Search results for: miscommunication variable
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2189

Search results for: miscommunication variable

359 Distinct Patterns of Resilience Identified Using Smartphone Mobile Experience Sampling Method (M-ESM) and a Dual Model of Mental Health

Authors: Hussain-Abdulah Arjmand, Nikki S. Rickard

Abstract:

The response to stress can be highly heterogenous, and may be influenced by methodological factors. The integrity of data will be optimized by measuring both positive and negative affective responses to an event, by measuring responses in real time as close to the stressful event as possible, and by utilizing data collection methods that do not interfere with naturalistic behaviours. The aim of the current study was to explore short term prototypical responses to major stressor events on outcome measures encompassing both positive and negative indicators of psychological functioning. A novel mobile experience sampling methodology (m-ESM) was utilized to monitor both effective responses to stressors in real time. A smartphone mental health app (‘Moodprism’) which prompts users daily to report both their positive and negative mood, as well as whether any significant event had occurred in the past 24 hours, was developed for this purpose. A sample of 142 participants was recruited as part of the promotion of this app. Participants’ daily reported experience of stressor events, levels of depressive symptoms and positive affect were collected across a 30 day period as they used the app. For each participant, major stressor events were identified on the subjective severity of the event rated by the user. Depression and positive affect ratings were extracted for the three days following the event. Responses to the event were scaled relative to their general reactivity across the remainder of the 30 day period. Participants were first clustered into groups based on initial reactivity and subsequent recovery following a stressor event. This revealed distinct patterns of responding along depressive symptomatology and positive affect. Participants were then grouped based on allocations to clusters in each outcome variable. A highly individualised nature in which participants respond to stressor events, in symptoms of depression and levels of positive affect, was observed. A complete description of the novel profiles identified will be presented at the conference. These findings suggest that real-time measurement of both positive and negative functioning to stressors yields a more complex set of responses than previously observed with retrospective reporting. The use of smartphone technology to measure individualized responding also proved to shed significant insight.

Keywords: depression, experience sampling methodology, positive functioning, resilience

Procedia PDF Downloads 237
358 Risk of Mortality and Spectrum of Second Primary Malignancies in Mantle Cell Lymphoma before and after Ibrutinib Approval: A Population-Based Study

Authors: Karthik Chamari, Vasudha Rudraraju, Gaurav Chaudhari

Abstract:

Background: Mantle cell lymphoma (MCL) is one of the mature B cell non-Hodgkin lymphomas (NHL). The course of MCL is moderately aggressive and variable, and it has median overall survival of 8 to 10 years. Ibrutinib, a Bruton’s tyrosine kinase inhibitor, was approved by the United States (US) Food and Drug Administration in November of 2013 for the treatment of MCL patients who have received at least one prior therapy. In this study, we aimed to evaluate whether there has been a change in survival and patterns of second primary malignancies (SPMs) among the MCL population in the US after ibrutinib approval. Methods: Using the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER)-18, we conducted a retrospective study with patients diagnosed with MCL (ICD-0-3 code 9673/3) between 2007 and 2018. We divided patients into two six-year cohorts, pre-ibrutinib approval (2007-2012) and post-ibrutinib approval (2013-2018), and compared relative survival rates (RSRs) and standardized incidence ratios (SIRs) of SPMs between cohorts. Results: We included 9,257 patients diagnosed with MCL between 2007 and 2018 in the SEER-18 survival and SIR registries. Of these, 4,205 (45%) patients were included in the pre-ibrutinib cohort, and 5052 (55%) patients were included in the post-ibrutinib cohort. The median follow-up duration for the pre-ibrutinib cohort was 54 months (range 0 to 143 months), and the post-ibrutinib cohort was 20 months (range 0 to 71 months). There was a significant difference in the five-year RSRs between pre-ibrutinib and post-ibrutinib cohorts (57.5% vs. 62.6%, p < 0.005). Out of the 9,257 patients diagnosed with MCL, 920 developed SPMs. A higher proportion of SPMs occurred in the post-ibrutinib cohort (63%) when compared with the pre-ibrutinib cohort (37%). Non-hematological malignancies comprised most of all SPMs. A higher incidence of non-hematological malignancies occurred in the post-ibrutinib cohort (SIR 1.42, 95% CI 1.29 to 1.56) when compared with the pre-ibrutinib cohort (SIR 1.14, 95% CI 1 to 1.3). There was a statistically significant increase in the incidence of cancers of the respiratory tract (SIR 1.77, 95% CI 1.43 to 2.18), urinary tract (SIR 1.61, 95% CI 1.23 to 2.06) when compared with other non-hematological malignancies in post-ibrutinib cohort. Conclusions: Our study results suggest the relative survival rates have increased since the approval of ibrutinib for mantle cell lymphoma patients. Additionally, for some unclear reasons, the incidence of SPM’s (non-hematological malignancies), mainly cancers of the respiratory tract, urinary tract, have increased in the six years following the approval of ibrutinib. Further studies should be conducted to determine the cause of these findings.

Keywords: mantle cell lymphoma, Ibrutinib, relative survival analysis, secondary primary cancers

Procedia PDF Downloads 185
357 Model-Based Diagnostics of Multiple Tooth Cracks in Spur Gears

Authors: Ahmed Saeed Mohamed, Sadok Sassi, Mohammad Roshun Paurobally

Abstract:

Gears are important machine components that are widely used to transmit power and change speed in many rotating machines. Any breakdown of these vital components may cause severe disturbance to production and incur heavy financial losses. One of the most common causes of gear failure is the tooth fatigue crack. Early detection of teeth cracks is still a challenging task for engineers and maintenance personnel. So far, to analyze the vibration behavior of gears, different approaches have been tried based on theoretical developments, numerical simulations, or experimental investigations. The objective of this study was to develop a numerical model that could be used to simulate the effect of teeth cracks on the resulting vibrations and hence to permit early fault detection for gear transmission systems. Unlike the majority of published papers, where only one single crack has been considered, this work is more realistic, since it incorporates the possibility of multiple simultaneous cracks with different lengths. As cracks significantly alter the gear mesh stiffness, we performed a finite element analysis using SolidWorks software to determine the stiffness variation with respect to the angular position for different combinations of crack lengths. A simplified six degrees of freedom non-linear lumped parameter model of a one-stage gear system is proposed to study the vibration of a pair of spur gears, with and without tooth cracks. The model takes several physical properties into account, including variable gear mesh stiffness and the effect of friction, but ignores the lubrication effect. The vibration simulation results of the gearbox were obtained via Matlab and Simulink. The results were found to be consistent with the results from previously published works. The effect of one crack with different levels was studied and very similar changes in the total mesh stiffness and the vibration response, both were observed and compared to what has been found in previous studies. The effect of the crack length on various statistical time domain parameters was considered and the results show that these parameters were not equally sensitive to the crack percentage. Multiple cracks are introduced at different locations and the vibration response and the statistical parameters were obtained.

