Search results for: linear predictive coding (LPC)
3001 Branding and Posting Strategy on Facebook Pages of Higher Education Institutions in Ontario, Canada in 2019-2020: A Quantitative and Qualitative Investigation
Authors: Mai To
Abstract:
Higher education institutions (HEIs) in Ontario, Canada have invested in social media presence for multiple purposes, such as branding, student’ engagement, and recruitment. To have a full picture of the social media strategy implemented by HEIs in Ontario, Canada, this study used a mixed-method approach to analyze Facebook posts’ characteristics and content. A total of 1789 Facebook posts from September 2019 to April 2020 of six selected HEIs were collected for analysis and coding based on five pre-determined branding positions: Elite, Nurturing, Campus, Outcome, and Commodity. Besides, the study also calculated the engagement rate for each social media practice to measure its effectiveness. The results show that there were not many differences in practices such as posting frequency, length, types, and timing among HEIs. However, the distribution of branding positions and content targeting future students versus current students was varied, although the HEIs employed all five branding positions and targeted the same lists of audiences. Some practices such as evening post for colleges and nurturing branding for universities attracted significantly higher engagement. This study provides a review of current social media practices and branding strategy, as well as informs the practices that can better engage the audiences.Keywords: branding, higher education, social media, student engagement, student recruitment
Procedia PDF Downloads 1313000 Optimization of Tundish Geometry for Minimizing Dead Volume Using OpenFOAM
Authors: Prateek Singh, Dilshad Ahmad
Abstract:
Growing demand for high-quality steel products has inspired researchers to investigate the unit operations involved in the manufacturing of these products (slabs, rods, sheets, etc.). One such operation is tundish operation, in which a vessel (tundish) acts as a buffer of molten steel for the solidification operation in mold. It is observed that tundish also plays a crucial role in the quality and cleanliness of the steel produced, besides merely acting as a reservoir for the mold. It facilitates removal of dissolved oxygen (inclusions) from the molten steel thus improving its cleanliness. Inclusion removal can be enhanced by increasing the residence time of molten steel in the tundish by incorporation of flow modifiers like dams, weirs, turbo-pad, etc. These flow modifiers also help in reducing the dead or short circuit zones within the tundish which is significant for maintaining thermal and chemical homogeneity of molten steel. Thus, it becomes important to analyze the flow of molten steel in the tundish for different configuration of flow modifiers. In the present work, effect of varying positions and heights/depths of dam and weir on the dead volume in tundish is studied. Steady state thermal and flow profiles of molten steel within the tundish are obtained using OpenFOAM. Subsequently, Residence Time Distribution analysis is performed to obtain the percentage of dead volume in the tundish. Design of Experiment method is then used to configure different tundish geometries for varying positions and heights/depths of dam and weir, and dead volume for each tundish design is obtained. A second-degree polynomial with two-term interactions of independent variables to predict the dead volume in the tundish with positions and heights/depths of dam and weir as variables are computed using Multiple Linear Regression model. This polynomial is then used in an optimization framework to obtain the optimal tundish geometry for minimizing dead volume using Sequential Quadratic Programming optimization.Keywords: design of experiments, multiple linear regression, OpenFOAM, residence time distribution, sequential quadratic programming optimization, steel, tundish
Procedia PDF Downloads 2112999 A Pipeline for Detecting Copy Number Variation from Whole Exome Sequencing Using Comprehensive Tools
Authors: Cheng-Yang Lee, Petrus Tang, Tzu-Hao Chang
Abstract:
Copy number variations (CNVs) have played an important role in many kinds of human diseases, such as Autism, Schizophrenia and a number of cancers. Many diseases are found in genome coding regions and whole exome sequencing (WES) is a cost-effective and powerful technology in detecting variants that are enriched in exons and have potential applications in clinical setting. Although several algorithms have been developed to detect CNVs using WES and compared with other algorithms for finding the most suitable methods using their own samples, there were not consistent datasets across most of algorithms to evaluate the ability of CNV detection. On the other hand, most of algorithms is using command line interface that may greatly limit the analysis capability of many laboratories. We create a series of simulated WES datasets from UCSC hg19 chromosome 22, and then evaluate the CNV detective ability of 19 algorithms from OMICtools database using our simulated WES datasets. We compute the sensitivity, specificity and accuracy in each algorithm for validation of the exome-derived CNVs. After comparison of 19 algorithms from OMICtools database, we construct a platform to install all of the algorithms in a virtual machine like VirtualBox which can be established conveniently in local computers, and then create a simple script that can be easily to use for detecting CNVs using algorithms selected by users. We also build a table to elaborate on many kinds of events, such as input requirement, CNV detective ability, for all of the algorithms that can provide users a specification to choose optimum algorithms.Keywords: whole exome sequencing, copy number variations, omictools, pipeline
Procedia PDF Downloads 3232998 Long-Term Indoor Air Monitoring for Students with Emphasis on Particulate Matter (PM2.5) Exposure
Authors: Seyedtaghi Mirmohammadi, Jamshid Yazdani, Syavash Etemadi Nejad
Abstract:
