Search results for: input current
9137 Altered L-Type Calcium Channel Activity in Atrioventricular Nodal Myocytes from Rats with Streptozotocin-Induced Type I Diabetes Mellitus
Authors: Kathryn H. Yull, Lina T. Al Kury, Frank Christopher Howarth
Abstract:
Cardiovascular diseases are frequently reported in patients with Type-1 Diabetes mellitus (DM). In addition to changes in cardiac muscle inotropy, electrical abnormalities are also commonly observed in these patients. In the present study, using streptozotocin (STZ) rat model of Type-1 DM, we have characterized the changes in L-type calcium channel activity in single atrioventricular nodal (AVN) myocytes. Ionic currents were recorded from AVN myocytes isolated from the hearts of control rats and from those with STZ-induced diabetes. Patch-clamp recordings were used to assess changes in cellular electrical activity in individual myocytes. Type-1 DM significantly altered the cellular characteristics of L-type calcium current (ICaL). A reduction in peak ICaL density was observed, with no corresponding changes in the activation parameters of the current. ICaL also exhibited faster time-dependent inactivation in AVN myocytes from diabetic rats. A negative shift in the voltage dependence of inactivation was also evident. These findings demonstrate that experimentally–induced type-1 DM significantly alters AVN L-type calcium channel cellular electrophysiology. The changes in ion channel activity may underlie the abnormalities in the cardiac electrical function that contribute to the high mortality levels in patients with DM.Keywords: cardiac, ion-channel, diabetes, atrioventricular node, calcium channel
Procedia PDF Downloads 3519136 Optical Multicast over OBS Networks: An Approach Based on Code-Words and Tunable Decoders
Authors: Maha Sliti, Walid Abdallah, Noureddine Boudriga
Abstract:
In the frame of this work, we present an optical multicasting approach based on optical code-words. Our approach associates, in the edge node, an optical code-word to a group multicast address. In the core node, a set of tunable decoders are used to send a traffic data to multiple destinations based on the received code-word. The use of code-words, which correspond to the combination of an input port and a set of output ports, allows the implementation of an optical switching matrix. At the reception of a burst, it will be delayed in an optical memory. And, the received optical code-word is split to a set of tunable optical decoders. When it matches a configured code-word, the delayed burst is switched to a set of output ports.Keywords: optical multicast, optical burst switching networks, optical code-words, tunable decoder, virtual optical memory
Procedia PDF Downloads 6129135 Topic-to-Essay Generation with Event Element Constraints
Authors: Yufen Qin
Abstract:
Topic-to-Essay generation is a challenging task in Natural language processing, which aims to generate novel, diverse, and topic-related text based on user input. Previous research has overlooked the generation of articles under the constraints of event elements, resulting in issues such as incomplete event elements and logical inconsistencies in the generated results. To fill this gap, this paper proposes an event-constrained approach for a topic-to-essay generation that enforces the completeness of event elements during the generation process. Additionally, a language model is employed to verify the logical consistency of the generated results. Experimental results demonstrate that the proposed model achieves a better BLEU-2 score and performs better than the baseline in terms of subjective evaluation on a real dataset, indicating its capability to generate higher-quality topic-related text.Keywords: event element, language model, natural language processing, topic-to-essay generation.