Keywords: dynamic simulation, gear mesh stiffness, simultaneous tooth cracks, spur gear, vibration-based fault detection

Procedia PDF Downloads 211
356 Functional Performance of Unpaved Roads Reinforced with Treated Coir Geotextiles

Authors: Priya Jaswal, Vivek, S. K. Sinha

Abstract:

One of the most important and complicated factors influencing the functional performance of unpaved roads is traffic loading. The complexity of traffic loading is caused by the variable magnitude and frequency of load, which causes unpaved roads to fail prematurely. Unpaved roads are low-volume roads, and as peri-urbanization increases, unpaved roads act as a means to boost the rural economy. This has also increased traffic on unpaved roads, intensifying the issue of settlement, rutting, and fatigue failure. This is a major concern for unpaved roads built on poor subgrade soil, as excessive rutting caused by heavy loads can cause driver discomfort, vehicle damage, and an increase in maintenance costs. Some researchers discovered that when a consistent static load is exerted as opposed to a rapidly changing load, the rate of deformation of unpaved roads increases. Previously, some of the most common methods for overcoming the problem of rutting and fatigue failure included chemical stabilisation, fibre reinforcement, and so on. However, due to their high cost, engineers' attention has shifted to geotextiles which are used as reinforcement in unpaved roads. Geotextiles perform the function of filtration, lateral confinement of base material, vertical restraint of subgrade soil, and the tension membrane effect. The use of geotextiles in unpaved roads increases the strength of unpaved roads and is an economically viable method because it reduces the required aggregate thickness, which would need less earthwork, and is thus recommended for unpaved road applications. The majority of geotextiles used previously were polymeric, but with a growing awareness of sustainable development to preserve the environment, researchers' focus has shifted to natural fibres. Coir is one such natural fibre that possesses the advantage of having a higher tensile strength than other bast fibres, being eco-friendly, low in cost, and biodegradable. However, various researchers have discovered that the surface of coir fibre is covered with various impurities, voids, and cracks, which act as a plane of weakness and limit the potential application of coir geotextiles. To overcome this limitation, chemical surface modification of coir geotextiles is widely accepted by researchers because it improves the mechanical properties of coir geotextiles. The current paper reviews the effect of using treated coir geotextiles as reinforcement on the load-deformation behaviour of a two-layered unpaved road model.

Keywords: coir, geotextile, treated, unpaved

Procedia PDF Downloads 94
355 Exploring the Correlation between Body Constitution of an Individual as Per Ayurveda and Gut Microbiome in Healthy, Multi Ethnic Urban Population in Bangalore, India

Authors: Shalini TV, Gangadharan GG, Sriranjini S Jaideep, ASN Seshasayee, Awadhesh Pandit

Abstract:

Introduction: Prakriti (body-mind constitution of an individual) is a conventional, customized and unique understanding of which is essential for the personalized medicine described in Ayurveda, Indian System of Medicine. Based on the Doshas( functional, bio humoral unit in the body), individuals are categorized into three major Prakriti- Vata, Pitta, and Kapha. The human gut microbiome hosts plenty of highly diverse and metabolically active microorganisms, mainly dominated by the bacteria, which are known to influence the physiology of an individual. Few researches have shown the correlation between the Prakriti and the biochemical parameters. In this study, an attempt was made to explore any correlation between the Prakriti (phenotype of an individual) with the Genetic makeup of the gut microbiome in healthy individuals. Materials and methods: 270 multi-ethnic, healthy volunteers of both sex with the age group between 18 to 40 years, with no history of antibiotics in the last 6 months were recruited into three groups of Vata, Pitta, and Kapha. The Prakriti of the individual was determined using Ayusoft, a software designed by CDAC, Pune, India. The volunteers were subjected to initial screening for the assessment of their height, weight, Body Mass Index, Vital signs and Blood investigations to ensure they are healthy. The stool and saliva samples of the recruited volunteers were collected as per the standard operating procedure developed, and the bacterial DNA was isolated using Qiagen kits. The extracted DNA was subjected to 16s rRNA sequencing using the Illumina kits. The sequencing libraries are targeting the variable V3 and V4 regions of the 16s rRNA gene. Paired sequencing was done on the MiSeq system and data were analyzed using the CLC Genomics workbench 11. Results: The 16s rRNA sequencing of the V3 and V4 regions showed a diverse pattern in both the oral and stool microbial DNA. The study did not reveal any specific pattern of bacterial flora amongst the Prakriti. All the p-values were more than the effective alpha values for all OTUs in both the buccal cavity and stool samples. Therefore, there was no observed significant enrichment of an OTU in the patient samples from either the buccal cavity or stool samples. Conclusion: In healthy volunteers of multi-ethnicity, due to the influence of the various factors, the correlation between the Prakriti and the gut microbiome was not seen.

Keywords: gut microbiome, ayurveda Prakriti, sequencing, multi-ethnic urban population

Procedia PDF Downloads 135
354 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: cost prediction, machine learning, project management, random forest, neural networks

Procedia PDF Downloads 56
353 The Impact of the Variation of Sky View Factor on Landscape Degree of Enclosure of Urban Blue and Green Belt

Authors: Yi-Chun Huang, Kuan-Yun Chen, Chuang-Hung Lin

Abstract:

Urban Green Belt and Blue is a part of the city landscape, it is an important constituent element of the urban environment and appearance. The Hsinchu East Gate Moat is situated in the center of the city, which not only has a wealth of historical and cultural resources, but also combines the Green Belt and the Blue Belt qualities at the same time. The Moat runs more than a thousand meters through the vital Green Belt and the Blue Belt in downtown, and each section is presented in different qualities of moat from south to north. The water area and the green belt of surroundings are presented linear and banded spread. The water body and the rich diverse river banks form an urban green belt of rich layers. The watercourse with green belt design lets users have connections with blue belts in different ways; therefore, the integration of Hsinchu East Gate and moat have become one of the unique urban landscapes in Taiwan. The study is based on the fact-finding case of Hsinchu East Gate Moat where situated in northern Taiwan, to research the impact between the SVF variation of the city and spatial sequence of Urban Green Belt and Blue landscape and visual analysis by constituent cross-section, and then comparing the influence of different leaf area index – the variable ecological factors to the degree of enclosure. We proceed to survey the landscape design of open space, to measure existing structural features of the plant canopy which contain the height of plants and branches, the crown diameter, breast-height diameter through access to diagram of Geographic Information Systems (GIS) and on-the-spot actual measurement. The north and south districts of blue green belt areas are divided 20 meters into a unit from East Gate Roundabout as the epicenter, and to set up a survey points to measure the SVF above the survey points; then we proceed to quantitative analysis from the data to calculate open landscape degree of enclosure. The results can be reference for the composition of future river landscape and the practical operation for dynamic space planning of blue and green belt landscape.

Keywords: sky view factor, degree of enclosure, spatial sequence, leaf area indices

Procedia PDF Downloads 556
352 Increased Efficiency during Oxygen Carrier Aided Combustion of Municipal Solid Waste in an Industrial Scaled Circulating Fluidized Bed-Boiler

Authors: Angelica Corcoran, Fredrik Lind, Pavleta Knutsson, Henrik Thunman

Abstract:

Solid waste volumes are at current predominately deposited on landfill. Furthermore, the impending climate change requires new solutions for a sustainable future energy mix. Currently, solid waste is globally utilized to small extent as fuel during combustion for heat and power production. Due to its variable composition and size, solid waste is considered difficult to combust and requires a technology with high fuel flexibility. One of the commercial technologies used for combustion of such difficult fuels is circulating fluidized beds (CFB). In a CFB boiler, fine particles of a solid material are used as 'bed material', which is accelerated by the incoming combustion air that causes the bed material to fluidize. The chosen bed material has conventionally been silica sand with the main purpose of being a heat carrier, as it transfers heat released by the combustion to the heat-transfer surfaces. However, the release of volatile compounds occurs rapidly in comparison with the lateral mixing in the combustion chamber. To ensure complete combustion a surplus of air is introduced, which decreases the total efficiency of the boiler. In recent years, the concept of partly or entirely replacing the silica sand with an oxygen carrier as bed material has been developed. By introducing an oxygen carrier to the combustion chamber, combustion can be spread out both temporally and spatially in the boiler. Specifically, the oxygen carrier can take up oxygen from the combustion air where it is in abundance and release it to combustible gases where oxygen is in deficit. The concept is referred to as oxygen carrier aided combustion (OCAC) where the natural ore ilmenite (FeTiO3) has been the oxygen carrier used. The authors have validated the oxygen buffering ability of ilmenite during combustion of biomass in Chalmers 12-MWth CFB boiler in previous publications. Furthermore, the concept has been demonstrated on full industrial scale during combustion of municipal solid waste (MSW) in E.ON’s 75 MWth CFB boiler. The experimental campaigns have showed increased mass transfer of oxygen inside the boiler when combustion both biomass and MSW. As a result, a higher degree of burnout is achieved inside the combustion chamber and the plant can be operated at a lower surplus of air. Moreover, the buffer of oxygen provided by the oxygen carrier makes the system less sensitive to disruptions in operation. In conclusion, combusting difficult fuels with OCAC results in higher operation stability and an increase in boiler efficiency.