One of the main indoor air parameters in classrooms is dust pollution and it depends on the particle size and exposure duration. However, there is a lake of data about the exposure level to PM2.5 concentrations in rural area classrooms. The objective of the current study was exposure assessment for PM2.5 for students in the classrooms. One year monitoring was carried out for fifteen schools by time-series sampling to evaluate the indoor air PM2.5 in the rural district of Sari city, Iran. A hygrometer and thermometer were used to measure some psychrometric parameters (temperature, relative humidity, and wind speed) and Real-Time Dust Monitor, (MicroDust Pro, Casella, UK) was used to monitor particulate matters (PM2.5) concentration. The results show the mean indoor PM2.5 concentration in the studied classrooms was 135µg/m3. The regression model indicated that a positive correlation between indoor PM2.5 concentration and relative humidity, also with distance from city center and classroom size. Meanwhile, the regression model revealed that the indoor PM2.5 concentration, the relative humidity, and dry bulb temperature was significant at 0.05, 0.035, and 0.05 levels, respectively. A statistical predictive model was obtained from multiple regressions modeling for indoor PM2.5 concentration and indoor psychrometric parameters conditions.Keywords: classrooms, concentration, humidity, particulate matters, regression
Procedia PDF Downloads 3402997 Structural Strength Potentials of Nigerian Groundnut Husk Ash as Partial Cement Replacement in Mortar
Authors: F. A. Olutoge, O.R. Olulope, M. O. Odelola
Abstract:
This study investigates the strength potentials of groundnut husk ash as partial cement replacement in mortar and also develops a predictive model using Artificial Neural Network. Groundnut husks sourced from Ogbomoso, Nigeria, was sun dried, calcined to ash in a furnace at a controlled temperature of 600⁰ C for a period of 6 hours, and sieved through the 75 microns. The ash was subjected to chemical analysis and setting time test. Fine aggregate (sand) for the mortar was sourced from Ado Ekiti, Nigeria. The cement: GHA constituents were blended in ratios 100:0, 95:5, 90:10, 85:15 and 80:20 %. The sum of SiO₂, Al₂O₃, and Fe₂O₃ content in GHA is 26.98%. The compressive strength for mortars PC, GHA5, GHA10, GHA15, and GHA20 ranged from 6.3-10.2 N/mm² at 7days, 7.5-12.3 N/mm² at 14 days, 9.31-13.7 N/mm² at 28 days, 10.4-16.7 N/mm² at 56days and 13.35- 22.3 N/mm² at 90 days respectively, PC, GHA5 and GHA10 had competitive values up to 28 days, but GHA10 gave the highest values at 56 and 90 days while GHA20 had the lowest values at all ages due to dilution effect. Flexural strengths values at 28 days ranged from 1.08 to 1.87 N/mm² and increased to a range of 1.53-4.10 N/mm² at 90 days. The ANN model gave good prediction for compressive strength of the mortars. This study has shown that groundnut husk ash as partial cement replacement improves the strength properties of mortar.Keywords: compressive strength, groundnut husk ash, mortar, pozzolanic index
Procedia PDF Downloads 1612996 The Relationship between Amplitude and Stability of Circadian Rhythm with Sleep Quality and Sleepiness: A Population Study, Kerman 2018
Authors: Akram Sadat Jafari Roodbandi, Farzaneh Akbari, Vafa Feyzi, Zahra Zare, Zohreh Foroozanfar
Abstract:
Introduction: Circadian rhythm or sleep-awake cycle in 24 hours is one of the important factors affecting the physiological and psychological characteristics in humans that contribute to biochemical, physiological and behavioral processes and helps people to set up brain and body for sleep or active awakening during certain hours. The purpose of this study was to investigate the relationship between the characteristics of circadian rhythms on the sleep quality and sleepiness according to their demographic characteristics such as age. Methods: This cross-sectional descriptive-analytic study was carried out among the general population of Kerman, aged 15-84 years. After dividing the age groups into 10-year demographic characteristics questionnaire, the type of circadian questionnaire, Pittsburgh sleep quality questionnaire and Euporth sleepiness questionnaire were completed in equal numbers between men and women of that age group. Using cluster sampling with effect design equal 2, 1300 questionnaires were distributed during the various hours of 24 hours in public places in Kerman city. Data analysis was done using SPSS software and univariate tests and linear regressions at a significance level of 0.05. Results: In this study, 1147 subjects were included in the study, 584 (50.9%) were male and the rest were women. The mean age was 39.50 ± 15.38. 133 (11.60%) subjects from the study participants had sleepiness and 308 (26.90%) subjects had undesirable sleep quality. Using linear regression test, sleep quality was the significant correlation with sex, hours needed for sleep at 24 hours, chronic illness, sleepiness, and circadian rhythm amplitude. Sleepiness was the meaningful relationship with marital status, sleep-wake schedule of other family members and the stability of circadian rhythm. Both women and men, with age, decrease the quality of sleep and increase the rate of sleepiness. Conclusion: Age, sex, and type of circadian people, the need for sleep at 24 hours, marital status, sleep-wake schedule of other family members are significant factors related to the sleep quality and sleepiness and their adaptation to night shift work.Keywords: circadian type, sleep quality, sleepiness, age, shift work
Procedia PDF Downloads 1592995 Constructing Optimized Criteria of Objective Assessment Indicators among Elderly Frailty
Authors: Shu-Ching Chiu, Shu-Fang Chang
Abstract:
