Search results for: ecological networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4067

Search results for: ecological networks

2237 Russian Law Enforcement Moonlighting Enterprise and Corruption after 2009 Police reform

Authors: Serguei Cheloukhine

Abstract:

This study examines corrupting and moonlighting enterprise among Russian law enforcement (Police) since the 2009 Police Reform (hereto forward referred to as Reform). This research is based on the survey of about two dozen police officers in Russia’s regions. In addition, we analyzed statistics on crime, policing and socio-economic situation in Russian regions. Congruently, some data on the police officer’s off-duty activities was collected from the Internet sites. These Reforms sought to curb corruption at all levels of the Russian civil service and among uniformed law enforcement (Police) personnel. Many thought that the rebranding of the Militsiya as ‘Politsiya’ (Police) would have a transformational effect, both within the organization as well as how others perceived it. Ultimately, the rebranding effort failed; the only actual changes were the organization’s name and its personnel's uniforms. In fact, the Reforms seems to have contributed to even more corruption and abuse of power, as well an expansion of Law Enforcement’s ties to Corrupt Networks.

Keywords: bribery, corruption, moonlighting, police reform, Russia

Procedia PDF Downloads 15
2236 PDDA: Priority-Based, Dynamic Data Aggregation Approach for Sensor-Based Big Data Framework

Authors: Lutful Karim, Mohammed S. Al-kahtani

Abstract:

Sensors are being used in various applications such as agriculture, health monitoring, air and water pollution monitoring, traffic monitoring and control and hence, play the vital role in the growth of big data. However, sensors collect redundant data. Thus, aggregating and filtering sensors data are significantly important to design an efficient big data framework. Current researches do not focus on aggregating and filtering data at multiple layers of sensor-based big data framework. Thus, this paper introduces (i) three layers data aggregation and framework for big data and (ii) a priority-based, dynamic data aggregation scheme (PDDA) for the lowest layer at sensors. Simulation results show that the PDDA outperforms existing tree and cluster-based data aggregation scheme in terms of overall network energy consumptions and end-to-end data transmission delay.

Keywords: big data, clustering, tree topology, data aggregation, sensor networks

Procedia PDF Downloads 348
2235 Approaching Collaborative Governance Legitimacy through Discursive Legitimation Analysis

Authors: Carlo Schick

Abstract:

Legitimacy can be regarded the very fabric of political orders. Up to this point, IR scholarship was particularly interested in the legitimacy of nation-states, international regimes and of non-governmental actors. The legitimacy of collaborative governance comprising public, private and civic actors, however, has not received much attention from an IR perspective. This is partly due to the fact that the concept of legitimacy is difficult to operationalise and measure in settings where there is no clear boundary between political authorities and those who are subject to collaborative governance. In this case, legitimacy cannot be empirically approached in its own terms, but can only be analysed in terms of dialectic legitimation processes. The author develops a three-fold analytical framework based on a dialogical understanding of legitimation. Legitimation first has to relate to public legitimacy demands and contestations of collaborative governance and second to legitimacy claims issued by collaborative governance networks themselves. Lastly, collaborative governance is dependent on constant self-legitimisation. The paper closes with suggesting a discourse analytic approach to further empirical research on the legitimacy of collaborative governance.

Keywords: legitimacy, collaborative governance, discourse analysis, dialectic legitimation

Procedia PDF Downloads 342
2234 Improving the Performance of Deep Learning in Facial Emotion Recognition with Image Sharpening

Authors: Ksheeraj Sai Vepuri, Nada Attar

Abstract:

We as humans use words with accompanying visual and facial cues to communicate effectively. Classifying facial emotion using computer vision methodologies has been an active research area in the computer vision field. In this paper, we propose a simple method for facial expression recognition that enhances accuracy. We tested our method on the FER-2013 dataset that contains static images. Instead of using Histogram equalization to preprocess the dataset, we used Unsharp Mask to emphasize texture and details and sharpened the edges. We also used ImageDataGenerator from Keras library for data augmentation. Then we used Convolutional Neural Networks (CNN) model to classify the images into 7 different facial expressions, yielding an accuracy of 69.46% on the test set. Our results show that using image preprocessing such as the sharpening technique for a CNN model can improve the performance, even when the CNN model is relatively simple.