Keywords: OCAC, ilmenite, combustion, CFB

Procedia PDF Downloads 239
351 The Positive Impact of COVID-19 on the Level of Investments of U.S. Retail Investors: Evidence from a Quantitative Online Survey and Ordered Probit Analysis

Authors: Corina E. Niculaescu, Ivan Sangiorgi, Adrian R. Bell

Abstract:

The COVID-19 pandemic has been life-changing in many aspects of people’s daily and social lives, but has it also changed attitudes towards investments? This paper explores the effect of the COVID-19 pandemic on retail investors’ levels of investments in the U.S. during the first COVID-19 wave in summer 2020. This is an unprecedented health crisis, which could lead to changes in investment behavior, including irrational behavior in retail investors. As such, this study aims to inform policymakers of what happened to investment decisions during the COVID-19 pandemic so that they can protect retail investors during extreme events like a global health crisis. The study aims to answer two research questions. First, was the level of investments affected by the COVID-19 pandemic, and if so, why? Second, how were investments affected by retail investors’ personal experience with COVID-19? The research analysis is based on primary survey data collected on the Amazon Mechanical Turk platform from a representative sample of U.S. respondents. Responses were collected between the 15th of July and 28th of August 2020 from 1,148 U.S. retail investors who hold mutual fund investments and a savings account. The research explores whether being affected by COVID-19, change in the level of savings, and risk capacity can explain the change in the level of investments by using regression analysis. The dependent variable is changed in investments measured as decrease, no change, and increase. For this reason, the methodology used is ordered probit regression models. The results show that retail investors in the U.S. increased their investments during the first wave of COVID-19, which is unexpected as investors are usually more cautious in crisis times. Moreover, the study finds that those who were affected personally by COVID-19 (e.g., tested positive) were more likely to increase their investments, which is irrational behavior and contradicts expectations. An increase in the level of savings and risk capacity was also associated with increased investments. Overall, the findings show that having personal experience with a health crisis can have an impact on one’s investment decisions as well. Those findings are important for both retail investors and policymakers, especially now that online trading platforms have made trading easily accessible to everyone. There are risks and potential irrational behaviors associated with investment decisions during times of crisis, and it is important that retail investors are aware of them before making financial decisions.

Keywords: COVID-19, financial decision-making, health crisis retail investors, survey

Procedia PDF Downloads 192
350 Investigation on Perception, Awareness and Health Impact of Air Pollution in Rural and Urban Area in Mymensingh Regions of Bangladesh

Authors: M. Azharul Islam, M. Russel Sarker, M. Shahadat Hossen

Abstract:

Air pollution is one of the major environmental problems that have gained importance in all over the world. Air pollution is a problem for all of us. The present study was conducted to explore the people’s perception level and awareness of air pollution in selected areas of Mymensingh in Bangladesh. Health impacts of air pollution also studied through personal interview and structured questionnaire. The relationship of independent variables (age, educational qualification, family size, residence and communication exposure) with the respondent’s perception level and awareness of air pollution (dependent variable) was studied to achieve the objectives of the study. About 600 respondents were selected randomly from six sites for collecting data during the period of July 2016 to June 2017. Pearson’s product-moment correlation coefficients were computed to examine the relationship between the concerned variables. The results revealed that about half (46.67%) of the respondents had a medium level of perception and awareness about air pollution in their areas where 31.67 percent had low, and 21.67 percent had a high level. In rural areas of the study sites, 43.33 percent respondents had low, 50 percent had medium, and only 6.67 percent had high perception and awareness on air pollution. In case of urban areas, 20 percent respondents had low, 43.33 percent had medium, and 36.67 percent had a high level of awareness and perception on air pollution. The majority of the respondents (93.33 percent) were lacking of proper awareness about air pollution in rural areas while 63.33 percent in urban areas. Out of five independent variables, three variables such as- educational qualification, residence status and communication exposure had positive and significant relationship. Age of respondents had negative and significant relationship with their awareness of air pollution where family size of the respondents had no significant relationship with their perception and awareness of air pollution. Thousands of people live in urban areas where urban smog, particle pollution, and toxic pollutants pose serious health concerns. But most of the respondents of the urban sites are not familiarize about the real causes of air pollution. Respondents exposed higher level of experience for air pollutants, such as- irritation of the eyes, coughing, tightness of chest and many health difficulties. But respondents of both rural and urban area hugely suffered such health problems and the tendency of certain difficulties increased day by day. In this study, most of the respondents had lack of knowledge on the causes of such health difficulties due to their lower perception level. Proper attempts should be taken to raise literacy level, communication exposure to increase the perception and awareness of air pollution among the respondents of the study areas. Extra care with above concerned fields should be taken to increase perception and awareness of air pollution in rural areas.

Keywords: air pollution, awareness, health impacts, perception of people

Procedia PDF Downloads 234
349 Influence of Variable Calcium Content on Mechanical Properties of Geopolymer Synthesized at Different Temperature and Moisture Conditions

Authors: Suraj D. Khadka, Priyantha W. Jayawickrama

Abstract:

In search of a sustainable construction material, geopolymer has been investigated for past decades to evaluate its advantage over conventional products. Synthesis of geopolymer requires a source of aluminosilicate mixed with sodium hydroxide and sodium silicate at different proportions to maintain a Si/Al molar ratio of 1-3 and Na/Al molar ratio of unity. A comprehensive geopolymer study was performed with Metakaolin and Class C Fly ash as primary aluminosilicate sources. Synthesized geopolymer was analyzed for time-dependent viscosity, setting period and strength at varying initial moisture content, curing temperature and humidity. Different concentration of Ca(OH)₂ and CaSO₄.2H₂O were added to vary the amount of calcium contained in synthesized geopolymer. Influence of calcium content in unconfined compressive strength behavior of geopolymer were analyzed. Finally, Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) was performed to investigate the hardened product. It was observed that fly ash based geopolymer had shortened setting time and faster increase in viscosity as compared to geopolymer synthesized from metakaolin. This was primarily attributed to higher calcium content resulting in formation of calcium silicate hydrates (CSH). SEM-EDS was performed to verify the presence of CSH phases. Spectral analysis of geopolymer prepared by addition of Ca(OH)₂ and CaSO₄.2H₂O indicated higher CSH phases at higher concentration. It was observed that lower concentration of added calcium favored strength gain in geopolymer. However, at higher calcium concentration, decrease in strength was observed. Strength variation was also observed with humidity at initial curing condition. At 100% humidity, geopolymer with added calcium presented higher strength compared to samples cured at ambient humidity condition (40%). Reduction in strength in these samples at lower humidity was primarily attributed to reduction in moisture content in specimen due to the formation of CSH phases and loss of moisture through evaporation. For low calcium content geopolymers, with increase in temperature, gain in strength was observed with maximum strength observed at 200 ˚C. However, samples with higher calcium content demonstrated severe cracking resulting in low strength at elevated temperatures.