The World Health Organization (WHO) has been actively developing intervention programs to deal with geriatric frailty. In its White Paper on Healthcare Policy 2020, the Department of Health, Bureau of Health Promotion proposed that active aging and the prevention of disability are essential for elderly people to maintain good health. The paper recommended five main policies relevant to this objective, one of which is the prevention of frailty and disability. Scholars have proposed a number of different criteria to diagnose and assess frailty; no consistent or normative standard of measurement is currently available. In addition, many methods of assessment are recursive, which can easily result in recall bias. Due to the relationship between frailty and physical fitness with regard to co-morbidity, it is important that academics optimize the criteria used to assess frailty by objectively evaluating the physical fitness of senior citizens. This study used a review of the literature to identify fitness indicators suitable for measuring frailty in the elderly. This study recommends that measurement criteria be integrated to produce an optimized predictive value for frailty score. Healthcare professionals could use this data to detect frailty at an early stage and provide appropriate care to prevent further debilitation and increase longevity.Keywords: frailty, aging, physical fitness, optimized criteria, healthcare
Procedia PDF Downloads 3592994 Phenomenological Ductile Fracture Criteria Applied to the Cutting Process
Authors: František Šebek, Petr Kubík, Jindřich Petruška, Jiří Hůlka
Abstract:
Present study is aimed on the cutting process of circular cross-section rods where the fracture is used to separate one rod into two pieces. Incorporating the phenomenological ductile fracture model into the explicit formulation of finite element method, the process can be analyzed without the necessity of realizing too many real experiments which could be expensive in case of repetitive testing in different conditions. In the present paper, the steel AISI 1045 was examined and the tensile tests of smooth and notched cylindrical bars were conducted together with biaxial testing of the notched tube specimens to calibrate material constants of selected phenomenological ductile fracture models. These were implemented into the Abaqus/Explicit through user subroutine VUMAT and used for cutting process simulation. As the calibration process is based on variables which cannot be obtained directly from experiments, numerical simulations of fracture tests are inevitable part of the calibration. Finally, experiments regarding the cutting process were carried out and predictive capability of selected fracture models is discussed. Concluding remarks then make the summary of gained experience both with the calibration and application of particular ductile fracture criteria.Keywords: ductile fracture, phenomenological criteria, cutting process, explicit formulation, AISI 1045 steel
Procedia PDF Downloads 4602993 Analyzing Migration Patterns Using Public Disorder Event Data
Authors: Marie E. Docken
Abstract:
At some point in the lifecycle of a country, patterns of political and social unrest of varying degrees are observed. Events involving public disorder or civil disobedience may produce effects that range a wide spectrum of varying outcomes, depending on the level of unrest. Many previous studies, primarily theoretical in nature, have attempted to measure public disorder in answering why or how it occurs in society by examining causal factors or underlying issues in the social or political position of a population. The main objective in doing so is to understand how these activities evolve or seek some predictive capability for the events. In contrast, this research involves the fusion of analytics and social studies to provide more knowledge of the public disorder and civil disobedience intensity in populations. With a greater understanding of the magnitude of these events, it is believed that we may learn how they relate to extreme actions such as mass migration or violence. Upon establishing a model for measuring civil unrest based upon empirical data, a case study on various Latin American countries is performed. Interpretations of historical events are combined with analytical results to provide insights regarding the magnitude and effect of social and political activism.Keywords: public disorder, civil disobedience, Latin America, metrics, data analysis
Procedia PDF Downloads 1492992 Next-Gen Solutions: How Generative AI Will Reshape Businesses
Authors: Aishwarya Rai
Abstract:
This study explores the transformative influence of generative AI on startups, businesses, and industries. We will explore how large businesses can benefit in the area of customer operations, where AI-powered chatbots can improve self-service and agent effectiveness, greatly increasing efficiency. In marketing and sales, generative AI could transform businesses by automating content development, data utilization, and personalization, resulting in a substantial increase in marketing and sales productivity. In software engineering-focused startups, generative AI can streamline activities, significantly impacting coding processes and work experiences. It can be extremely useful in product R&D for market analysis, virtual design, simulations, and test preparation, altering old workflows and increasing efficiency. Zooming into the retail and CPG industry, industry findings suggest a 1-2% increase in annual revenues, equating to $400 billion to $660 billion. By automating customer service, marketing, sales, and supply chain management, generative AI can streamline operations, optimizing personalized offerings and presenting itself as a disruptive force. While celebrating economic potential, we acknowledge challenges like external inference and adversarial attacks. Human involvement remains crucial for quality control and security in the era of generative AI-driven transformative innovation. This talk provides a comprehensive exploration of generative AI's pivotal role in reshaping businesses, recognizing its strategic impact on customer interactions, productivity, and operational efficiency.Keywords: generative AI, digital transformation, LLM, artificial intelligence, startups, businesses
Procedia PDF Downloads 812991 Dependence of the Photoelectric Exponent on the Source Spectrum of the CT
Authors: Rezvan Ravanfar Haghighi, V. C. Vani, Suresh Perumal, Sabyasachi Chatterjee, Pratik Kumar
Abstract:
X-ray attenuation coefficient [µ(E)] of any substance, for energy (E), is a sum of the contributions from the Compton scattering [ μCom(E)] and photoelectric effect [µPh(E)]. In terms of the, electron density (ρe) and the effective atomic number (Zeff) we have µCom(E) is proportional to [(ρe)fKN(E)] while µPh(E) is proportional to [(ρeZeffx)/Ey] with fKN(E) being the Klein-Nishina formula, with x and y being the exponents for photoelectric effect. By taking the sample's HU at two different excitation voltages (V=V1, V2) of the CT machine, we can solve for X=ρe, Y=ρeZeffx from these two independent equations, as is attempted in DECT inversion. Since µCom(E) and µPh(E) are both energy dependent, the coefficients of inversion are also dependent on (a) the source spectrum S(E,V) and (b) the detector efficiency D(E) of the CT machine. In the present paper we tabulate these coefficients of inversion for different practical manifestations of S(E,V) and D(E). The HU(V) values from the CT follow: <µ(V)>=<µw(V)>[1+HU(V)/1000] where the subscript 'w' refers to water and the averaging process <….> accounts for the source spectrum S(E,V) and the detector efficiency D(E). Linearity of μ(E) with respect to X and Y implies that (a) <µ(V)> is a linear combination of X and Y and (b) for inversion, X and Y can be written as linear combinations of two independent observations <µ(V1)>, <µ(V2)> with V1≠V2. These coefficients of inversion would naturally depend upon S(E, V) and D(E). We numerically investigate this dependence for some practical cases, by taking V = 100 , 140 kVp, as are used for cardiological investigations. The S(E,V) are generated by using the Boone-Seibert source spectrum, being superposed on aluminium filters of different thickness lAl with 7mm≤lAl≤12mm and the D(E) is considered to be that of a typical Si[Li] solid state and GdOS scintilator detector. In the values of X and Y, found by using the calculated inversion coefficients, errors are below 2% for data with solutions of glycerol, sucrose and glucose. For low Zeff materials like propionic acid, Zeffx is overestimated by 20% with X being within1%. For high Zeffx materials like KOH the value of Zeffx is underestimated by 22% while the error in X is + 15%. These imply that the source may have additional filtering than the aluminium filter specified by the manufacturer. Also it is found that the difference in the values of the inversion coefficients for the two types of detectors is negligible. The type of the detector does not affect on the DECT inversion algorithm to find the unknown chemical characteristic of the scanned materials. The effect of the source should be considered as an important factor to calculate the coefficients of inversion.Keywords: attenuation coefficient, computed tomography, photoelectric effect, source spectrum
Procedia PDF Downloads 4052990 Analytical Authentication of Butter Using Fourier Transform Infrared Spectroscopy Coupled with Chemometrics
Authors: M. Bodner, M. Scampicchio
Abstract:
Fourier Transform Infrared (FT-IR) spectroscopy coupled with chemometrics was used to distinguish between butter samples and non-butter samples. Further, quantification of the content of margarine in adulterated butter samples was investigated. Fingerprinting region (1400-800 cm–1) was used to develop unsupervised pattern recognition (Principal Component Analysis, PCA), supervised modeling (Soft Independent Modelling by Class Analogy, SIMCA), classification (Partial Least Squares Discriminant Analysis, PLS-DA) and regression (Partial Least Squares Regression, PLS-R) models. PCA of the fingerprinting region shows a clustering of the two sample types. All samples were classified in their rightful class by SIMCA approach; however, nine adulterated samples (between 1% and 30% w/w of margarine) were classified as belonging both at the butter class and at the non-butter one. In the two-class PLS-DA model’s (R2 = 0.73, RMSEP, Root Mean Square Error of Prediction = 0.26% w/w) sensitivity was 71.4% and Positive Predictive Value (PPV) 100%. Its threshold was calculated at 7% w/w of margarine in adulterated butter samples. Finally, PLS-R model (R2 = 0.84, RMSEP = 16.54%) was developed. PLS-DA was a suitable classification tool and PLS-R a proper quantification approach. Results demonstrate that FT-IR spectroscopy combined with PLS-R can be used as a rapid, simple and safe method to identify pure butter samples from adulterated ones and to determine the grade of adulteration of margarine in butter samples.Keywords: adulterated butter, margarine, PCA, PLS-DA, PLS-R, SIMCA
Procedia PDF Downloads 1552989 Application of Latent Class Analysis and Self-Organizing Maps for the Prediction of Treatment Outcomes for Chronic Fatigue Syndrome
Authors: Ben Clapperton, Daniel Stahl, Kimberley Goldsmith, Trudie Chalder
Abstract:
Chronic fatigue syndrome (CFS) is a condition characterised by chronic disabling fatigue and other symptoms that currently can't be explained by any underlying medical condition. Although clinical trials support the effectiveness of cognitive behaviour therapy (CBT), the success rate for individual patients is modest. Patients vary in their response and little is known which factors predict or moderate treatment outcomes. The aim of the project is to develop a prediction model from baseline characteristics of patients, such as demographics, clinical and psychological variables, which may predict likely treatment outcome and provide guidance for clinical decision making and help clinicians to recommend the best treatment. The project is aimed at identifying subgroups of patients with similar baseline characteristics that are predictive of treatment effects using modern cluster analyses and data mining machine learning algorithms. The characteristics of these groups will then be used to inform the types of individuals who benefit from a specific treatment. In addition, results will provide a better understanding of for whom the treatment works. The suitability of different clustering methods to identify subgroups and their response to different treatments of CFS patients is compared.Keywords: chronic fatigue syndrome, latent class analysis, prediction modelling, self-organizing maps
Procedia PDF Downloads 2292988 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence
Authors: Muhammad Bilal Shaikh
Abstract:
Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.Keywords: multimodal AI, computer vision, NLP, mineral processing, mining