Keywords: facial expression recognittion, image preprocessing, deep learning, CNN

Procedia PDF Downloads 147
2233 Performance Evaluation of an Efficient Asynchronous Protocol for WDM Ring MANs

Authors: Baziana Peristera

Abstract:

The idea of the asynchronous transmission in wavelength division multiplexing (WDM) ring MANs is studied in this paper. Especially, we present an efficient access technique to coordinate the collisions-free transmission of the variable sizes of IP traffic in WDM ring core networks. Each node is equipped with a tunable transmitter and a tunable receiver. In this way, all the wavelengths are exploited for both transmission and reception. In order to evaluate the performance measures of average throughput, queuing delay and packet dropping probability at the buffers, a simulation model that assumes symmetric access rights among the nodes is developed based on Poisson statistics. Extensive numerical results show that the proposed protocol achieves apart from high bandwidth exploitation for a wide range of offered load, fairness of queuing delay and dropping events among the different packets size categories.

Keywords: asynchronous transmission, collision avoidance, wavelength division multiplexing, WDM

Procedia PDF Downloads 379
2232 Integrated Planning, Designing, Development and Management of Eco-Friendly Human Settlements for Sustainable Development of Environment, Economic, Peace and Society of All Economies

Authors: Indra Bahadur Chand

Abstract:

This paper will focus on the need for development and application of global protocols and policy in planning, designing, development, and management of systems of eco-towns and eco-villages so that sustainable development will be assured from the perspective of environmental, economical, peace, and harmonized social dynamics. This perspective is essential for the development of civilized and eco-friendly human settlements in the town and rural areas of the nation that will be a milestone for developing a happy and sustainable lifestyle of rural and urban communities of the nation. The urban population of most of the town of developing economies has been tremendously increasing, whereas rural people have been tremendously migrating for the past three decades. Consequently, the urban lifestyle in most towns has stressed in terms of environmental pollution, water crisis, congested traffic, energy crisis, food crisis, and unemployment. Eco-towns and villages should be developed where lifestyle of all residents is sustainable and happy. Built up environment of settlement should reduce and minimize the problems of non ecological CO2 emissions, unbalanced utilization of natural resources, environmental degradation, natural calamities, ecological imbalance, energy crisis, water scarcity, waste management, food crisis, unemployment, deterioration of cultural heritage, social, the ratio among the public and private land ownership, ratio of land covered with vegetation and area of settlement, the ratio of people in the vehicles and foot, the ratio of people employed outside of town and village, ratio of resources recycling of waste materials, water consumption level, the ratio of people and vehicles, ratio of the length of the road network and area of town/villages, a ratio of renewable energy consumption with total energy, a ratio of religious/recreational area out of the total built-up area, the ratio of annual suicide case out of total people, a ratio of annual injured and death out of total people from a traffic accident, a ratio of production of agro foods within town out of total food consumption will be used to assist in designing and monitoring of each eco-towns and villages. An eco-town and villages should be planned and developed to offer sustainable infrastructure and utilities that maintain CO2 level in individual homes and settlements, home energy use, transport, food and consumer goods, water supply, waste management, conservation of historical heritages, healthy neighborhood, conservation of natural landscape, conserving bio-diversity and developing green infrastructures. Eco-towns and villages should be developed on the basis of master planning and architecture that affect and define the settlement and its form. Master planning and engineering should focus in delivering the sustainability criteria of eco towns and eco village. This will involve working with specific landscape and natural resources of locality.

Keywords: eco-town, ecological habitation, master plan, sustainable development

Procedia PDF Downloads 183
2231 The Influence of Ecologically -Valid High- and Low-Volume Resistance Training on Muscle Strength and Size in Trained Men

Authors: Jason Dellatolla, Scott Thomas

Abstract:

Much of the current literature pertaining to resistance training (RT) volume prescription lacks ecological validity, and very few studies investigate true high-volume ranges. Purpose: The present study sought to investigate the effects of ecologically-valid high- vs low-volume RT on muscular size and strength in trained men. Methods: This study systematically randomized trained, college-aged men into two groups: low-volume (LV; n = 4) and high-volume (HV; n = 5). The sample size was affected by COVID-19 limitations. Subjects followed an ecologically-valid 6-week RT program targeting both muscle size and strength. RT occurred 3x/week on non-consecutive days. Over the course of six weeks, LVR and HVR gradually progressed from 15 to 23 sets/week and 30 to 46 sets/week of lower-body RT, respectively. Muscle strength was assessed via 3RM tests in the squat, stiff-leg deadlift (SL DL), and leg press. Muscle hypertrophy was evaluated through a combination of DXA, BodPod, and ultrasound (US) measurements. Results: Two-way repeated-measures ANOVAs indicated that strength in all 3 compound lifts increased significantly among both groups (p < 0.01); between-group differences only occurred in the squat (p = 0.02) and SL DL (p = 0.03), both of which favored HVR. Significant pre-to-post-study increases in indicators of hypertrophy were discovered for lean body mass in the legs via DXA, overall fat-free mass via BodPod, and US measures of muscle thickness (MT) for the rectus femoris, vastus intermedius, vastus medialis, vastus lateralis, long-head of the biceps femoris, and total MT. Between-group differences were only found for MT of the vastus medialis – favoring HVR. Moreover, each additional weekly set of lower-body RT was associated with an average increase in MT of 0.39% in the thigh muscles. Conclusion: We conclude that ecologically-valid RT regimens significantly improve muscular strength and indicators of hypertrophy. When HVR is compared to LVR, HVR provides significantly greater gains in muscular strength but has no greater effect on hypertrophy over the course of 6 weeks in trained, college-aged men.

Keywords: ecological validity, hypertrophy, resistance training, strength

Procedia PDF Downloads 117
2230 Management of Non-Revenue Municipal Water

Authors: Habib Muhammetoglu, I. Ethem Karadirek, Selami Kara, Ayse Muhammetoglu

Abstract:

The problem of non-revenue water (NRW) from municipal water distribution networks is common in many countries such as Turkey, where the average yearly water losses are around 50% . Water losses can be divided into two major types namely: 1) Real or physical water losses, and 2) Apparent or commercial water losses. Total water losses in Antalya city, Turkey is around 45%. Methods: A research study was conducted to develop appropriate methodologies to reduce NRW. A pilot study area of about 60 thousands inhabitants was chosen to apply the study. The pilot study area has a supervisory control and data acquisition (SCADA) system for the monitoring and control of many water quantity and quality parameters at the groundwater drinking wells, pumping stations, distribution reservoirs, and along the water mains. The pilot study area was divided into 18 District Metered Areas (DMAs) with different number of service connections that ranged between a few connections to less than 3000 connections. The flow rate and water pressure to each DMA were on-line continuously measured by an accurate flow meter and water pressure meter that were connected to the SCADA system. Customer water meters were installed to all billed and unbilled water users. The monthly water consumption as given by the water meters were recorded regularly. Water balance was carried out for each DMA using the well-know standard IWA approach. There were considerable variations in the water losses percentages and the components of the water losses among the DMAs of the pilot study area. Old Class B customer water meters at one DMA were replaced by more accurate new Class C water meters. Hydraulic modelling using the US-EPA EPANET model was carried out in the pilot study area for the prediction of water pressure variations at each DMA. The data sets required to calibrate and verify the hydraulic model were supplied by the SCADA system. It was noticed that a number of the DMAs exhibited high water pressure values. Therefore, pressure reducing valves (PRV) with constant head were installed to reduce the pressure up to a suitable level that was determined by the hydraulic model. On the other hand, the hydraulic model revealed that the water pressure at the other DMAs cannot be reduced when complying with the minimum pressure requirement (3 bars) as stated by the related standards. Results: Physical water losses were reduced considerably as a result of just reducing water pressure. Further physical water losses reduction was achieved by applying acoustic methods. The results of the water balances helped in identifying the DMAs that have considerable physical losses. Many bursts were detected especially in the DMAs that have high physical water losses. The SCADA system was very useful to assess the efficiency level of this method and to check the quality of repairs. Regarding apparent water losses reduction, changing the customer water meters resulted in increasing water revenue by more than 20%. Conclusions: DMA, SCADA, modelling, pressure management, leakage detection and accurate customer water meters are efficient for NRW.