Keywords: calcium silicate hydrates, geopolymer, humidity, Scanning Electron Microscopy-Energy Dispersive Spectroscopy, unconfined compressive strength

Procedia PDF Downloads 127
348 A Machine Learning Approach for Efficient Resource Management in Construction Projects

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management

Procedia PDF Downloads 40
347 The Effect of Swirl on the Flow Distribution in Automotive Exhaust Catalysts

Authors: Piotr J. Skusiewicz, Johnathan Saul, Ijhar Rusli, Svetlana Aleksandrova, Stephen. F. Benjamin, Miroslaw Gall, Steve Pierson, Carol A. Roberts

Abstract:

The application of turbocharging in automotive engines leads to swirling flow entering the catalyst. The behaviour of this type of flow within the catalyst has yet to be adequately documented. This work discusses the effect of swirling flow on the flow distribution in automotive exhaust catalysts. Compressed air supplied to a moving-block swirl generator allowed for swirling flow with variable intensities to be generated. Swirl intensities were measured at the swirl generator outlet using single-sensor hot-wire probes. The swirling flow was fed into diffusers with total angles of 10°, 30° and 180°. Downstream of the diffusers, a wash-coated diesel oxidation catalyst (DOC) of length 143.8 mm, diameter 76.2 mm and nominal cell density of 400 cpsi was fitted. Velocity profiles were measured at the outlet sleeve about 30 mm downstream of the monolith outlet using single-sensor hot-wire probes. Wall static pressure was recorded using a multi-tube manometer connected to pressure taps positioned along the diffuser walls. The results show that as swirl is increased, more of the flow is directed towards the diffuser walls. The velocity decreases around the centre-line and maximum velocities are observed close to the outer radius of the monolith for all flow rates. At the maximum swirl intensity, reversed flow was recorded near the centre of the monolith. Wall static pressure measurements in the 180° diffuser indicated no pressure recovery as the flow enters the diffuser. This is indicative of flow separation at the inlet to the diffuser. To gain insight into the flow structure, CFD simulations have been performed for the 180° diffuser for a flow rate of 63 g/s. The geometry of the model consists of the complete assembly from the upstream swirl generator to the outlet sleeve. Modelling of the flow in the monolith was achieved using the porous medium approach, where the monolith with parallel flow channels is modelled as a porous medium that resists the flow. A reasonably good agreement was achieved between the experimental and CFD results downstream of the monolith. The CFD simulations allowed visualisation of the separation zones and central toroidal recirculation zones that occur within the expansion region at certain swirl intensities which are highlighted.

Keywords: catalyst, computational fluid dynamics, diffuser, hot-wire anemometry, swirling flow

Procedia PDF Downloads 304
346 Efficient Estimation of Maximum Theoretical Productivity from Batch Cultures via Dynamic Optimization of Flux Balance Models

Authors: Peter C. St. John, Michael F. Crowley, Yannick J. Bomble

Abstract:

Production of chemicals from engineered organisms in a batch culture typically involves a trade-off between productivity, yield, and titer. However, strategies for strain design typically involve designing mutations to achieve the highest yield possible while maintaining growth viability. Such approaches tend to follow the principle of designing static networks with minimum metabolic functionality to achieve desired yields. While these methods are computationally tractable, optimum productivity is likely achieved by a dynamic strategy, in which intracellular fluxes change their distribution over time. One can use multi-stage fermentations to increase either productivity or yield. Such strategies would range from simple manipulations (aerobic growth phase, anaerobic production phase), to more complex genetic toggle switches. Additionally, some computational methods can also be developed to aid in optimizing two-stage fermentation systems. One can assume an initial control strategy (i.e., a single reaction target) in maximizing productivity - but it is unclear how close this productivity would come to a global optimum. The calculation of maximum theoretical yield in metabolic engineering can help guide strain and pathway selection for static strain design efforts. Here, we present a method for the calculation of a maximum theoretical productivity of a batch culture system. This method follows the traditional assumptions of dynamic flux balance analysis: that internal metabolite fluxes are governed by a pseudo-steady state and external metabolite fluxes are represented by dynamic system including Michealis-Menten or hill-type regulation. The productivity optimization is achieved via dynamic programming, and accounts explicitly for an arbitrary number of fermentation stages and flux variable changes. We have applied our method to succinate production in two common microbial hosts: E. coli and A. succinogenes. The method can be further extended to calculate the complete productivity versus yield Pareto surface. Our results demonstrate that nearly optimal yields and productivities can indeed be achieved with only two discrete flux stages.

Keywords: A. succinogenes, E. coli, metabolic engineering, metabolite fluxes, multi-stage fermentations, succinate

Procedia PDF Downloads 215
345 Assessing and Managing the Risk of Inland Acid Sulfate Soil Drainage via Column Leach Tests and 1D Modelling: A Case Study from South East Australia

Authors: Nicolaas Unland, John Webb

Abstract:

The acidification and mobilisation of metals during the oxidation of acid sulfate soils exposed during lake bed drying is an increasingly common phenomenon under climate scenarios with reduced rainfall. In order to assess the risk of generating high concentrations of acidity and dissolved metals, chromium suite analysis are fundamental, but sometimes limited in characterising the potential risks they pose. This study combines such fundamental test work, along with incubation tests and 1D modelling to investigate the risks associated with the drying of Third Reedy Lake in South East Australia. Core samples were collected from a variable depth of 0.5 m below the lake bed, at 19 locations across the lake’s footprint, using a boat platform. Samples were subjected to a chromium suite of analysis, including titratable actual acidity, chromium reducible sulfur and acid neutralising capacity. Concentrations of reduced sulfur up to 0.08 %S and net acidities up to 0.15 %S indicate that acid sulfate soils have formed on the lake bed during permanent inundation over the last century. A further sub-set of samples were prepared in 7 columns and subject to accelerated heating, drying and wetting over a period of 64 days in laboratory. Results from the incubation trial indicate that while pyrite oxidation proceeded, minimal change to soil pH or the acidity of leachate occurred, suggesting that the internal buffering capacity of lake bed sediments was sufficient to neutralise a large proportion of the acidity produced. A 1D mass balance model was developed to assess potential changes in lake water quality during drying based on the results of chromium suite and incubation tests. Results from the above test work and modelling suggest that acid sulfate soils pose a moderate to low risk to the Third Reedy Lake system. Further, the risks can be effectively managed during the initial stages of lake drying via flushing with available mildly alkaline water. The study finds that while test work such as chromium suite analysis are fundamental in characterizing acid sulfate soil environments, they can the overestimate risks associated with the soils. Subsequent incubation test work may more accurately characterise such soils and lead to better-informed management strategies.

Keywords: acid sulfate soil, incubation, management, model, risk

Procedia PDF Downloads 358
344 High Resolution Satellite Imagery and Lidar Data for Object-Based Tree Species Classification in Quebec, Canada

Authors: Bilel Chalghaf, Mathieu Varin

Abstract:

Forest characterization in Quebec, Canada, is usually assessed based on photo-interpretation at the stand level. For species identification, this often results in a lack of precision. Very high spatial resolution imagery, such as DigitalGlobe, and Light Detection and Ranging (LiDAR), have the potential to overcome the limitations of aerial imagery. To date, few studies have used that data to map a large number of species at the tree level using machine learning techniques. The main objective of this study is to map 11 individual high tree species ( > 17m) at the tree level using an object-based approach in the broadleaf forest of Kenauk Nature, Quebec. For the individual tree crown segmentation, three canopy-height models (CHMs) from LiDAR data were assessed: 1) the original, 2) a filtered, and 3) a corrected model. The corrected CHM gave the best accuracy and was then coupled with imagery to refine tree species crown identification. When compared with photo-interpretation, 90% of the objects represented a single species. For modeling, 313 variables were derived from 16-band WorldView-3 imagery and LiDAR data, using radiance, reflectance, pixel, and object-based calculation techniques. Variable selection procedures were employed to reduce their number from 313 to 16, using only 11 bands to aid reproducibility. For classification, a global approach using all 11 species was compared to a semi-hierarchical hybrid classification approach at two levels: (1) tree type (broadleaf/conifer) and (2) individual broadleaf (five) and conifer (six) species. Five different model techniques were used: (1) support vector machine (SVM), (2) classification and regression tree (CART), (3) random forest (RF), (4) k-nearest neighbors (k-NN), and (5) linear discriminant analysis (LDA). Each model was tuned separately for all approaches and levels. For the global approach, the best model was the SVM using eight variables (overall accuracy (OA): 80%, Kappa: 0.77). With the semi-hierarchical hybrid approach, at the tree type level, the best model was the k-NN using six variables (OA: 100% and Kappa: 1.00). At the level of identifying broadleaf and conifer species, the best model was the SVM, with OA of 80% and 97% and Kappa values of 0.74 and 0.97, respectively, using seven variables for both models. This paper demonstrates that a hybrid classification approach gives better results and that using 16-band WorldView-3 with LiDAR data leads to more precise predictions for tree segmentation and classification, especially when the number of tree species is large.