Procedia PDF Downloads 742987 An Overview of Posterior Fossa Associated Pathologies and Segmentation
Authors: Samuel J. Ahmad, Michael Zhu, Andrew J. Kobets
Abstract:
Segmentation tools continue to advance, evolving from manual methods to automated contouring technologies utilizing convolutional neural networks. These techniques have evaluated ventricular and hemorrhagic volumes in the past but may be applied in novel ways to assess posterior fossa-associated pathologies such as Chiari malformations. Herein, we summarize literature pertaining to segmentation in the context of this and other posterior fossa-based diseases such as trigeminal neuralgia, hemifacial spasm, and posterior fossa syndrome. A literature search for volumetric analysis of the posterior fossa identified 27 papers where semi-automated, automated, manual segmentation, linear measurement-based formulas, and the Cavalieri estimator were utilized. These studies produced superior data than older methods utilizing formulas for rough volumetric estimations. The most commonly used segmentation technique was semi-automated segmentation (12 studies). Manual segmentation was the second most common technique (7 studies). Automated segmentation techniques (4 studies) and the Cavalieri estimator (3 studies), a point-counting method that uses a grid of points to estimate the volume of a region, were the next most commonly used techniques. The least commonly utilized segmentation technique was linear measurement-based formulas (1 study). Semi-automated segmentation produced accurate, reproducible results. However, it is apparent that there does not exist a single semi-automated software, open source or otherwise, that has been widely applied to the posterior fossa. Fully-automated segmentation via such open source software as FSL and Freesurfer produced highly accurate posterior fossa segmentations. Various forms of segmentation have been used to assess posterior fossa pathologies and each has its advantages and disadvantages. According to our results, semi-automated segmentation is the predominant method. However, atlas-based automated segmentation is an extremely promising method that produces accurate results. Future evolution of segmentation technologies will undoubtedly yield superior results, which may be applied to posterior fossa related pathologies. Medical professionals will save time and effort analyzing large sets of data due to these advances.Keywords: chiari, posterior fossa, segmentation, volumetric
Procedia PDF Downloads 1112986 A Comparative Analysis of Machine Learning Techniques for PM10 Forecasting in Vilnius
Authors: Mina Adel Shokry Fahim, Jūratė Sužiedelytė Visockienė
Abstract:
With the growing concern over air pollution (AP), it is clear that this has gained more prominence than ever before. The level of consciousness has increased and a sense of knowledge now has to be forwarded as a duty by those enlightened enough to disseminate it to others. This realisation often comes after an understanding of how poor air quality indices (AQI) damage human health. The study focuses on assessing air pollution prediction models specifically for Lithuania, addressing a substantial need for empirical research within the region. Concentrating on Vilnius, it specifically examines particulate matter concentrations 10 micrometers or less in diameter (PM10). Utilizing Gaussian Process Regression (GPR) and Regression Tree Ensemble, and Regression Tree methodologies, predictive forecasting models are validated and tested using hourly data from January 2020 to December 2022. The study explores the classification of AP data into anthropogenic and natural sources, the impact of AP on human health, and its connection to cardiovascular diseases. The study revealed varying levels of accuracy among the models, with GPR achieving the highest accuracy, indicated by an RMSE of 4.14 in validation and 3.89 in testing.Keywords: air pollution, anthropogenic and natural sources, machine learning, Gaussian process regression, tree ensemble, forecasting models, particulate matter
Procedia PDF Downloads 592985 Functional Profiling of a Circular RNA from the Huntingtin (HTT) Gene
Authors: Laura Gantley, Vanessa M. Conn, Stuart Webb, Kirsty Kirk, Marta Gabryelska, Duncan Holds, Brett W. Stringer, Simon J. Conn
Abstract:
Trinucleotide repeat disorders comprise ~20 severe, inherited human neuromuscular and neurodegenerative disorders, which are a result of an abnormal expansion of repetitive sequences in the DNA. The most common of these, Huntington’s disease, results from the expansion of the CAG repeat region in exon 1 of the HTT gene via an unknown mechanism. Non-coding RNAs have been implicated in the initiation and progression of many diseases; thus, we focus on one circular RNA (circRNA) molecule arising from non-canonical splicing (back splicing) of HTT pre-mRNA. This circRNA and its mouse orthologue were transgenically overexpressed in human cells (SHSY-5Y and HEK293T) and mouse cells (Mb1), respectively. High-content imaging and flow cytometry demonstrated the overexpression of this circRNA reduces cell proliferation, reduces nuclear size independent of cellular size, and alters cell cycle progression. Analysis of protein by western blot and immunofluorescence demonstrated no change to HTT protein levels but altered nuclear-cytoplasmic distribution without impacting the expansion of the HTT repeat region. As these phenotypic and genotypic changes are found in Huntington’s disease patients, these results may suggest that this circRNA may play a functional role in the progression of Huntington’s disease.Keywords: cell biology, circular RNAs, Huntington’s disease, molecular biology, neurodegenerative disorders
Procedia PDF Downloads 1032984 The Collaboration between Resident and Non-resident Patent Applicants as a Strategy to Accelerate Technological Advance in Developing Nations
Authors: Hugo Rodríguez
Abstract:
Migrations of researchers, scientists, and inventors are a widespread phenomenon in modern times. In some cases, migrants stay linked to research groups in their countries of origin, either out of their own conviction or because of government policies. We examine different linear models of technological development (using the Ordinary Least Squares (OLS) technique) in eight selected countries and find that the collaborations between resident and nonresident patent applicants correlate with different levels of performance of the technological policies in three different scenarios. Therefore, the reinforcement of that link must be considered a powerful tool for technological development.Keywords: development, collaboration, patents, technology
Procedia PDF Downloads 1312983 Purification and Characterization of a Novel Extracellular Chitinase from Bacillus licheniformis LHH100
Authors: Laribi-Habchi Hasiba, Bouanane-Darenfed Amel, Drouiche Nadjib, Pausse André, Mameri Nabil
Abstract:
Chitin, a linear 1, 4-linked N-acetyl-d-glucosamine (GlcNAc) polysaccharide is the major structural component of fungal cell walls, insect exoskeletons and shells of crustaceans. It is one of the most abundant naturally occurring polysaccharides and has attracted tremendous attention in the fields of agriculture, pharmacology and biotechnology. Each year, a vast amount of chitin waste is released from the aquatic food industry, where crustaceans (prawn, crab, Shrimp and lobster) constitute one of the main agricultural products. This creates a serious environmental problem. This linear polymer can be hydrolyzed by bases, acids or enzymes such as chitinase. In this context an extracellular chitinase (ChiA-65) was produced and purified from a newly isolated LHH100. Pure protein was obtained after heat treatment and ammonium sulphate precipitation followed by Sephacryl S-200 chromatography. Based on matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis, the purified enzyme is a monomer with a molecular mass of 65,195.13 Da. The sequence of the 27 N-terminal residues of the mature ChiA-65 showed high homology with family-18 chitinases. Optimal activity was achieved at pH 4 and 75◦C. Among the inhibitors and metals tested p-chloromercuribenzoic acid, N-ethylmaleimide, Hg2+ and Hg + completelyinhibited enzyme activity. Chitinase activity was high on colloidal chitin, glycol chitin, glycol chitosane, chitotriose and chitooligosaccharide. Chitinase activity towards synthetic substrates in the order of p-NP-(GlcNAc) n (n = 2–4) was p-NP-(GlcNAc)2> p-NP-(GlcNAc)4> p-NP-(GlcNAc)3. Our results suggest that ChiA-65 preferentially hydrolyzed the second glycosidic link from the non-reducing end of (GlcNAc) n. ChiA-65 obeyed Michaelis Menten kinetics the Km and kcat values being 0.385 mg, colloidal chitin/ml and5000 s−1, respectively. ChiA-65 exhibited remarkable biochemical properties suggesting that this enzyme is suitable for bioconversion of chitin waste.Keywords: Bacillus licheniformis LHH100, characterization, extracellular chitinase, purification
Procedia PDF Downloads 4392982 Cost Analysis of Optimized Fast Network Mobility in IEEE 802.16e Networks
Authors: Seyyed Masoud Seyyedoshohadaei, Borhanuddin Mohd Ali
Abstract:
To support group mobility, the NEMO Basic Support Protocol has been standardized as an extension of Mobile IP that enables an entire network to change its point of attachment to the Internet. Using NEMO in IEEE 802.16e (WiMax) networks causes latency in handover procedure and affects seamless communication of real-time applications. To decrease handover latency and service disruption time, an integrated scheme named Optimized Fast NEMO (OFNEMO) was introduced by authors of this paper. In OFNEMO a pre-establish multi tunnels concept, cross function optimization and cross layer design are used. In this paper, an analytical model is developed to evaluate total cost consisting of signaling and packet delivery costs of the OFNEMO compared with RFC3963. Results show that OFNEMO increases probability of predictive mode compared with RFC3963 due to smaller handover latency. Even though OFNEMO needs extra signalling to pre-establish multi tunnel, it has less total cost thanks to its optimized algorithm. OFNEMO can minimize handover latency for supporting real time application in moving networks.Keywords: fast mobile IPv6, handover latency, IEEE802.16e, network mobility
Procedia PDF Downloads 1992981 Machine Learning Predictive Models for Hydroponic Systems: A Case Study Nutrient Film Technique and Deep Flow Technique
Authors: Kritiyaporn Kunsook
Abstract:
Machine learning algorithms (MLAs) such us artificial neural networks (ANNs), decision tree, support vector machines (SVMs), Naïve Bayes, and ensemble classifier by voting are powerful data driven methods that are relatively less widely used in the mapping of technique of system, and thus have not been comparatively evaluated together thoroughly in this field. The performances of a series of MLAs, ANNs, decision tree, SVMs, Naïve Bayes, and ensemble classifier by voting in technique of hydroponic systems prospectively modeling are compared based on the accuracy of each model. Classification of hydroponic systems only covers the test samples from vegetables grown with Nutrient film technique (NFT) and Deep flow technique (DFT). The feature, which are the characteristics of vegetables compose harvesting height width, temperature, require light and color. The results indicate that the classification performance of the ANNs is 98%, decision tree is 98%, SVMs is 97.33%, Naïve Bayes is 96.67%, and ensemble classifier by voting is 98.96% algorithm respectively.Keywords: artificial neural networks, decision tree, support vector machines, naïve Bayes, ensemble classifier by voting
Procedia PDF Downloads 3792980 Assessment of the Role of Plasmid in Multidrug Resistance in Extended Spectrum βEtalactamase Producing Escherichia Coli Stool Isolates from Diarrhoeal Patients in Kano Metropolis Nigeria
Authors: Abdullahi Musa, Yakubu Kukure Enebe Ibrahim, Adeshina Gujumbola
Abstract:
The emergence of multidrug resistance in clinical Escherichia coli has been associated with plasmid-mediated genes. DNA transfer among bacteria is critical to the dissemination of resistance. Plasmids have proved to be the ideal vehicles for dissemination of resistance genes. Plasmids coding for antibiotic resistance were long being recognized by many researchers globally. The study aimed at determining the antibiotic susceptibility pattern of ESBL E. coli isolates claimed to be multidrug resistance using disc diffusion method. Antibacterial activity of the test isolates was carried out using disk diffusion methods. The results showed that, majority of the multidrug resistance among clinical isolates of ESBL E. coli was as a result of acquisition of plasmid carrying antibiotic-resistance genes. Production of these ESBL enzymes by these organisms which are normally carried by plasmid and transfer from one bacterium to another has greatly contributed to the rapid spread of antibiotic resistance amongst E. coli isolates, which lead to high economic burden, increase morbidity and mortality rate, complication in therapy and limit treatment options. To curtail these problems, it is of significance to checkmate the rate at which over the counter drugs are sold and antibiotic misused in animal feeds. This will play a very important role in minimizing the spread of resistance bacterial strains in our environment.Keywords: Escherichia coli, plasmid, multidrug resistance, ESBL, pan drug resistance
Procedia PDF Downloads 732979 Discrimination between Defective and Non-Defective Coffee Beans Using a Laser Prism Spectrometer
Abstract:
The concentration- and temperature-dependent refractive indices of solutions extracted from defective and non-defective coffee beans have been investigated using a He–Ne laser. The refractive index has a linear relationship with the presumed concentration of the coffee solutions in the range of 0.5–3%. Higher and lower values of refractive index were obtained for immature and non-defective coffee beans, respectively. The Refractive index of bean extracts can be successfully used to separate defective from non-defective beans.Keywords: coffee extract, refractive index, temperature dependence
Procedia PDF Downloads 1542978 Digital Wellbeing: A Multinational Study and Global Index
Authors: Fahad Al Beyahi, Justin Thomas, Md Mamunur Rashid
Abstract:
Various definitions of digital well-being have emerged in recent years, most of which center on the impacts -beneficial and detrimental- of digital technology on health and well-being (psychological, social, and financial). Other definitions go further, emphasizing the attainment of balance, viewing digital well-being as wholly subjective, the individual’s perception of optimal balance between the benefits and ills associated with online connectivity. Based on this broad conceptualization of digital well-being, we undertook a global survey measuring various dimensions of this emerging construct. The survey was administered across 35 nations and 7 world regions, with 1000 participants within each territory (N= 35000). Along with attitudinal, behavioral, and sociodemographic variables, the survey included measures of depression, anxiety, problematic social media use, gaming disorder, and other relevant metrics. Coupled with nation-level policy audits, these data were used to create a multinational (global) digital well-being index. Nations are ranked based on various dimensions of digital well-being, and predictive models are used to identify resilience and risk factors for problem technology use. In this paper, we will discuss key findings from the survey and the index. This work can inform public policy and shape our responses to the emerging implications of lives increasingly lived online and interconnected with digital technology.Keywords: technology, health, behavioral addiction, digital wellbeing
Procedia PDF Downloads 832977 Peak Frequencies in the Collective Membrane Potential of a Hindmarsh-Rose Small-World Neural Network
Authors: Sun Zhe, Ruggero Micheletto
Abstract:
As discussed extensively in many studies, noise in neural networks have an important role in the functioning and time evolution of the system. The mechanism by which noise induce stochastic resonance enhancing and influencing certain operations is not clarified nor is the mechanism of information storage and coding. With the present research we want to study the role of noise, especially focusing on the frequency peaks in a three variable Hindmarsh−Rose Small−World network. We investigated the behaviour of the network to external noises. We demonstrate that a variation of signal to noise ratio of about 10 dB induces an increase in membrane potential signal of about 15%, averaged over the whole network. We also considered the integral of the whole membrane potential as a paradigm of internal noise, the one generated by the brain network. We showed that this internal noise is attenuated with the size of the network or with the number of random connections. By means of Fourier analysis we found that it has distinct peaks of frequencies, moreover, we showed that increasing the size of the network introducing more neurons, reduced the maximum frequencies generated by the network, whereas the increase in the number of random connections (determined by the small-world probability p) led to a trend toward higher frequencies. This study may give clues on how networks utilize noise to alter the collective behaviour of the system in their operations.Keywords: neural networks, stochastic processes, small-world networks, discrete Fourier analysis
Procedia PDF Downloads 2952976 Innovative Design of Spherical Robot with Hydraulic Actuator
Authors: Roya Khajepour, Alireza B. Novinzadeh
Abstract:
In this paper, the spherical robot is modeled using the Band-Graph approach. This breed of robots is typically employed in expedition missions to unknown territories. Its motion mechanism is based on convection of a fluid in a set of three donut vessels, arranged orthogonally in space. This robot is a non-linear, non-holonomic system. This paper utilizes the Band-Graph technique to derive the torque generation mechanism in a spherical robot. Eventually, this paper describes the motion of a sphere due to the exerted torque components.Keywords: spherical robot, Band-Graph, modeling, torque
Procedia PDF Downloads 3562975 External Business Environment and Sustainability of Micro, Small and Medium Enterprises in Jigawa State, Nigeria
Authors: Shehu Isyaku
Abstract:
The general objective of the study was to investigate ‘the relationship between the external business environment and the sustainability of micro, small and medium enterprises (MSMEs) in Jigawa state’, Nigeria. Specifically, the study was to examine the relationship between 1) the economic environment, 2) the social environment, 3) the technological environment, and 4) the political environment and the sustainability of MSMEs in Jigawa state, Nigeria. The study was drawn on Resource-Based View (RBV) Theory and Knowledge-Based View (KBV). The study employed a descriptive cross-sectional survey design. A researcher-made questionnaire was used to collect data from the 350 managers/owners who were selected using stratified, purposive and simple random sampling techniques. Data analysis was done using means and standard deviations, factor analysis, Correlation Coefficient, and Pearson Linear Regression analysis. The findings of the study revealed that the sustainability potentials of the managers/owners were rated as high potential (economic, environmental, and social sustainability using 5 5-point Likert scale. Mean ratings of effectiveness of the external business environment were; as highly effective. The results from the Pearson Linear Regression Analysis rejected the hypothesized non-significant effect of the external business environment on the sustainability of MSMEs. Specifically, there is a positive significant relationship between 1) economic environment and sustainability; 2) social environment and sustainability; 3) technological environment and sustainability and political environment and sustainability. The researcher concluded that MSME managers/owners have a high potential for economic, social and environmental sustainability and that all the constructs of the external business environment (economic environment, social environment, technological environment and political environment) have a positive significant relationship with the sustainability of MSMEs. Finally, the researcher recommended that 1) MSME managers/owners need to develop marketing strategies and intelligence systems to accumulate information about the competitors and customers' demands, 2) managers/owners should utilize the customers’ cultural and religious beliefs as an opportunity that should be utilized while formulating business strategies.Keywords: business environment, sustainability, small and medium enterprises, external business environment
Procedia PDF Downloads 602974 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models
Authors: Jay L. Fu
Abstract:
Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction
Procedia PDF Downloads 1462973 Preferred Left-Handed Conformation of Glycyls at Pathogenic Sites
Authors: Purva Mishra, Rajesh Potlia, Kuljeet Singh Sandhu
Abstract:
The role of glycyl residues in the protein structure has lingered within the research community for the last several decades. Glycyl residue is the only amino acid that is achiral due to the lack of a side chain and can, therefore, exhibit Ramachandran conformations that are disallowed for L-amino acids. The structural and functional significance of glycyl residues with L-disallowed conformation, however, remains obscure. Through statistical analysis of various datasets, we found that the glycyls with L-disallowed conformations are over-represented at disease-associated sites and tend to be evolutionarily conserved. The mutations of L-disallowed glycyls tend to destabilize the native conformation, reduce protein solubility, and promote inter-molecular aggregations. We uncovered a structural motif referred to as “β-crescent” formed around the L-disallowed glycyl, which prevents β-sheet aggregation by disrupting the alternating pattern of β-pleats. The L-disallowed conformation of glycyls also holds predictive power to infer the pathogenic missense variants. Altogether, our observations highlight that the L-disallowed conformation of glycyls is selected to facilitate native folding and prevent inter-molecular aggregations. The findings may also have implications for designing more stable proteins and prioritizing the genetic lesions implicated in diseases.Keywords: Ramachandran plot, β-sheet, protein stability, protein aggregation
Procedia PDF Downloads 772972 Keyword Network Analysis on the Research Trends of Life-Long Education for People with Disabilities in Korea
Authors: Jakyoung Kim, Sungwook Jang
Abstract:
The purpose of this study is to examine the research trends of life-long education for people with disabilities using a keyword network analysis. For this purpose, 151 papers were selected from 594 papers retrieved using keywords such as 'people with disabilities' and 'life-long education' in the Korean Education and Research Information Service. The Keyword network analysis was constructed by extracting and coding the keyword used in the title of the selected papers. The frequency of the extracted keywords, the centrality of degree, and betweenness was analyzed by the keyword network. The results of the keyword network analysis are as follows. First, the main keywords that appeared frequently in the study of life-long education for people with disabilities were 'people with disabilities', 'life-long education', 'developmental disabilities', 'current situations', 'development'. The research trends of life-long education for people with disabilities are focused on the current status of the life-long education and the program development. Second, the keyword network analysis and visualization showed that the keywords with high frequency of occurrences also generally have high degree centrality and betweenness centrality. In terms of the keyword network diagram, it was confirmed that research trends of life-long education for people with disabilities are centered on six prominent keywords. Based on these results, it was discussed that life-long education for people with disabilities in the future needs to expand the subjects and the supporting areas of the life-long education, and the research needs to be further expanded into more detailed and specific areas.Keywords: life-long education, people with disabilities, research trends, keyword network analysis
Procedia PDF Downloads 342