Keywords: NRW, water losses, pressure management, SCADA, apparent water losses, urban water distribution networks

Procedia PDF Downloads 407
2229 Mobile Learning in Teacher Education: A Review in Context of Developing Countries

Authors: Mehwish Raza

Abstract:

Mobile learning (m-learning) offers unique affordances to learners, setting them free of limitations posed by time and geographic space; thus becoming an affordable device for convenient distant learning. There is a plethora of research available on mobile learning projects planned, implemented and evaluated across disciplines in the context of developed countries, however, the potential of m-learning at different educational levels remain unexplored with little evidence of research carried out in developing countries. Despite the favorable technical infrastructure offered by cellular networks and boom in mobile subscriptions in the developing world, there is limited focus on utilizing m-learning for education and development purposes. The objective of this review is to unify findings from m-learning projects that have been implemented in developing countries such as Pakistan, Bangladesh, Philippines, India, and Tanzania for teachers’ in-service training. The purpose is to draw upon key characteristics of mobile learning that would be useful for future researchers to inform conceptualizations of mobile learning for developing countries.

Keywords: design model, developing countries, key characteristics, mobile learning

Procedia PDF Downloads 449
2228 Social Aspects and Successfully Funding a Crowd-Funding Project: The Impact of Social Information

Authors: Peggy S. C. van Teunenbroek

Abstract:

Recently, philanthropic crowd-funding -the raising of external funding from a large audience via social networks or social media- emerged as a new funding instrument for the Dutch cultural sector. However, such philanthropic crowdfunding in the US and the Netherlands is less successful than any other form of crowdfunding. We argue that social aspects are an important stimulus in philanthropic crowd-funding since previous research has shown that crowdfunding is stimulated by something beyond financial merits. Put simply, crowd-funding seems to be a socially motivated activity. In this paper we focus on the effect of social information, described as information about the donation behavior of previous donors. Using a classroom experiment we demonstrated a positive effect of social information on the donation behavior in crowdfunding campaigns. Our study extends previous research by showing who is affected by social information and why, and highlights how social information can be used to stimulate individuals to donate more to crowdfunding projects.

Keywords: online donation behavior, philanthropic crowdfunding, social information, social influence, social motivation

Procedia PDF Downloads 408
2227 Distributed Coverage Control by Robot Networks in Unknown Environments Using a Modified EM Algorithm

Authors: Mohammadhosein Hasanbeig, Lacra Pavel

Abstract:

In this paper, we study a distributed control algorithm for the problem of unknown area coverage by a network of robots. The coverage objective is to locate a set of targets in the area and to minimize the robots’ energy consumption. The robots have no prior knowledge about the location and also about the number of the targets in the area. One efficient approach that can be used to relax the robots’ lack of knowledge is to incorporate an auxiliary learning algorithm into the control scheme. A learning algorithm actually allows the robots to explore and study the unknown environment and to eventually overcome their lack of knowledge. The control algorithm itself is modeled based on game theory where the network of the robots use their collective information to play a non-cooperative potential game. The algorithm is tested via simulations to verify its performance and adaptability.

Keywords: distributed control, game theory, multi-agent learning, reinforcement learning

Procedia PDF Downloads 463
2226 Times2D: A Time-Frequency Method for Time Series Forecasting

Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan

Abstract:

Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.

Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation

Procedia PDF Downloads 48
2225 Implementation of Deep Neural Networks for Pavement Condition Index Prediction

Authors: M. Sirhan, S. Bekhor, A. Sidess

Abstract:

In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.

Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction

Procedia PDF Downloads 140
2224 Platform Virtual for Joint Amplitude Measurement Based in MEMS

Authors: Mauro Callejas-Cuervo, Andrea C. Alarcon-Aldana, Andres F. Ruiz-Olaya, Juan C. Alvarez

Abstract:

Motion capture (MC) is the construction of a precise and accurate digital representation of a real motion. Systems have been used in the last years in a wide range of applications, from films special effects and animation, interactive entertainment, medicine, to high competitive sport where a maximum performance and low injury risk during training and competition is seeking. This paper presents an inertial and magnetic sensor based technological platform, intended for particular amplitude monitoring and telerehabilitation processes considering an efficient cost/technical considerations compromise. Our platform particularities offer high social impact possibilities by making telerehabilitation accessible to large population sectors in marginal socio-economic sector, especially in underdeveloped countries that in opposition to developed countries specialist are scarce, and high technology is not available or inexistent. This platform integrates high-resolution low-cost inertial and magnetic sensors with adequate user interfaces and communication protocols to perform a web or other communication networks available diagnosis service. The amplitude information is generated by sensors then transferred to a computing device with adequate interfaces to make it accessible to inexperienced personnel, providing a high social value. Amplitude measurements of the platform virtual system presented a good fit to its respective reference system. Analyzing the robotic arm results (estimation error RMSE 1=2.12° and estimation error RMSE 2=2.28°), it can be observed that during arm motion in any sense, the estimation error is negligible; in fact, error appears only during sense inversion what can easily be explained by the nature of inertial sensors and its relation to acceleration. Inertial sensors present a time constant delay which acts as a first order filter attenuating signals at large acceleration values as is the case for a change of sense in motion. It can be seen a damped response of platform virtual in other images where error analysis show that at maximum amplitude an underestimation of amplitude is present whereas at minimum amplitude estimations an overestimation of amplitude is observed. This work presents and describes the platform virtual as a motion capture system suitable for telerehabilitation with the cost - quality and precision - accessibility relations optimized. These particular characteristics achieved by efficiently using the state of the art of accessible generic technology in sensors and hardware, and adequate software for capture, transmission analysis and visualization, provides the capacity to offer good telerehabilitation services, reaching large more or less marginal populations where technologies and specialists are not available but accessible with basic communication networks.

Keywords: inertial sensors, joint amplitude measurement, MEMS, telerehabilitation

Procedia PDF Downloads 261
2223 A Topological Study of an Urban Street Network and Its Use in Heritage Areas

Authors: Jose L. Oliver, Taras Agryzkov, Leandro Tortosa, Jose F. Vicent, Javier Santacruz

Abstract:

This paper aims to demonstrate how a topological study of an urban street network can be used as a tool to be applied to some heritage conservation areas in a city. In the last decades, we find different kinds of approaches in the discipline of Architecture and Urbanism based in the so-called Sciences of Complexity. In this context, this paper uses mathematics from the Network Theory. Hence, it proposes a methodology based in obtaining information from a graph, which is created from a network of urban streets. Then, it is used an algorithm that establishes a ranking of importance of the nodes of that network, from its topological point of view. The results are applied to a heritage area in a particular city, confronting the data obtained from the mathematical model, with the ones from the field work in the case study. As a result of this process, we may conclude the necessity of implementing some actions in the area, and where those actions would be more effective for the whole heritage site.

Keywords: graphs, heritage cities, spatial analysis, urban networks

Procedia PDF Downloads 400
2222 Neuro-Connectivity Analysis Using Abide Data in Autism Study

Authors: Dulal Bhaumik, Fei Jie, Runa Bhaumik, Bikas Sinha

Abstract:

Human brain is an amazingly complex network. Aberrant activities in this network can lead to various neurological disorders such as multiple sclerosis, Parkinson’s disease, Alzheimer’s disease and autism. fMRI has emerged as an important tool to delineate the neural networks affected by such diseases, particularly autism. In this paper, we propose mixed-effects models together with an appropriate procedure for controlling false discoveries to detect disrupted connectivities in whole brain studies. Results are illustrated with a large data set known as Autism Brain Imaging Data Exchange or ABIDE which includes 361 subjects from 8 medical centers. We believe that our findings have addressed adequately the small sample inference problem, and thus are more reliable for therapeutic target for intervention. In addition, our result can be used for early detection of subjects who are at high risk of developing neurological disorders.

Keywords: ABIDE, autism spectrum disorder, fMRI, mixed-effects model

Procedia PDF Downloads 292
2221 The Use of Nuclear Generation to Provide Power System Stability

Authors: Heather Wyman-Pain, Yuankai Bian, Furong Li

Abstract:

The decreasing use of fossil fuel power stations has a negative effect on the stability of the electricity systems in many countries. Nuclear power stations have traditionally provided minimal ancillary services to support the system but this must change in the future as they replace fossil fuel generators. This paper explains the development of the four most popular reactor types still in regular operation across the world which have formed the basis for most reactor development since their commercialisation in the 1950s. The use of nuclear power in four countries with varying levels of capacity provided by nuclear generators is investigated, using the primary frequency response provided by generators as a measure for the electricity networks stability, to assess the need for nuclear generators to provide additional support as their share of the generation capacity increases.

