the presence of metal oxide bond (SiO2) while XRD showed the hexagonal structure. SEM and TEM characterization showed the morphology of nanoparticles. AFM study showed good particle size distribution as depicted by a histogram. DLS study showed the gradual decease in the size of nanoparticles from 24.86nm to 13.24 nm. Highest antibacterial activities revealed by acetonitrile solvents (6%and 4.5%) followed by isoamylalchol (3% and 2.4%) while n-hexane solvent showed the lowest activity (2%and 1%) respectively. Higher antifungal activities exhibited by n-hexane (0.34 % and 0.43%) followed by isoamylalchol (0.27% and 0.19%) solvent while acetonitrile (0.21% and 0.17%) showed least activity respectively. Statistical analysis by using one-way ANOVA also indicated the significant results of both biological activities.

Keywords: nanoparticles, precipitation methods, antibacterial, antifungal, characterizations

Procedia PDF Downloads 198
612 A Convolutional Neural Network Based Vehicle Theft Detection, Location, and Reporting System

Authors: Michael Moeti, Khuliso Sigama, Thapelo Samuel Matlala

Abstract:

One of the principal challenges that the world is confronted with is insecurity. The crime rate is increasing exponentially, and protecting our physical assets especially in the motorist industry, is becoming impossible when applying our own strength. The need to develop technological solutions that detect and report theft without any human interference is inevitable. This is critical, especially for vehicle owners, to ensure theft detection and speedy identification towards recovery efforts in cases where a vehicle is missing or attempted theft is taking place. The vehicle theft detection system uses Convolutional Neural Network (CNN) to recognize the driver's face captured using an installed mobile phone device. The location identification function uses a Global Positioning System (GPS) to determine the real-time location of the vehicle. Upon identification of the location, Global System for Mobile Communications (GSM) technology is used to report or notify the vehicle owner about the whereabouts of the vehicle. The installed mobile app was implemented by making use of python as it is undoubtedly the best choice in machine learning. It allows easy access to machine learning algorithms through its widely developed library ecosystem. The graphical user interface was developed by making use of JAVA as it is better suited for mobile development. Google's online database (Firebase) was used as a means of storage for the application. The system integration test was performed using a simple percentage analysis. Sixty (60) vehicle owners participated in this study as a sample, and questionnaires were used in order to establish the acceptability of the system developed. The result indicates the efficiency of the proposed system, and consequently, the paper proposes the use of the system can effectively monitor the vehicle at any given place, even if it is driven outside its normal jurisdiction. More so, the system can be used as a database to detect, locate and report missing vehicles to different security agencies.

Keywords: CNN, location identification, tracking, GPS, GSM

Procedia PDF Downloads 146
611 Preliminary Study on the Factors Affecting Safety Parameters of (Th, U)O₂ Fuel Cycle: The Basis for Choosing Three Fissile Enrichment Zones

Authors: E. H. Uguru, S. F. A. Sani, M. U. Khandaker, M. H. Rabir

Abstract:

The beginning of cycle transient safety parameters is paramount for smooth reactor operation. The enhanced operational safety of UO₂ fuelled AP1000 reactor being the first using three fissile enrichment zones motivated this research for (Th, U)O₂ fuel. This study evaluated the impact of fissile enrichment, soluble boron, and gadolinia on the transient safety parameters to determine the basis for choosing the three fissile enrichment zones. Fuel assembly and core model of Westinghouse small modular reactor were investigated using different fuel and reactivity control arrangements. The Monte Carlo N-Particle eXtended (MCNPX) integrated with CINDER90 burn-up code was used for the calculations. The results show that the moderator temperature coefficient of reactivity (MTC) and the fuel temperature coefficient of reactivity (FTC) were respectively negative and decreased with increasing fissile enrichment. Soluble boron significantly decreased the MTC but slightly increased FTC while gadolinia followed the same trend with a minor impact. However, the MTC and FTC respectively decreased significantly with increasing change in temperature. These results provide a guide on the considerable factors in choosing the three fissile enrichment zones for (Th, U)O₂ fuel in anticipation of their impact on safety parameters. Therefore, this study provides foundational results on the factors that must be considered in choosing three fissile arrangement zones for (Th, U)O₂ fuel.