Keywords: tree species, object-based, classification, multispectral, machine learning, WorldView-3, LiDAR

Procedia PDF Downloads 134
343 Commercial Winding for Superconducting Cables and Magnets

Authors: Glenn Auld Knierim

Abstract:

Automated robotic winding of high-temperature superconductors (HTS) addresses precision, efficiency, and reliability critical to the commercialization of products. Today’s HTS materials are mature and commercially promising but require manufacturing attention. In particular to the exaggerated rectangular cross-section (very thin by very wide), winding precision is critical to address the stress that can crack the fragile ceramic superconductor (SC) layer and destroy the SC properties. Damage potential is highest during peak operations, where winding stress magnifies operational stress. Another challenge is operational parameters such as magnetic field alignment affecting design performance. Winding process performance, including precision, capability for geometric complexity, and efficient repeatability, are required for commercial production of current HTS. Due to winding limitations, current HTS magnets focus on simple pancake configurations. HTS motors, generators, MRI/NMR, fusion, and other projects are awaiting robotic wound solenoid, planar, and spherical magnet configurations. As with conventional power cables, full transposition winding is required for long length alternating current (AC) and pulsed power cables. Robotic production is required for transposition, periodic swapping of cable conductors, and placing into precise positions, which allows power utility required minimized reactance. A full transposition SC cable, in theory, has no transmission length limits for AC and variable transient operation due to no resistance (a problem with conventional cables), negligible reactance (a problem for helical wound HTS cables), and no long length manufacturing issues (a problem with both stamped and twisted stacked HTS cables). The Infinity Physics team is solving manufacturing problems by developing automated manufacturing to produce the first-ever reliable and utility-grade commercial SC cables and magnets. Robotic winding machines combine mechanical and process design, specialized sense and observer, and state-of-the-art optimization and control sequencing to carefully manipulate individual fragile SCs, especially HTS, to shape previously unattainable, complex geometries with electrical geometry equivalent to commercially available conventional conductor devices.

Keywords: automated winding manufacturing, high temperature superconductor, magnet, power cable

Procedia PDF Downloads 140
342 Soil Improvement through Utilization of Calcifying Bhargavaea cecembensis N1 in an Affordable Whey Culture Medium

Authors: Fatemeh Elmi, Zahra Etemadifar

Abstract:

Improvement of soil mechanical properties is crucial before its use in construction, as the low mechanical strength and unstable structure of soil in many parts of the world can lead to the destruction of engineering infrastructure, resulting in financial and human losses. Although, conventional methods, such as chemical injection, are often utilized to enhance soil strength and stiffness, they are generally expensive, require heavy machinery, and cause significant environmental effects due to chemical usage, and also disrupt urban infrastructure. Moreover, they are not suitable for treating large volume of soil. Recently, an alternative method to improve various soil properties, including strength, hardness, and permeability, has received much attention: the application of biological methods. One of the most widely used is biocementation, which is based on the microbial precipitation of calcium carbonte crystalls using ureolytic bacteria However, there are still limitations to its large-scale use that need to be resolved before it can be commercialized. These issues have not received enough attention in prior research. One limitation of MICP (microbially induced calcium carbonate precipitation) is that microorganisms cannot operate effectively in harsh and variable environments, unlike the controlled conditions of a laboratory. Another limitation of applying this technique on a large scale is the high cost of producing a substantial amount of bacterial culture and reagents required for soil treatment. Therefore, the purpose of the present study was to investigate soil improvement using the biocementation activity of poly-extremophile, calcium carbonate crystal- producing bacterial strain, Bhargavaea cecembensis N1, in whey as an inexpensive medium. This strain was isolated and molecularly identified from sandy soils in our previous research, and its 16S rRNA gene sequences was deposited in the NCBI Gene Bank with an accession number MK420385. This strain exhibited a high level of urease activity (8.16 U/ml) and produced a large amount of calcium carbonate (4.1 mg/ ml). It was able to improve the soil by increasing the compressive strength up to 205 kPa and reducing permeability by 36%, with 20% of the improvement attributable of calcium carbonate production. This was achieved using this strain in a whey culture medium. This strain can be an eco-friendly and economical alternative to conventional methods in soil stabilization, and other MICP related applications.

Keywords: biocementation, Bhargavaea cecembensis, soil improvement, whey culture medium

Procedia PDF Downloads 54
341 Comparison of Traditional and Green Building Designs in Egypt: Energy Saving

Authors: Hala M. Abdel Mageed, Ahmed I. Omar, Shady H. E. Abdel Aleem

Abstract:

This paper describes in details a commercial green building that has been designed and constructed in Marsa Matrouh, Egypt. The balance between homebuilding and the sustainable environment has been taken into consideration in the design and construction of this building. The building consists of one floor with 3 m height and 2810 m2 area while the envelope area is 1400 m2. The building construction fulfills the natural ventilation requirements. The glass curtain walls are about 50% of the building and the windows area is 300 m2. 6 mm greenish gray tinted temper glass as outer board lite, 6 mm safety glass as inner board lite and 16 mm thick dehydrated air spaces are used in the building. Visible light with 50% transmission, 0.26 solar factor, 0.67 shading coefficient and 1.3 W/m2.K thermal insulation U-value are implemented to realize the performance requirements. Optimum electrical distribution for lighting system, air conditions and other electrical loads has been carried out. Power and quantity of each type of the lighting system lamps and the energy consumption of the lighting system are investigated. The design of the air conditions system is based on summer and winter outdoor conditions. Ventilated, air conditioned spaces and fresh air rates are determined. Variable Refrigerant Flow (VRF) is the air conditioning system used in this building. The VRF outdoor units are located on the roof of the building and connected to indoor units through refrigerant piping. Indoor units are distributed in all building zones through ducts and air outlets to ensure efficient air distribution. The green building energy consumption is evaluated monthly all over one year and compared with the consumed energy in the non-green conditions using the Hourly Analysis Program (HAP) model. The comparison results show that the total energy consumed per year in the green building is about 1,103,221 kWh while the non-green energy consumption is about 1,692,057 kWh. In other words, the green building total annual energy cost is reduced from 136,581 $ to 89,051 $. This means that, the energy saving and consequently the money-saving of this green construction is about 35%. In addition, 13 points are awarded by applying one of the most popular worldwide green energy certification programs (Leadership in Energy and Environmental Design “LEED”) as a rating system for the green construction. It is concluded that this green building ensures sustainability, saves energy and offers an optimum energy performance with minimum cost.