Keywords: frequency control, nuclear power generation, power system stability, system inertia

Procedia PDF Downloads 441
2220 The Role of Deformation Strain and Annealing Temperature on Grain Boundary Engineering and Texture Evolution of Haynes 230

Authors: Mohsen Sanayei, Jerzy Szpunar

Abstract:

The present study investigates the effects of deformation strain and annealing temperature on the formation of twin boundaries, deformation and recrystallization texture evolution and grain boundary networks and connectivity. The resulting microstructures were characterized using Electron Backscatter Diffraction (EBSD) and X-Ray Diffraction (XRD) both immediately following small amount of deformation and after short time annealing at high temperature to correlate the micro and macro texture evolution of these alloys. Furthermore, this study showed that the process of grain boundary engineering, consisting cycles of deformation and annealing, is found to substantially reduce the mass and size of random boundaries and increase the proportion of low Coincidence Site Lattice (CSL) grain boundaries.

Keywords: coincidence site lattice, grain boundary engineering, electron backscatter diffraction, texture, x-ray diffraction

Procedia PDF Downloads 316
2219 Using the GIS Technology for Erosion Risk Mapping of BEN EL WIDAN Dam Watershed in Beni Mallal, Marroco

Authors: Azzouzi Fadoua

Abstract:

This study focuses on the diagnosis of the dynamics of natural resources in a semi-arid mountainous weakened by natural vulnerability and anthropogenic action. This is evident in the forms of hydraulic erosion and degradation of agricultural land. The rate of this damaged land is 53%, with a strong presence of concentrated erosion; this shows that balanced and semi-balanced environments are less apparent to the Watershed, representing 47%. The results revealed the crucial role of the slopes and the density of the hydraulic networks to facilitate the transport of fine elements, at the level of the slopes with low vegetation intensity, to the lake of the dam. Something that endangers the siltation of the latter. After the study of natural and anthropogenic elements, it turned out that natural vulnerability is an integral part of the current dynamic, especially when it coincides with the overexploitation of natural resources, in this case, the exploitation of steep slopes for the cultivation of cereals and overgrazing. This causes the soil to pile up and increase the rate of runoff.

Keywords: watershed, erosion, natural vulnerability, anthropogenic

Procedia PDF Downloads 156
2218 The Role of Indigenous Informal Local Institutions and Social Capital for Adoption of Agricultural Innovation: A Special Emphasis in Ethiopia

Authors: Molla Tadesse Lakew

Abstract:

Researchers tried to find out the socio-economic and supply-side constraint factors to adoption. However, they overlooked the role of social networks and relationships among the community. Therefore, the aims of this review were to review the roles and negative effects of social capital. Based on its contents, relevancy, and time duration, only 121 (journals, books, and paper reports) were selected. It concludes that social capital has an indispensable role in facilitating cooperation and connection between members of the farmers' community, informal and experiential knowledge sharing, and access to research-based knowledge and contributes to reducing the transaction cost of adoption. On the contrary, inside the black box of social capital, the negative effects include the exclusion of outsider’s knowledge and experiences, excessive claims on group members, and restrictions on individual freedom.

Keywords: social capital, local institutions, adoption, Ethiopia

Procedia PDF Downloads 102
2217 Identification of Soft Faults in Branched Wire Networks by Distributed Reflectometry and Multi-Objective Genetic Algorithm

Authors: Soumaya Sallem, Marc Olivas

Abstract:

This contribution presents a method for detecting, locating, and characterizing soft faults in a complex wired network. The proposed method is based on multi-carrier reflectometry MCTDR (Multi-Carrier Time Domain Reflectometry) combined with a multi-objective genetic algorithm. In order to ensure complete network coverage and eliminate diagnosis ambiguities, the MCTDR test signal is injected at several points on the network, and the data is merged between different reflectometers (sensors) distributed on the network. An adapted multi-objective genetic algorithm is used to merge data in order to obtain more accurate faults location and characterization. The proposed method performances are evaluated from numerical and experimental results.