Procedia PDF Downloads 2409134 Investigation of Pu-238 Heat Source Modifications to Increase Power Output through (α,N) Reaction-Induced Fission
Authors: Alex B. Cusick
Abstract:
The objective of this study is to improve upon the current ²³⁸PuO₂ fuel technology for space and defense applications. Modern RTGs (radioisotope thermoelectric generators) utilize the heat generated from the radioactive decay of ²³⁸Pu to create heat and electricity for long term and remote missions. Application of RTG technology is limited by the scarcity and expense of producing the isotope, as well as the power output which is limited to only a few hundred watts. The scarcity and expense make the efficient use of ²³⁸Pu absolutely necessary. By utilizing the decay of ²³⁸Pu, not only to produce heat directly but to also indirectly induce fission in ²³⁹Pu (which is already present within currently used fuel), it is possible to see large increases in temperature which allows for a more efficient conversion to electricity and a higher power-to-weight ratio. This concept can reduce the quantity of ²³⁸Pu necessary for these missions, potentially saving millions on investment, while yielding higher power output. Current work investigating radioisotope power systems have focused on improving efficiency of the thermoelectric components and replacing systems which produce heat by virtue of natural decay with fission reactors. The technical feasibility of utilizing (α,n) reactions to induce fission within current radioisotopic fuels has not been investigated in any appreciable detail, and our study aims to thoroughly investigate the performance of many such designs, develop those with highest capabilities, and facilitate experimental testing of these designs. In order to determine the specific design parameters that maximize power output and the efficient use of ²³⁸Pu for future RTG units, MCNP6 simulations have been used to characterize the effects of modifying fuel composition, geometry, and porosity, as well as introducing neutron moderating, reflecting, and shielding materials to the system. Although this project is currently in the preliminary stages, the final deliverables will include sophisticated designs and simulation models that define all characteristics of multiple novel RTG fuels, detailed enough to allow immediate fabrication and testing. Preliminary work has consisted of developing a benchmark model to accurately represent the ²³⁸PuO₂ pellets currently in use by NASA; this model utilizes the alpha transport capabilities of MCNP6 and agrees well with experimental data. In addition, several models have been developed by varying specific parameters to investigate their effect on (α,n) and (n,fi ssion) reaction rates. Current practices in fuel processing are to exchange out the small portion of naturally occurring ¹⁸O and ¹⁷O to limit (α,n) reactions and avoid unnecessary neutron production. However, we have shown that enriching the oxide in ¹⁸O introduces a sufficient (α,n) reaction rate to support significant fission rates. For example, subcritical fission rates above 10⁸ f/cm³-s are easily achievable in cylindrical ²³⁸PuO₂ fuel pellets with a ¹⁸O enrichment of 100%, given an increase in size and a ⁹Be clad. Many viable designs exist and our intent is to discuss current results and future endeavors on this project.Keywords: radioisotope thermoelectric generators (RTG), Pu-238, subcritical reactors, (alpha, n) reactions
Procedia PDF Downloads 1779133 Detection of Brackish Water Biological Fingerprints in Potable Water
Authors: Abdullah Mohammad, Abdullah Alshemali, Esmaeil Alsaleh
Abstract:
The chemical composition of desalinated water is modified to make it more acceptable to the end-user. Sometimes, this modification is approached by mixing with brackish water that is known to contain a variety of minerals. Expectedly, besides minerals, brackish water indigenous bacterial communities access the final mixture hence reaching the end consumer. The current project examined the safety of using brackish water as an ingredient in potable water. Pseudomonas aeruginosa strains were detected in potable and brackish water samples collected from storage facilities in residential areas as well as from main water distribution and storage tanks. The application of molecular and biochemical fingerprinting methods, including phylogeny, RFLP (restriction fragment length polymorphism), MLST (multilocus sequence typing) and substrate specificity testing, suggested that the potable water P. aeruginosa strains were most probably originated from brackish water. Additionally, all the sixty-four isolates showed multi-drug resistance (MDR) phenotype and harboured the three genes responsible for biofilm formation. These virulence factors represent serious health hazards compelling the scientific community to revise the WHO (World Health Organization) and USEP (US Environmental Protection Agency) A potable water quality guidelines, particularly those related to the types of bacterial genera that evade the current water quality guidelines.Keywords: potable water, brackish water, pseudomonas aeroginosa, multidrug resistance
Procedia PDF Downloads 1269132 Implementation and Design of Fuzzy Controller for High Performance Dc-Dc Boost Converters
Authors: A. Mansouri, F. Krim
Abstract:
This paper discusses the implementation and design of both linear PI and fuzzy controllers for DC-DC boost converters. Design of PI controllers is based on temporal response of closed-loop converters, while fuzzy controllers design is based on heuristic knowledge of boost converters. Linear controller implementation is quite straightforward relying on mathematical models, while fuzzy controller implementation employs one or more artificial intelligences techniques. Comparison between these boost controllers is made in design aspect. Experimental results show that the proposed fuzzy controller system is robust against input voltage and load resistance changing and in respect of start-up transient. Results indicate that fuzzy controller can achieve best control performance concerning faster transient response, steady-state response good stability and accuracy under different operating conditions. Fuzzy controller is more suitable to control boost converters.Keywords: boost DC-DC converter, fuzzy, PI controllers, power electronics and control system