Keywords: reactivity, safety parameters, small modular reactor, soluble boron, thorium fuel cycle

Procedia PDF Downloads 121
610 Effects of Tillage and Crop Residues Management in Improving Rainfall-Use Efficiency in Dryland Crops under Sandy Soils

Authors: Cosmas Parwada, Ronald Mandumbu, Handseni Tibugari, Trust Chinyama

Abstract:

A 3-yr field experiment to evaluate effects of tillage and residue management on soil water storage (SWS), grain yield, harvest index (HI) and water use efficiency (WUE) of sorghum was done in sandy soils. Treatments were conventional (CT) and minimum (MT) tillage without residue retention and conventional (CT × RT) and minimum (MT × RT) tillage with residue retention. Change in SWS was higher under CT and MT than in CT × RT and MT × RT, especially in the 0-10 cm soil layer. Grain yield and HI were significantly (P < 0.05) lower in CT and MT than CT × RT and MT × RT. Grain yield and HI were significantly (P < 0.05) positively correlated to WUE but WUE significantly (P < 0.05) negatively correlated to sand (%) particle content. The SWS was lower in winter but higher in summer and was significantly correlated to soil organic carbon (SOC), sand (%), grain yield (t/ha), HI and WUE. The WUE linearly increasing from first to last cropping seasons in tillage with returned residues; higher in CT × RT and MT × RT that promoted SOC buildup than where crop residues were removed. Soil tillage decreased effects of residues on SWS, WUE, grain yield and HI. Minimum tillage coupled to residue retention sustainably enhanced WUE but further research to investigate the interaction effects of the tillage on WUE and soil fertility management is required. Understanding and considering the WUE in crops can be a primary condition for cropping system designs. The findings pave way for further research and crop management programmes, allowing to valorize the water in crop production.

Keywords: evapotranspiration, infiltration rate, organic mulch, sand, water use efficiency

Procedia PDF Downloads 202
609 Unsteady Three-Dimensional Adaptive Spatial-Temporal Multi-Scale Direct Simulation Monte Carlo Solver to Simulate Rarefied Gas Flows in Micro/Nano Devices

Authors: Mirvat Shamseddine, Issam Lakkis

Abstract:

We present an efficient, three-dimensional parallel multi-scale Direct Simulation Monte Carlo (DSMC) algorithm for the simulation of unsteady rarefied gas flows in micro/nanosystems. The algorithm employs a novel spatiotemporal adaptivity scheme. The scheme performs a fully dynamic multi-level grid adaption based on the gradients of flow macro-parameters and an automatic temporal adaptation. The computational domain consists of a hierarchical octree-based Cartesian grid representation of the flow domain and a triangular mesh for the solid object surfaces. The hybrid mesh, combined with the spatiotemporal adaptivity scheme, allows for increased flexibility and efficient data management, rendering the framework suitable for efficient particle-tracing and dynamic grid refinement and coarsening. The parallel algorithm is optimized to run DSMC simulations of strongly unsteady, non-equilibrium flows over multiple cores. The presented method is validated by comparing with benchmark studies and then employed to improve the design of micro-scale hotwire thermal sensors in rarefied gas flows.

Keywords: DSMC, oct-tree hierarchical grid, ray tracing, spatial-temporal adaptivity scheme, unsteady rarefied gas flows

Procedia PDF Downloads 292
608 Changes in Air Quality inside Vehicles and in Working Conditions of Professional Drivers during COVID-19 Pandemic in Paris Area

Authors: Melissa Hachem, Lynda Bensefa-Colas, Isabelle Momas

Abstract:

We evaluated the impact of the first lockdown restriction measures (March-May 2020) in the Paris area on (1) the variation of in-vehicle ultrafine particle (UFP) and black carbon (BC) concentrations between pre-and post-lockdown period and (2) the professional drivers working conditions and practices. The study was conducted on 33 Parisian taxi drivers. UFP and BC were measured inside their vehicles with DiSCmini® and microAeth®, respectively, on two typical working days before and after the first lockdown. The job-related characteristics were self-reported. Our results showed that after the first lockdown, the number of clients significantly decreased as well as the taxi driver's journey duration. Taxi drivers significantly opened their windows more and reduced the use of air recirculation. UFP decreased significantly by 32% and BC by 31% after the first lockdown, with a weaker positive correlation compared to before the lockdown. The reduction of in-vehicle UFP was explained mainly by the reduction of traffic flow and ventilation settings, though the latter probably varied according to the traffic condition. No predictor explained the variation of in-vehicle BC concentration between pre-and post-lockdown periods, suggesting different sources of UFP and BC. The road traffic was not anymore the dominant source of BC post-lockdown. We emphasize the role of traffic emissions on in-vehicle air pollution and that preventive measures such as ventilation settings will help to better manage air quality inside a vehicle in order to minimize exposure of professional drivers, as well as passengers, to air pollutants.

Keywords: black carbon, COVID-19, France, lockdown, taxis, ultrafine particles

Procedia PDF Downloads 180
607 Electrochemical Properties of Bimetallic Silver-Platinum Core-Shell Nanoparticles

Authors: Fredrick O. Okumu, Mangaka C. Matoetoe

Abstract:

Silver-platinum (Ag-Pt) bimetallic nanoparticles (NPs) with varying mole fractions (1:1, 1:3 and 3:1) were prepared by co-reduction of hexachloroplatinate and silver nitrate with sodium citrate. Upon successful formation of both monometallic and bimetallic (BM) core shell nanoparticles, cyclic voltammetry (CV) was used to characterize the NPs. The drop coated nanofilms on the GC substrate showed characteristic peaks of monometallic Ag NPs; Ag+/Ag0 redox couple as well as the Pt NPs; hydrogen adsorption and desorption peaks. These characteristic peaks were confirmed in the bimetallic NPs voltammograms. The following varying current trends were observed in the BM NPs ratios; GCE/Ag-Pt 1:3 > GCE/Ag-Pt 3:1 > GCE/Ag-Pt 1:1. Fundamental electrochemical properties which directly or indirectly affects the applicability of films such as; diffusion coefficient (D), electroactive surface coverage, electrochemical band gap, electron transfer coefficient (α) and charge (Q) were assessed using Randles - Sevcik plot and Laviron’s equations . High charge and surface coverage was observed in GCE/Ag-Pt 1:3 which supports its enhanced current. GCE/Ag-Pt 3:1 showed high diffusion coefficient while GCE/Ag-Pt 1:1 possessed high electron transfer coefficient that is facilitated by its high apparent heterogeneous rate constant relative to other BM NPs ratios. Surface redox reaction was determined as adsorption controlled in all modified GCEs. Surface coverage is inversely proportional to size; therefore the surface coverage data suggests that Ag-Pt 1:1 NPs have a small particle size. Generally, GCE/Ag-Pt 1:3 depicts the best electrochemical properties.

Keywords: characterization, core-shell, electrochemical, nanoparticles

Procedia PDF Downloads 258
606 Variability of Energy Efficiency with the Application of Technologies Embedded in Locomotives of a Heavy Haul Railway: Case Study of Vitoria Minas Railway, Brazil

Authors: Eric Wilson Santos Cabral, Marta Monteiro Da Costa Cruz, Rodrigo Pirola Pestana, Vivian Andréa Parreira

Abstract:

In the transportation sector in Brazil, there is a great challenge that is the maintenance of profit in the face of the great variation in the price of diesel. This directly affects the variable cost of transport companies. Within the railways, part of the great challenges is to overcome the annual budget, cargo and ore transported, thus reducing costs compared to previous years, becoming more efficient each year. Within this scenario, the railway companies are looking for effective measures, aiming at reducing the ratio of liter of diesel consumed by KTKB (Kilometer Gross Ton multiplied by thousand). This ratio represents the indicator of energy efficiency of some railroads in Brazil and in other countries. In this study, we sought to analyze the behavior of the energy efficiency indicator on two parts: The first, with the application of technologies used in locomotives, such as the start-stop system of the diesel engine and the system of tracking and monitoring of fuel. The second, evaluation of the behavior of the variation of the type of cargo transported (loading mix). The study focused on locomotive technology will be carried out using statistical analysis, behavioral evaluation in different operating conditions, such as maneuvers for trains, service trains and freight trains. The analysis will also cover the evaluation of the loading mix made using statistical analysis of the existing railroad database, comparing the energy efficiency per loading mine and type of product. With the completion of this study, the railway undertakings should be able to better target decision-making in order to achieve substantial reductions in transport costs.

Keywords: railway transport, energy efficiency, railway technology, fuel consumption

Procedia PDF Downloads 294
605 Development of Mucoadhesive Multiparticulate System for Nasal Drug Delivery

Authors: K. S. Hemant Yadav, H. G. Shivakumar

Abstract:

The present study investigation was to prepare and evaluate the mucoadhesive multi-particulate system for nasal drug delivery of anti-histaminic drug. Ebastine was chosen as the model drug. Drug loaded nanoparticles of Ebastine were prepared by ionic gelation method using chitosan as polymer using the drug-polymer weight ratios 1:1, 1:2, 1:3. Sodium tripolyphosphate (STPP) was used as the cross-linking agent in the range of 0.5 and 0.7% w/v. FTIR and DSC studies indicated that no chemical interaction occurred between the drug and polymers. Particle size ranged from 169 to 500 nm. The drug loading and entrapment efficiency was found to increase with increase in chitosan concentration and decreased with increase in poloxamer 407 concentration. The results of in vitro mucoadhesion carried out showed that all the prepared formulation had good mucoadhesive property and mucoadhesion increases with increase in the concentration of chitosan. The in vitro release pattern of all the formulations was observed to be in a biphasic manner characterized by slight burst effect followed by a slow release. By the end of 8 hrs, formulation F6 showed a release of only 86.9% which explains its sustained behaviour. The ex-vivo permeation of the pure drug ebastine was rapid than the optimized formulation(F6) indicating the capability of the chitosan polymer to control drug permeation rate through the sheep nasal mucosa. The results indicated that the mucoadhesive nanoparticulate system can be used for the nasal delivery of antihistaminic drugs in an effective manner.

Keywords: nasal, nanoparticles, ebastine, anti-histaminic drug, mucoadhesive multi-particulate system

Procedia PDF Downloads 414
604 Experimental and Computational Investigations on the Mitigation of Air Pollutants Using Pulsed Radio Waves

Authors: Gangadhara Siva Naga Venkata Krishna Satya Narayana Swamy Undi

Abstract:

Particulate matter (PM) pollution in ambient air is a major environmental health risk factor contributing to disease and mortality worldwide. Current air pollution control methods have limitations in reducing real-world ambient PM levels. This study demonstrates the efficacy of using pulsed radio wave technology as a distinct approach to lower outdoor particulate pollution. Experimental data were compared with computational models to evaluate the efficiency of pulsed waves in coagulating and settling PM. Results showed 50%+ reductions in PM2.5 and PM10 concentrations at the city scale, with particle removal rates exceeding gravity settling by over 3X. Historical air quality data further validated the significant PM reductions achieved in test cases. Computational analyses revealed the underlying coagulation mechanisms induced by the pulsed waves, supporting the feasibility of this strategy for ambient particulate control. The pulsed electromagnetic technology displayed robustness in sustainably managing PM levels across diverse urban and industrial environments. Findings highlight the promise of this advanced approach as a next-generation solution to mitigate particulate air pollution and associated health burdens globally. The technology's scalability and energy efficiency can help address a key gap in current efforts to improve ambient air quality.

Keywords: particulate matter, mitigation technologies, clean air, ambient air pollution

Procedia PDF Downloads 37