Keywords: energy consumption, energy saving, green building, leadership in energy and environmental design, sustainability

Procedia PDF Downloads 300
340 The Effect and Durability of Functional Exercises on Balance Evaluation Systems Test (Bestest) in Intellectual Disabilities: A Preliminary Report

Authors: Saeid Bahiraei, Hassan Daneshmandi , Ali Asghar Norasteh

Abstract:

The present study aims at the effects of 8 weeks of selected corrective exercise training in stable and unstable levels on the postural control people with ID. Problems and limitations of movement in individuals with intellectual disability (ID) are highly common, which particularly may cause the loss of basic performance and limitation of the person's independence in doing their daily activities. In the present study, thirty-four young adult intellectual disabilities were selected randomly and divided into three groups. In order to measure the balance variable indicators, BESTest was used. The intervention group did the selected performance exercise in 8 weeks (3 times of 45 to 50 minutes a week). Meanwhile, the control group did not experience any kind of exercise. Statistical analysis was performed in SPSS on a significant level (p<0/05). The results showed the compromise between time and the group in all the BESTest tests is significant (P=0/001). The results of the research test compared to the studied groups with time measurements showed that there is a significant difference in the unstable group in Biomechanical constraints (P<0/05). And also, a significant difference exists in the stable and unstable level instability limits/Vertically, Postural responses, and Anticipatory postural adjustment variables (except for the follow-up and pre-test levels), Stability in Gait and Sensory Orientation in the pre-test, post-test, and follow up- pre-test stage of the test (P<0/05). In the comparison between the times of measurement with the groups under study, the results showed that Biomechanical Constraints, Anticipatory Postural adjustment and Postural responses at the pre-test-follow upstage, there was a significant difference between unstable-stable and unstable-control groups (P<0/05), it was also significant between all groups in Stability Limits/Vertically, Sensory Orientation, Stability in Gait and Overall stability index variables (P<0/05). The findings showed that the practice group at an unstable level has move improvement compared to the practice group at a stable level. In conclusion, this study presents evidence that shows selected performative practices can be recognized as a comprehensive and effective mediator in the betterment and improvement of the balance in intellectually disabled people and also affect the performative and moving activities.

Keywords: intellectual disability, BSETest, rehabilitation, postural control

Procedia PDF Downloads 177
339 Characterization of Aerosol Droplet in Absorption Columns to Avoid Amine Emissions

Authors: Hammad Majeed, Hanna Knuutila, Magne Hilestad, Hallvard Svendsen

Abstract:

Formation of aerosols can cause serious complications in industrial exhaust gas CO2 capture processes. SO3 present in the flue gas can cause aerosol formation in an absorption based capture process. Small mist droplets and fog formed can normally not be removed in conventional demisting equipment because their submicron size allows the particles or droplets to follow the gas flow. As a consequence of this aerosol based emissions in the order of grams per Nm3 have been identified from PCCC plants. In absorption processes aerosols are generated by spontaneous condensation or desublimation processes in supersaturated gas phases. Undesired aerosol development may lead to amine emissions many times larger than what would be encountered in a mist free gas phase in PCCC development. It is thus of crucial importance to understand the formation and build-up of these aerosols in order to mitigate the problem.Rigorous modelling of aerosol dynamics leads to a system of partial differential equations. In order to understand mechanics of a particle entering an absorber an implementation of the model is created in Matlab. The model predicts the droplet size, the droplet internal variable profiles and the mass transfer fluxes as function of position in the absorber. The Matlab model is based on a subclass method of weighted residuals for boundary value problems named, orthogonal collocation method. The model comprises a set of mass transfer equations for transferring components and the essential diffusion reaction equations to describe the droplet internal profiles for all relevant constituents. Also included is heat transfer across the interface and inside the droplet. This paper presents results describing the basic simulation tool for the characterization of aerosols formed in CO2 absorption columns and gives examples as to how various entering droplets grow or shrink through an absorber and how their composition changes with respect to time. Below are given some preliminary simulation results for an aerosol droplet composition and temperature profiles. Results: As an example a droplet of initial size of 3 microns, initially containing a 5M MEA, solution is exposed to an atmosphere free of MEA. Composition of the gas phase and temperature is changing with respect to time throughout the absorber.

Keywords: amine solvents, emissions, global climate change, simulation and modelling, aerosol generation

Procedia PDF Downloads 265
338 Field Environment Sensing and Modeling for Pears towards Precision Agriculture

Authors: Tatsuya Yamazaki, Kazuya Miyakawa, Tomohiko Sugiyama, Toshitaka Iwatani

Abstract:

The introduction of sensor technologies into agriculture is a necessary step to realize Precision Agriculture. Although sensing methodologies themselves have been prevailing owing to miniaturization and reduction in costs of sensors, there are some difficulties to analyze and understand the sensing data. Targeting at pears ’Le Lectier’, which is particular to Niigata in Japan, cultivation environmental data have been collected at pear fields by eight sorts of sensors: field temperature, field humidity, rain gauge, soil water potential, soil temperature, soil moisture, inner-bag temperature, and inner-bag humidity sensors. With regard to the inner-bag temperature and humidity sensors, they are used to measure the environment inside the fruit bag used for pre-harvest bagging of pears. In this experiment, three kinds of fruit bags were used for the pre-harvest bagging. After over 100 days continuous measurement, volumes of sensing data have been collected. Firstly, correlation analysis among sensing data measured by respective sensors reveals that one sensor can replace another sensor so that more efficient and cost-saving sensing systems can be proposed to pear farmers. Secondly, differences in characteristic and performance of the three kinds of fruit bags are clarified by the measurement results by the inner-bag environmental sensing. It is found that characteristic and performance of the inner-bags significantly differ from each other by statistical analysis. Lastly, a relational model between the sensing data and the pear outlook quality is established by use of Structural Equation Model (SEM). Here, the pear outlook quality is related with existence of stain, blob, scratch, and so on caused by physiological impair or diseases. Conceptually SEM is a combination of exploratory factor analysis and multiple regression. By using SEM, a model is constructed to connect independent and dependent variables. The proposed SEM model relates the measured sensing data and the pear outlook quality determined on the basis of farmer judgement. In particularly, it is found that the inner-bag humidity variable relatively affects the pear outlook quality. Therefore, inner-bag humidity sensing might help the farmers to control the pear outlook quality. These results are supported by a large quantity of inner-bag humidity data measured over the years 2014, 2015, and 2016. The experimental and analytical results in this research contribute to spreading Precision Agriculture technologies among the farmers growing ’Le Lectier’.

Keywords: precision agriculture, pre-harvest bagging, sensor fusion, structural equation model

Procedia PDF Downloads 314
337 Issues of Accounting of Lease and Revenue according to International Financial Reporting Standards

Authors: Nadezhda Kvatashidze, Elena Kharabadze

Abstract:

It is broadly known that lease is a flexible means of funding enterprises. Lease reduces the risk related to access and possession of assets, as well as obtainment of funding. Therefore, it is important to refine lease accounting. The lease accounting regulations under the applicable standard (International Accounting Standards 17) make concealment of liabilities possible. As a result, the information users get inaccurate and incomprehensive information and have to resort to an additional assessment of the off-balance sheet lease liabilities. In order to address the problem, the International Financial Reporting Standards Board decided to change the approach to lease accounting. With the deficiencies of the applicable standard taken into account, the new standard (IFRS 16 ‘Leases’) aims at supplying appropriate and fair lease-related information to the users. Save certain exclusions; the lessee is obliged to recognize all the lease agreements in its financial report. The approach was determined by the fact that under the lease agreement, rights and obligations arise by way of assets and liabilities. Immediately upon conclusion of the lease agreement, the lessee takes an asset into its disposal and assumes the obligation to effect the lease-related payments in order to meet the recognition criteria defined by the Conceptual Framework for Financial Reporting. The payments are to be entered into the financial report. The new lease accounting standard secures supply of quality and comparable information to the financial information users. The International Accounting Standards Board and the US Financial Accounting Standards Board jointly developed IFRS 15: ‘Revenue from Contracts with Customers’. The standard allows the establishment of detailed revenue recognition practical criteria such as identification of the performance obligations in the contract, determination of the transaction price and its components, especially price variable considerations and other important components, as well as passage of control over the asset to the customer. IFRS 15: ‘Revenue from Contracts with Customers’ is very similar to the relevant US standards and includes requirements more specific and consistent than those of the standards in place. The new standard is going to change the recognition terms and techniques in the industries, such as construction, telecommunications (mobile and cable networks), licensing (media, science, franchising), real property, software etc.