Procedia PDF Downloads 4799131 Management Options and Life Cycle Assessment of Municipal Solid Waste in Madinah, KSA
Authors: Abdelkader T. Ahmed, Ayed E. Alluqmani
Abstract:
The population growth in the KSA beside the increase in the urbanization level and standard of living improvement have resulted in the rapid growth of the country’s Municipal Solid Waste (MSW) generation. Municipalities are managing the MSW system in the KSA by collecting and getting rid of it by dumping it in nearest open landfill sites. Solid waste management is one of the main critical issues considered worldwide due to its significant impact on the environment and the public health. In this study, municipal solid waste (MSW) generation, composition and collection of Madinah city, as one of largest cities in KSA, were examined to provide an overview of current state of MSW management, an analysis of existing problem in MSW management, and recommendations for improving the waste treatment and management system in this area. These recommendations would be not specific to Madinah region, but also would be applied to other cities in KSA or any other regions with similar features. The trend of waste generation showed that current waste generation would be increased as much as two to three folds in 2030. Approximately 25% of total generated waste is disposed to a sanitary landfill, while 75% is sent to normal dumpsites. This study also investigated the environmental impacts of MSW through the Life Cycle Assessment (LCA) of waste generations and related processes. LCA results revealed that among the seven scenarios, recycling and composting are the best scenario for the solid waste management in Madinah and similar regions.Keywords: municipal solid waste, waste recycling and land-filling, waste management, life cycle assessment
Procedia PDF Downloads 4709130 Responsibility of States in Air Traffic Management: Need for International Unification
Authors: Nandini Paliwal
Abstract:
Since aviation industry is one of the fastest growing sectors of the world economy, states depend on the air transport industry to maintain or stimulate economic growth. It significantly promotes and contributes to the economic well-being of every nation as well as world in general. Because of the continuous and rapid growth in civil aviation, it is inevitably leading to congested skies, flight delays and most alarmingly, a decrease in the safety of air navigation facilities. Safety is one of the most important concerns of aviation industry that has been unanimously recognised across the whole world. The available capacity of the air navigation system is not sufficient for the demand that is being generated. It has been indicated by forecast that the current growth in air traffic has the potential of causing delays in 20% of flights by 2020 unless changes are brought in the current system. Therefore, a safe, orderly and expeditious air navigation system is needed at the national and global levels, which, requires the implementation of an air traffic management (hereinafter referred as ‘ATM’) system to ensure an optimum flow of air traffic by utilising and enhancing capabilities provided by technical advances. The objective of this paper is to analyse the applicability of national regulations in case of liability arising out of air traffic management services and whether the current legal regime is sufficient to cover multilateral agreements including the Single European Sky regulations. In doing so, the paper will examine the international framework mainly the Article 28 of the Chicago Convention and its relevant annexes to determine the responsibility of states for providing air navigation services. Then, the paper will discuss the difference between the concept of responsibility and liability under the air law regime and how states might claim sovereign immunity for the functions of air traffic management. Thereafter, the paper will focus on the cross border agreements including the bilateral and multilateral agreements. In the end, the paper will address the scheme of Single European Sky and the need for an international convention dealing with the liability of air navigation service providers. The paper will conclude with some suggestions for unification of the laws at an international level dealing with liability of air navigation service providers and the requirement of enhanced co-operation among states in order to keep pace with technological advances.Keywords: air traffic management, safety, single European sky, co-operation
Procedia PDF Downloads 1739129 Jitter Based Reconstruction of Transmission Line Pulse Using On-Chip Sensor
Authors: Bhuvnesh Narayanan, Bernhard Weiss, Tvrtko Mandic, Adrijan Baric
Abstract:
This paper discusses a method to reconstruct internal high-frequency signals through subsampling techniques in an IC using an on-chip sensor. Though there are existing methods to internally probe and reconstruct high frequency signals through subsampling techniques; these methods have been applicable mainly for synchronized systems. This paper demonstrates a method for making such non-intrusive on-chip reconstructions possible also in non-synchronized systems. The TLP pulse is used to demonstrate the experimental validation of the concept. The on-chip sensor measures the voltage in an internal node. The jitter in the input pulse causes a varying pulse delay with respect to the on-chip sampling command. By measuring this pulse delay and by correlating it with the measured on-chip voltage, time domain waveforms can be reconstructed, and the influence of the pulse on the internal nodes can be better understood.Keywords: on-chip sensor, jitter, transmission line pulse, subsampling
Procedia PDF Downloads 1509128 High Resolution Image Generation Algorithm for Archaeology Drawings
Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu
Abstract:
Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.Keywords: archaeology drawings, digital heritage, image generation, deep learning
Procedia PDF Downloads 649127 The Effect of the Covid-19 Pandemic on Foreign Students Studying in Hungary – What Changed?
Authors: Anita Kéri
Abstract:
Satisfying foreign student needs has been in the center of research interest in the past several years. Higher education institutions have been exploring factors influencing foreign student satisfactionto stay competitive on the educational market. Even though foreign student satisfaction and loyalty are topics investigated deeply in the literature, the academic years of 2020 and 2021 have revealed challenges never experienced before. With the COVID-19 pandemic, new factors have emerged that might influence foreign student satisfaction and loyalty in higher education. The aim of the current research is to shed lights on what factors influence foreign student satisfaction and loyalty in the post-pandemic educational era and to reveal if the effects of factors influencing satisfaction and loyalty have changed compared to previous findings. Initial results show that students are less willing to participate in online surveys during and after the pandemic. The return rate of the survey instrument is below 5%. Results also reveal that there is a slight difference in what factors have significant effects on school-related and non-school-related satisfaction and overall loyalty, measured pre- and post-pandemic times. The results of the current study help us determine what factors higher education institutions need to consider when planning the future service affordances for their foreign students that might influence their satisfaction and loyalty.Keywords: pandemic, COVID-19, satisfacion, loyalty, service quality, higher education
Procedia PDF Downloads 1689126 Review of Factors Which Affect Throttling by Oxidiser Flow Control in Hybrid Rocket Engine
Authors: Natcha Laethongkham, Gayan Ramanayake, Philip Charlesworth, Leshan Uggalla
Abstract:
The throttling process in hybrid rocket engines (HREs) poses challenges due to inherent instability, impacting the engine’s reliability and robustness. Identifying and advancing existing technology is crucial to meet the demands of complex mission profiles required for next-generation launch vehicles. This paper reviews the current literature, focusing on oxidiser flow control for throttling purposes in HREs. Covered areas include oxidiser choices, commonly used throttle valves, and literature trends. Common oxidisers for throttling are hydrogen peroxide, nitrous oxide, and liquid oxygen. Two frequently chosen valves for throttling are the ball and variation pintle valves. The review identifies two primary research focuses: flow control valve studies and control system design. The current research stage is highlighted, and suggestions for future directions are proposed to advance thrust control systems in HREs. This includes further studies in existing research focuses and exploring new approaches such as system scheme design, numerical modelling, and applications.Keywords: hybrid rocket engines, oxidiser flow control, thrust control, throttle valve, review
Procedia PDF Downloads 319125 A Comparative Study of Global Power Grids and Global Fossil Energy Pipelines Using GIS Technology
Authors: Wenhao Wang, Xinzhi Xu, Limin Feng, Wei Cong
Abstract:
This paper comprehensively investigates current development status of global power grids and fossil energy pipelines (oil and natural gas), proposes a standard visual platform of global power and fossil energy based on Geographic Information System (GIS) technology. In this visual platform, a series of systematic visual models is proposed with global spatial data, systematic energy and power parameters. Under this visual platform, the current Global Power Grids Map and Global Fossil Energy Pipelines Map are plotted within more than 140 countries and regions across the world. Using the multi-scale fusion data processing and modeling methods, the world’s global fossil energy pipelines and power grids information system basic database is established, which provides important data supporting global fossil energy and electricity research. Finally, through the systematic and comparative study of global fossil energy pipelines and global power grids, the general status of global fossil energy and electricity development are reviewed, and energy transition in key areas are evaluated and analyzed. Through the comparison analysis of fossil energy and clean energy, the direction of relevant research is pointed out for clean development and energy transition.Keywords: energy transition, geographic information system, fossil energy, power systems
Procedia PDF Downloads 1569124 Cascaded Neural Network for Internal Temperature Forecasting in Induction Motor
Authors: Hidir S. Nogay
Abstract:
In this study, two systems were created to predict interior temperature in induction motor. One of them consisted of a simple ANN model which has two layers, ten input parameters and one output parameter. The other one consisted of eight ANN models connected each other as cascaded. Cascaded ANN system has 17 inputs. Main reason of cascaded system being used in this study is to accomplish more accurate estimation by increasing inputs in the ANN system. Cascaded ANN system is compared with simple conventional ANN model to prove mentioned advantages. Dataset was obtained from experimental applications. Small part of the dataset was used to obtain more understandable graphs. Number of data is 329. 30% of the data was used for testing and validation. Test data and validation data were determined for each ANN model separately and reliability of each model was tested. As a result of this study, it has been understood that the cascaded ANN system produced more accurate estimates than conventional ANN model.Keywords: cascaded neural network, internal temperature, inverter, three-phase induction motor
Procedia PDF Downloads 3479123 Seizure Effects of FP Bearings on the Seismic Reliability of Base-Isolated Systems
Authors: Paolo Castaldo, Bruno Palazzo, Laura Lodato
Abstract:
This study deals with the seizure effects of friction pendulum (FP) bearings on the seismic reliability of a 3D base-isolated nonlinear structural system, designed according to Italian seismic code (NTC08). The isolated system consists in a 3D reinforced concrete superstructure, a r.c. substructure and the FP devices, described by employing a velocity dependent model. The seismic input uncertainty is considered as a random variable relevant to the problem, by employing a set of natural seismic records selected in compliance with L’Aquila (Italy) seismic hazard as provided from NTC08. Several non-linear dynamic analyses considering the three components of each ground motion have been performed with the aim to evaluate the seismic reliability of the superstructure, substructure, and isolation level, also taking into account the seizure event of the isolation devices. Finally, a design solution aimed at increasing the seismic robustness of the base-isolated systems with FPS is analyzed.Keywords: FP devices, seismic reliability, seismic robustness, seizure
Procedia PDF Downloads 4229122 Redefining State Security Using Gender: Case Study of the United States of America Post-Cold War
Authors: E. K. Linsenmayer
Abstract:
Traditional international relations theorists define state security, the principal national interest, as a state’s military force. However, many political theorists argue the current definition of security is not comprehensive and therefore, problematic. This paper argues that women’s physical security is not only linked but also necessary to achieve state security. In today’s unipolar political international system, the United States continues to accredit national security to its military. However, in one of the most militarized countries, women remain insecure. Through a case study method of the United States, this paper illuminates a necessary political prescription: the empowerment of women through an inside-out, feminist theoretical approach that makes state security attainable. The research through empirical testing, drawing from several databases, shows the positive effects of women’s physical security on state security. Women’s physical security is defined in terms of equal legal practices, health, education, and female representation in the government. State security is measured by the relative peace of a state, its involvement in conflict and a state’s relations with neighboring states. This paper shows that empowering women, 50% of the world’s population, is necessary for ending the current vicious circle of militarization, war, and insecurity. Without undoing gender power dynamics at the individual and societal level, security at all levels remains unattainable.Keywords: gender inequality, politics, state security, women's security
Procedia PDF Downloads 2109121 The Impact of Ship Traffic and Harbor Activities on the Atmospheric Pollution in Two Northern Adriatic Ports: Venice and Rijeka
Authors: Elena Barbaro, Elena Gregoris, Rossano Piazza, Boris Mifka, Tatjana Ivošević, Ivo Orlić, Ana Alebić-Juretić, Andrea Gambaro, Daniele Contini
Abstract:
The aim of the POSEIDON project is to quantify the relative contribution of maritime traffic and harbor activities to atmospheric pollutants concentration in four port-cities of the Adriatic Sea. This study focuses on the harbors of Venice and Rijeka. In order to investigate the main pollution sources, emission inventories were used as input for receptor models: PMF (positive matrix factorization) and PCA (principal components analysis); moreover source identification was also conducted using PAHs diagnostic ratios. The ship traffic impact was quantified: i) on gaseous and particulate PAHs, collected using a new method which consisted in a double simultaneous sampling, in different wind sectors; ii) applying PMF to data of metals, PAHs and ions in PM10; iii) using the vanadium concentration according to the Agrawal methodology.Keywords: ship traffic, PMF, harbor, POSEIDON
Procedia PDF Downloads 6049120 Effect of Welding Parameters on Penetration and Bead Width for Variable Plate Thickness in Submerged Arc Welding
Authors: Harish K. Arya, Kulwant Singh, R. K. Saxena
Abstract:
The heat flow in weldment changes its nature from 2D to 3D with the increase in plate thickness. For welding of thicker plates the heat loss in thickness direction increases the cooling rate of plate. Since the cooling rate changes, the various bead parameters like bead penetration, bead height and bead width also got affected by it. The present study incorporates the effect of variable plate thickness on penetration and bead width. The penetration reduces with increase in plate thickness due to heat loss in thickness direction for same heat input, while bead width increases for thicker plate due to faster cooling.Keywords: submerged arc welding, plate thickness, bead geometry, cooling rate
Procedia PDF Downloads 3369119 Attention-based Adaptive Convolution with Progressive Learning in Speech Enhancement
Authors: Tian Lan, Yixiang Wang, Wenxin Tai, Yilan Lyu, Zufeng Wu
Abstract:
The monaural speech enhancement task in the time-frequencydomain has a myriad of approaches, with the stacked con-volutional neural network (CNN) demonstrating superiorability in feature extraction and selection. However, usingstacked single convolutions method limits feature represen-tation capability and generalization ability. In order to solvethe aforementioned problem, we propose an attention-basedadaptive convolutional network that integrates the multi-scale convolutional operations into a operation-specific blockvia input dependent attention to adapt to complex auditoryscenes. In addition, we introduce a two-stage progressivelearning method to enlarge the receptive field without a dra-matic increase in computation burden. We conduct a series ofexperiments based on the TIMIT corpus, and the experimen-tal results prove that our proposed model is better than thestate-of-art models on all metrics.Keywords: speech enhancement, adaptive convolu-tion, progressive learning, time-frequency domain
Procedia PDF Downloads 1279118 Artificial Intelligence Applications in Kahoot!