Keywords: assessment of the lease assets and liabilities, contractual liability, division of contract, identification of contracts, contract price, lease identification, lease liabilities, off-balance sheet, transaction value

Procedia PDF Downloads 320
336 Equity, Bonds, Institutional Debt and Economic Growth: Evidence from South Africa

Authors: Ashenafi Beyene Fanta, Daniel Makina

Abstract:

Economic theory predicts that finance promotes economic growth. Although the finance-growth link is among the most researched areas in financial economics, our understanding of the link between the two is still incomplete. This is caused by, among others, wrong econometric specifications, using weak proxies of financial development, and inability to address the endogeneity problem. Studies on the finance growth link in South Africa consistently report economic growth driving financial development. Early studies found that economic growth drives financial development in South Africa, and recent studies have confirmed this using different econometric models. However, the monetary aggregate (i.e. M2) utilized used in these studies is considered a weak proxy for financial development. Furthermore, the fact that the models employed do not address the endogeneity problem in the finance-growth link casts doubt on the validity of the conclusions. For this reason, the current study examines the finance growth link in South Africa using data for the period 1990 to 2011 by employing a generalized method of moments (GMM) technique that is capable of addressing endogeneity, simultaneity and omitted variable bias problems. Unlike previous cross country and country case studies that have also used the same technique, our contribution is that we account for the development of bond markets and non-bank financial institutions rather than being limited to stock market and banking sector development. We find that bond market development affects economic growth in South Africa, and no similar effect is observed for the bank and non-bank financial intermediaries and the stock market. Our findings show that examination of individual elements of the financial system is important in understanding the unique effect of each on growth. The observation that bond markets rather than private credit and stock market development promotes economic growth in South Africa induces an intriguing question as to what unique roles bond markets play that the intermediaries and equity markets are unable to play. Crucially, our results support observations in the literature that using appropriate measures of financial development is critical for policy advice. They also support the suggestion that individual elements of the financial system need to be studied separately to consider their unique roles in advancing economic growth. We believe that our understanding of the channels through which bond market contribute to growth would be a fertile ground for future research.

Keywords: bond market, finance, financial sector, growth

Procedia PDF Downloads 424
335 Behavior of GRS Abutment Facing under Variable Cycles of Lateral Excitation through Physical Model Tests

Authors: Ashutosh Verma, Satyendra Mittal

Abstract:

Numerous geosynthetic reinforced soil (GRS) abutment failures over the years have been attributed to the loss of strength at the facing-reinforcement interface due to seasonal thermal expansion/contraction of the bridge deck. This causes excessive settlement below the bridge seat, causing bridge bumps along the approach road which reduces the design life of any abutment. Before designers while choosing the type of facing, a broad range of facing configurations are undoubtedly available. Generally speaking, these configurations can be divided into three groups: modular (panels/block), continuous, and full height rigid (FHR). The purpose of the current study is to use 1g physical model tests under serviceable cyclic lateral displacements to experimentally investigate the behaviour of these three facing classifications. To simulate field behaviour, a field instrumented GRS abutment prototype was modeled into a N scaled down 1g physical model (N = 5) with adjustable facing arrangements to represent these three facing classifications. For cyclic lateral displacement (d/H) of top facing at loading rate of 1mm/min, the peak earth pressure coefficient (K) on the facing and vertical settlement of the footing (s/B) at 25, 50, 75 and 100 cycles have been measured. For a constant footing offset of x/H = 0.1, three forms of cyclic displacements have been performed to simulate active condition (CA), passive condition (CP), and active-passive condition (CAP). The findings showed that when reinforcements are integrated into the wall along with presence of gravel gabions i.e. FHR design, a rather substantial earth pressure occurs over the facing. Despite this, the FHR facing's continuous nature works in conjunction with the reinforcements' membrane resilience to reduce footing settlement. On the other hand, the pressure over the wall is released upon lateral excitation by the relative displacement between the panels in modular facing reducing the connection strength at the interface and leading to greater settlements below footing. On the contrary, continuous facing do not exhibit relative displacement along the depth of facing rather fails through rotation about the base, which extends the zone of active failure in the backfill leading to large depressions in the backfill region around the bridge seat. Conservatively, FHR facing shows relatively stable responses under lateral cyclic excitations as compared to modular or continuous type of abutment facing.

Keywords: GRS abutments, 1g physical model, full height rigid, cyclic lateral displacement

Procedia PDF Downloads 83
334 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation

Authors: Mohammad Abu-Shaira, Weishi Shi

Abstract:

Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.

Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression

Procedia PDF Downloads 13
333 Index t-SNE: Tracking Dynamics of High-Dimensional Datasets with Coherent Embeddings

Authors: Gaelle Candel, David Naccache

Abstract:

t-SNE is an embedding method that the data science community has widely used. It helps two main tasks: to display results by coloring items according to the item class or feature value; and for forensic, giving a first overview of the dataset distribution. Two interesting characteristics of t-SNE are the structure preservation property and the answer to the crowding problem, where all neighbors in high dimensional space cannot be represented correctly in low dimensional space. t-SNE preserves the local neighborhood, and similar items are nicely spaced by adjusting to the local density. These two characteristics produce a meaningful representation, where the cluster area is proportional to its size in number, and relationships between clusters are materialized by closeness on the embedding. This algorithm is non-parametric. The transformation from a high to low dimensional space is described but not learned. Two initializations of the algorithm would lead to two different embeddings. In a forensic approach, analysts would like to compare two or more datasets using their embedding. A naive approach would be to embed all datasets together. However, this process is costly as the complexity of t-SNE is quadratic and would be infeasible for too many datasets. Another approach would be to learn a parametric model over an embedding built with a subset of data. While this approach is highly scalable, points could be mapped at the same exact position, making them indistinguishable. This type of model would be unable to adapt to new outliers nor concept drift. This paper presents a methodology to reuse an embedding to create a new one, where cluster positions are preserved. The optimization process minimizes two costs, one relative to the embedding shape and the second relative to the support embedding’ match. The embedding with the support process can be repeated more than once, with the newly obtained embedding. The successive embedding can be used to study the impact of one variable over the dataset distribution or monitor changes over time. This method has the same complexity as t-SNE per embedding, and memory requirements are only doubled. For a dataset of n elements sorted and split into k subsets, the total embedding complexity would be reduced from O(n²) to O(n²=k), and the memory requirement from n² to 2(n=k)², which enables computation on recent laptops. The method showed promising results on a real-world dataset, allowing to observe the birth, evolution, and death of clusters. The proposed approach facilitates identifying significant trends and changes, which empowers the monitoring high dimensional datasets’ dynamics.