Authors: Jana, Walah, Salma, Dareen
Abstract:
This study looks at how the game-based learning platform Kahoot! has changed education, with a particular emphasis on how it incorporates artificial intelligence (AI). From humanly made questions to AI-driven features that improve the learning process, Kahoot! has changed since its 2013 introduction. The software successfully engages educators and students by delivering adaptive learning paths, regulating content, and offering individualized tests. This study also highlights the AI features of Kahoot! by contrasting it with comparable platforms like Quizizz, Socrative, Gimkit, and Nearpod. User satisfaction with Kahoot!'s "PDF to Story" and "Story Text Enhancer" functions ranges from moderate to high, according to a review of user input; yet, there are still issues with consistent accuracy and usability. The results demonstrate how AI can improve learning's effectiveness, adaptability, and interactivity while offering useful insights for educators and developers seeking to optimize educational tools.Keywords: PDF to story feature, story text enhancer, AI-driven learning, interactive content creation
Procedia PDF Downloads 149117 Methodology of Choosing Technology and Sizing of the Hybrid Energy Storage Based on Cost-benefit Analysis
Authors: Krzysztof Rafał, Weronika Radziszewska, Hubert Biedka, Oskar Grabowski, Krzysztof Mik
Abstract:
We present a method to choose energy storage technologies and their parameters for the economic operation of a microgrid. A grid-connected system with local loads and PV generation is assumed, where an energy storage system (ESS) is attached to minimize energy cost by providing energy balancing and arbitrage functionalities. The ESS operates in a hybrid configuration and consists of two unique technologies operated in a coordinated way. Based on given energy profiles and economical data a model calculates financial flow for ESS investment, including energy cost and ESS depreciation resulting from degradation. The optimization strategy proposes a hybrid set of two technologies with their respective power and energy ratings to minimize overall system cost in a given timeframe. Results are validated through microgrid simulations using real-life input profiles.Keywords: energy storage, hybrid energy storage, cost-benefit analysis, microgrid, battery sizing
Procedia PDF Downloads 2249116 Dissolved Oxygen Prediction Using Support Vector Machine
Authors: Sorayya Malek, Mogeeb Mosleh, Sharifah M. Syed
Abstract:
In this study, Support Vector Machine (SVM) technique was applied to predict the dichotomized value of Dissolved oxygen (DO) from two freshwater lakes namely Chini and Bera Lake (Malaysia). Data sample contained 11 parameters for water quality features from year 2005 until 2009. All data parameters were used to predicate the dissolved oxygen concentration which was dichotomized into 3 different levels (High, Medium, and Low). The input parameters were ranked, and forward selection method was applied to determine the optimum parameters that yield the lowest errors, and highest accuracy. Initial results showed that pH, water temperature, and conductivity are the most important parameters that significantly affect the predication of DO. Then, SVM model was applied using the Anova kernel with those parameters yielded 74% accuracy rate. We concluded that using SVM models to predicate the DO is feasible, and using dichotomized value of DO yields higher prediction accuracy than using precise DO value.Keywords: dissolved oxygen, water quality, predication DO, support vector machine
Procedia PDF Downloads 2949115 A Concept for Design of Road Super-Elevation Based on Horizontal Radius, Vertical Gradient and Accident Rate
Authors: U. Chattaraj, D. Meena
Abstract:
Growth of traffic brings various negative effects, such as road accidents. To avoid such problems, a model is developed for the purpose of highway safety. In such areas, fuzzy logic is the most well-known simulation in the larger field. A model is accomplished for hilly and steep terrain based on Fuzzy Inference System (FIS), for which output is super elevation and input data is horizontal radius, vertical gradient, accident rate (AR). This result shows that the system can be efficaciously applied as for highway safety tool distinguishing hazards components correlated to the characteristics of the highway and has a great influence to the making of decision for accident precaution in transportation models. From this model, a positive relationship between geometric elements, accident rate, and super elevation is also identified.Keywords: accident rate, fuzzy inference system, fuzzy logic, gradient, radius, super elevation
Procedia PDF Downloads 2229114 Women’s Colours in Digital Innovation
Authors: Daniel J. Patricio Jiménez
Abstract:
Digital reality demands new ways of thinking, flexibility in learning, acquisition of new competencies, visualizing reality under new approaches, generating open spaces, understanding dimensions in continuous change, etc. We need inclusive growth, where colors are not lacking, where lights do not give a distorted reality, where science is not half-truth. In carrying out this study, the documentary or bibliographic collection has been taken into account, providing a reflective and analytical analysis of current reality. In this context, deductive and inductive methods have been used on different multidisciplinary information sources. Women today and tomorrow are a strategic element in science and arts, which, under the umbrella of sustainability, implies ‘meeting current needs without detriment to future generations’. We must build new scenarios, which qualify ‘the feminine and the masculine’ as an inseparable whole, encouraging cooperative behavior; nothing is exclusive or excluding, and that is where true respect for diversity must be based. We are all part of an ecosystem, which we will make better as long as there is a real balance in terms of gender. It is the time of ‘the lifting of the veil’, in other words, it is the time to discover the pseudonyms, the women who painted, wrote, investigated, recorded advances, etc. However, the current reality demands much more; we must remove doors where they are not needed. Mass processing of data, big data, needs to incorporate algorithms under the perspective of ‘the feminine’. However, most STEM students (science, technology, engineering, and math) are men. Our way of doing science is biased, focused on honors and short-term results to the detriment of sustainability. Historically, the canons of beauty, the way of looking, of perceiving, of feeling, depended on the circumstances and interests of each moment, and women had no voice in this. Parallel to science, there is an under-representation of women in the arts, but not so much in the universities, but when we look at galleries, museums, art dealers, etc., colours impoverish the gaze and once again highlight the gender gap and the silence of the feminine. Art registers sensations by divining the future, science will turn them into reality. The uniqueness of the so-called new normality requires women to be protagonists both in new forms of emotion and thought, and in the experimentation and development of new models. This will result in women playing a decisive role in the so-called "5.0 society" or, in other words, in a more sustainable, more humane world.Keywords: art, digitalization, gender, science
Procedia PDF Downloads 1689113 Forecasting Stock Indexes Using Bayesian Additive Regression Tree
Authors: Darren Zou
Abstract:
Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.Keywords: BART, Bayesian, predict, stock
Procedia PDF Downloads 1369112 Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force
Authors: Gholamreza Ghodrati Amiri, Mojtaba Jafarian Abyaneh, Ali Zare Hosseinzadeh
Abstract:
This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises.Keywords: frame, grey wolf optimization algorithm, modal residual force, structural damage detection
Procedia PDF Downloads 3969111 Cloning and Expression of the ansZ Gene from Bacillus sp. CH11 Isolated from Chilca salterns in Peru
Authors: Stephy Saavedra, Annsy C. Arredondo, Gisele Monteiro, Adalberto Pessoa Jr, Carol N. Flores-Fernandez, Amparo I. Zavaleta
Abstract:
L-asparaginase from bacterial sources is used in leukemic treatment and food industry. This enzyme is classified based on its affinity towards L-asparagine and L-glutamine. Likewise, ansZ genes express L-asparaginase with higher affinity to L-asparagine. The aim of this work was to clone and express of ansZ gene from Bacillus sp. CH11 isolated from Chilca salterns in Peru. The gene encoding L-asparaginase was cloned into pET15b vector and transformed in Escherichia coli BL21 (DE3) pLysS. The expression was carried out in a batch culture using LB broth and 0.5 mM IPTG. The recombinant L-asparaginase showed a molecular weight of ~ 39 kDa by SDS PAGE and a specific activity of 3.19 IU/mg of protein. The cloning and expression of ansZ gene from this halotolerant Bacillus sp. CH11 allowed having a biological input to improve a future scaling-up.Keywords: ansZ gene, Bacillus sp, Chilca salterns, recombinant L-asparaginase
Procedia PDF Downloads 1849110 Analysis of Transmedia Storytelling in Pokémon GO
Authors: Iva Nedelcheva
Abstract:
This study is part of a doctoral thesis on the topic of Hyperfiction: Past, Present and Future of Storytelling through Hypertext. It explores in depth the impact of transmedia storytelling and the role of hypertext in the realm of the currently popular social media phenomenon Pokémon GO. Storytelling is a powerful method to engage and unite people. Moreover, the technology progress adds a whole new angle to the method, with hypertext and cross-platform sharing that enhance the traditional storytelling so much that transmedia storytelling gives unlimited opportunities to affect the everyday life of people across the globe. This research aims at examining the transmedia storytelling approach in Pokémon GO, and explaining how that contributed to its establishment as a massive worldwide hit in less than a week. The social engagement is investigated in all major media platforms, including traditional and online media channels. Observation and content analyses are reported in this paper to form the conclusion that transmedia storytelling with the input of hypertext has a promising future as a method of establishing a productive and rewarding communication strategy.Keywords: communication, hypertext, Pokemon Go, storytelling, transmedia
Procedia PDF Downloads 1729109 Deep Learning Framework for Predicting Bus Travel Times with Multiple Bus Routes: A Single-Step Multi-Station Forecasting Approach
Authors: Muhammad Ahnaf Zahin, Yaw Adu-Gyamfi
Abstract:
Bus transit is a crucial component of transportation networks, especially in urban areas. Any intelligent transportation system must have accurate real-time information on bus travel times since it minimizes waiting times for passengers at different stations along a route, improves service reliability, and significantly optimizes travel patterns. Bus agencies must enhance the quality of their information service to serve their passengers better and draw in more travelers since people waiting at bus stops are frequently anxious about when the bus will arrive at their starting point and when it will reach their destination. For solving this issue, different models have been developed for predicting bus travel times recently, but most of them are focused on smaller road networks due to their relatively subpar performance in high-density urban areas on a vast network. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. In this study, Gated Recurrent Unit (GRU) neural network was followed to predict the mean vehicle travel times for different hours of the day for multiple stations along multiple routes. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. The spatial and temporal information and the historical average travel times were captured from the dataset for model input parameters. As adjacency matrices for the spatial input parameters, the station distances and sequence numbers were used, and the time of day (hour) was considered for the temporal inputs. Other inputs, including volatility information such as standard deviation and variance of journey durations, were also included in the model to make it more robust. The model's performance was evaluated based on a metric called mean absolute percentage error (MAPE). The observed prediction errors for various routes, trips, and stations remained consistent throughout the day. The results showed that the developed model could predict travel times more accurately during peak traffic hours, having a MAPE of around 14%, and performed less accurately during the latter part of the day. In the context of a complicated transportation network in high-density urban areas, the model showed its applicability for real-time travel time prediction of public transportation and ensured the high quality of the predictions generated by the model.Keywords: gated recurrent unit, mean absolute percentage error, single-step forecasting, travel time prediction.
Procedia PDF Downloads 779108 An Approach on Intelligent Tolerancing of Car Body Parts Based on Historical Measurement Data
Authors: Kai Warsoenke, Maik Mackiewicz
Abstract:
To achieve a high quality of assembled car body structures, tolerancing is used to ensure a geometric accuracy of the single car body parts. There are two main techniques to determine the required tolerances. The first is tolerance analysis which describes the influence of individually tolerated input values on a required target value. Second is tolerance synthesis to determine the location of individual tolerances to achieve a target value. Both techniques are based on classical statistical methods, which assume certain probability distributions. To ensure competitiveness in both saturated and dynamic markets, production processes in vehicle manufacturing must be flexible and efficient. The dimensional specifications selected for the individual body components and the resulting assemblies have a major influence of the quality of the process. For example, in the manufacturing of forming tools as operating equipment or in the higher level of car body assembly. As part of the metrological process monitoring, manufactured individual parts and assemblies are recorded and the measurement results are stored in databases. They serve as information for the temporary adjustment of the production processes and are interpreted by experts in order to derive suitable adjustments measures. In the production of forming tools, this means that time-consuming and costly changes of the tool surface have to be made, while in the body shop, uncertainties that are difficult to control result in cost-intensive rework. The stored measurement results are not used to intelligently design tolerances in future processes or to support temporary decisions based on real-world geometric data. They offer potential to extend the tolerancing methods through data analysis and machine learning models. The purpose of this paper is to examine real-world measurement data from individual car body components, as well as assemblies, in order to develop an approach for using the data in short-term actions and future projects. For this reason, the measurement data will be analyzed descriptively in the first step in order to characterize their behavior and to determine possible correlations. In the following, a database is created that is suitable for developing machine learning models. The objective is to create an intelligent way to determine the position and number of measurement points as well as the local tolerance range. For this a number of different model types are compared and evaluated. The models with the best result are used to optimize equally distributed measuring points on unknown car body part geometries and to assign tolerance ranges to them. The current results of this investigation are still in progress. However, there are areas of the car body parts which behave more sensitively compared to the overall part and indicate that intelligent tolerancing is useful here in order to design and control preceding and succeeding processes more efficiently.Keywords: automotive production, machine learning, process optimization, smart tolerancing
Procedia PDF Downloads 123