Keywords: concept drift, data visualization, dimension reduction, embedding, monitoring, reusability, t-SNE, unsupervised learning

Procedia PDF Downloads 144
332 The Effect of Applying the Electronic Supply System on the Performance of the Supply Chain in Health Organizations

Authors: Sameh S. Namnqani, Yaqoob Y. Abobakar, Ahmed M. Alsewehri, Khaled M. AlQethami

Abstract:

The main objective of this research is to know the impact of the application of the electronic supply system on the performance of the supply department of health organizations. To reach this goal, the study adopted independent variables to measure the dependent variable (performance of the supply department), namely: integration with suppliers, integration with intermediaries and distributors and knowledge of supply size, inventory, and demand. The study used the descriptive method and was aided by the questionnaire tool that was distributed to a sample of workers in the Supply Chain Management Department of King Abdullah Medical City. After the statistical analysis, the results showed that: The 70 sample members strongly agree with the (electronic integration with suppliers) axis with a p-value of 0.001, especially with regard to the following: Opening formal and informal communication channels between management and suppliers (Mean 4.59) and exchanging information with suppliers with transparency and clarity (Mean 4.50). It also clarified that the sample members agree on the axis of (electronic integration with brokers and distributors) with a p-value of 0.001 and this is represented in the following elements: Exchange of information between management, brokers and distributors with transparency, clarity (Mean 4.18) , and finding a close cooperation relationship between management, brokers and distributors (Mean 4.13). The results also indicated that the respondents agreed to some extent on the axis (knowledge of the size of supply, stock, and demand) with a p-value of 0.001. It also indicated that the respondents strongly agree with the existence of a relationship between electronic procurement and (the performance of the procurement department in health organizations) with a p-value of 0.001, which is represented in the following: transparency and clarity in dealing with suppliers and intermediaries to prevent fraud and manipulation (Mean 4.50) and reduce the costs of supplying the needs of the health organization (Mean 4.50). From the results, the study recommended several recommendations, the most important of which are: that health organizations work to increase the level of information sharing between them and suppliers in order to achieve the implementation of electronic procurement in the supply management of health organizations. Attention to using electronic data interchange methods and using modern programs that make supply management able to exchange information with brokers and distributors to find out the volume of supply, inventory, and demand. To know the volume of supply, inventory, and demand, it recommended the application of scientific methods of supply for storage. Take advantage of information technology, for example, electronic data exchange techniques and documents, where it can help in contact with suppliers, brokers, and distributors, and know the volume of supply, inventory, and demand, which contributes to improving the performance of the supply department in health organizations.

Keywords: healthcare supply chain, performance, electronic system, ERP

Procedia PDF Downloads 136
331 Human Coronary Sinus Venous System as a Target for Clinical Procedures

Authors: Wiesława Klimek-Piotrowska, Mateusz K. Hołda, Mateusz Koziej, Katarzyna Piątek, Jakub Hołda

Abstract:

Introduction: The coronary sinus venous system (CSVS), which has always been overshadowed by the coronary arterial tree, has recently begun to attract more attention. Since it is a target for clinicians the knowledge of its anatomy is essential. Cardiac resynchronization therapy, catheter ablation of cardiac arrhythmias, defibrillation, perfusion therapy, mitral valve annuloplasty, targeted drug delivery, and retrograde cardioplegia administration are commonly used therapeutic methods involving the CSVS. The great variability in the course of coronary veins and tributaries makes the diagnostic and therapeutic processes difficult. Our aim was to investigate detailed anatomy of most common clinically used CSVS`s structures: the coronary sinus with its ostium, great cardiac vein, posterior vein of the left ventricle, middle cardiac vein and oblique vein of the left atrium. Methodology: This is a prospective study of 70 randomly selected autopsied hearts dissected from adult humans (Caucasian) aged 50.1±17.6 years old (24.3% females) with BMI=27.6±6.7 kg/m2. The morphology of the CSVS was assessed as well as its precise measurements were performed. Results: The coronary sinus (CS) with its ostium was present in all hearts. The mean CS ostium diameter was 9.9±2.5mm. Considered ostium was covered by its valve in 87.1% with mean valve height amounted 5.1±3.1mm. The mean percentage coverage of the CS ostium by the valve was 56%. The Vieussens valve was present in 71.4% and was unicuspid in 70%, bicuspid in 26% and tricuspid in 4% of hearts. The great cardiac vein was present in all cases. The oblique vein of the left atrium was observed in 84.3% of hearts with mean length amounted 20.2±9.3mm and mean ostium diameter 1.4±0.9mm. The average length of the CS (from the CS ostium to the Vieussens valve) was 31.1±9.5mm or (from the CS ostium to the ostium of the oblique vein of the left atrium) 28.9±10.1mm and both were correlated with the heart weight (r=0.47; p=0.00 and r=0.38; p=0.006 respectively). In 90.5% the ostium of the oblique vein of the left atrium was located proximally to the Vieussens valve, in remaining cases was distally. The middle cardiac vein was present in all hearts and its valve was noticed in more than half of all the cases (52.9%). The posterior vein of the left ventricle was observed in 91.4% of cases. Conclusions: The CSVS is vastly variable and none of basic hearts parameters is a good predictor of its morphology. The Vieussens valve could be a significant obstacle during CS cannulation. Caution should be exercised in this area to avoid coronary sinus perforation. Because of the higher incidence of the presence of the oblique vein of the left atrium than the Vieussens valve, the vein orifice is more useful in determining the CS length.

Keywords: cardiac resynchronization therapy, coronary sinus, Thebesian valve, Vieussens valve

Procedia PDF Downloads 302
330 Prevalence of Breast Cancer Molecular Subtypes at a Tertiary Cancer Institute

Authors: Nahush Modak, Meena Pangarkar, Anand Pathak, Ankita Tamhane

Abstract:

Background: Breast cancer is the prominent cause of cancer and mortality among women. This study was done to show the statistical analysis of a cohort of over 250 patients detected with breast cancer diagnosed by oncologists using Immunohistochemistry (IHC). IHC was performed by using ER; PR; HER2; Ki-67 antibodies. Materials and methods: Formalin fixed Paraffin embedded tissue samples were obtained by surgical manner and standard protocol was followed for fixation, grossing, tissue processing, embedding, cutting and IHC. The Ventana Benchmark XT machine was used for automated IHC of the samples. Antibodies used were supplied by F. Hoffmann-La Roche Ltd. Statistical analysis was performed by using SPSS for windows. Statistical tests performed were chi-squared test and Correlation tests with p<.01. The raw data was collected and provided by National Cancer Insitute, Jamtha, India. Result: Luminal B was the most prevailing molecular subtype of Breast cancer at our institute. Chi squared test of homogeneity was performed to find equality in distribution and Luminal B was the most prevalent molecular subtype. The worse prognostic indicator for breast cancer depends upon expression of Ki-67 and her2 protein in cancerous cells. Our study was done at p <.01 and significant dependence was observed. There exists no dependence of age on molecular subtype of breast cancer. Similarly, age is an independent variable while considering Ki-67 expression. Chi square test performed on Human epidermal growth factor receptor 2 (HER2) statuses of patients and strong dependence was observed in percentage of Ki-67 expression and Her2 (+/-) character which shows that, value of Ki depends upon Her2 expression in cancerous cells (p<.01). Surprisingly, dependence was observed in case of Ki-67 and Pr, at p <.01. This shows that Progesterone receptor proteins (PR) are over-expressed when there is an elevation in expression of Ki-67 protein. Conclusion: We conclude from that Luminal B is the most prevalent molecular subtype at National Cancer Institute, Jamtha, India. There was found no significant correlation between age and Ki-67 expression in any molecular subtype. And no dependence or correlation exists between patients’ age and molecular subtype. We also found that, when the diagnosis is Luminal A, out of the cohort of 257 patients, no patient shows >14% Ki-67 value. Statistically, extremely significant values were observed for dependence of PR+Her2- and PR-Her2+ scores on Ki-67 expression. (p<.01). Her2 is an important prognostic factor in breast cancer. Chi squared test for Her2 and Ki-67 shows that the expression of Ki depends upon Her2 statuses. Moreover, Ki-67 cannot be used as a standalone prognostic factor for determining breast cancer.

Keywords: breast cancer molecular subtypes , correlation, immunohistochemistry, Ki-67 and HR, statistical analysis

Procedia PDF Downloads 123