Keywords: wired network, reflectometry, network distributed diagnosis, multi-objective genetic algorithm

Procedia PDF Downloads 200
2216 Rethinking The Residential Paradigm: Regenerative Design and the Contemporary Housing Industry

Authors: Gabriela Lucas Sanchez

Abstract:

The contemporary housing industry is dominated by tract houses, which prioritize uniformity and cost-efficiency over environmental and ecological considerations. However, as the world faces the growing challenges of climate change and resource depletion, there is an urgent need to rethink the residential paradigm. This essay explores how regenerative practices can be integrated into standard residential designs to create a shift that reduces the environmental impact of housing and actively contributes to ecological health. Passive sustainable practices, such as passive solar design, natural ventilation, and the use of energy-efficient materials, aim to maximize resource use efficiency, minimize waste, and create healthy living environments. Regenerative practices, on the other hand, go beyond sustainability to work in harmony with natural systems, actively restoring and enriching the environment. Integrating these two approaches can redefine the residential paradigm, creating homes that reduce harm and positively impact the local ecosystem. The essay begins by exploring the principles and benefits of passive sustainable practices, discussing how they can reduce energy consumption and improve indoor environmental quality in standardized housing. Passive sustainability minimizes energy consumption through strategic design choices, such as optimizing building orientation, utilizing natural ventilation, and incorporating high-performance insulation and glazing. However, while sustainability efforts have been important steps in the right direction, a more holistic, regenerative approach is needed to address the root causes of environmental degradation. Regenerative development and design seek to go beyond simply reducing negative impacts, instead aiming to create built environments that actively contribute to restoring and enhancing natural systems. This shift in perspective is critical, as it recognizes the interdependence between human settlements and the natural world and the potential for buildings to serve as catalysts for positive change.

Keywords: passive sustainability, regenerative architecture, residential architecture, community

Procedia PDF Downloads 43
2215 Harnessing Environmental DNA to Assess the Environmental Sustainability of Commercial Shellfish Aquaculture in the Pacific Northwest United States

Authors: James Kralj

Abstract:

Commercial shellfish aquaculture makes significant contributions to the economy and culture of the Pacific Northwest United States. The industry faces intense pressure to minimize environmental impacts as a result of Federal policies like the Magnuson-Stevens Fisheries Conservation and Management Act and the Endangered Species Act. These policies demand the protection of essential fish habitat and declare several salmon species as endangered. Consequently, numerous projects related to the protection and rehabilitation of eelgrass beds, a crucial ecosystem for countless fish species, have been proposed at both state and federal levels. Both eelgrass beds and commercial shellfish farms occupy the same physical space, and therefore understanding the effects of shellfish aquaculture on eelgrass ecosystems has become a top ecological and economic priority of both government and industry. This study evaluates the organismal communities that eelgrass and oyster aquaculture habitats support. Water samples were collected from Willapa Bay, Washington; Tillamook Bay, Oregon; Humboldt Bay, California; and Sammish Bay, Washington to compare species diversity in eelgrass beds, oyster aquaculture plots, and boundary edges between these two habitats. Diversity was assessed using a novel technique: environmental DNA (eDNA). All organisms constantly shed small pieces of DNA into their surrounding environment through the loss of skin, hair, tissues, and waste. In the marine environment, this DNA becomes suspended in the water column allowing it to be easily collected. Once extracted and sequenced, this eDNA can be used to paint a picture of all the organisms that live in a particular habitat making it a powerful technology for environmental monitoring. Industry professionals and government officials should consider these findings to better inform future policies regulating eelgrass beds and oyster aquaculture. Furthermore, the information collected in this study may be used to improve the environmental sustainability of commercial shellfish aquaculture while simultaneously enhancing its growth and profitability in the face of ever-changing political and ecological landscapes.

Keywords: aquaculture, environmental DNA, shellfish, sustainability

Procedia PDF Downloads 249
2214 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework

Authors: Jindong Gu, Matthias Schubert, Volker Tresp

Abstract:

In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.

Keywords: one-class classification, outlier detection, generative adversary networks, semi-supervised learning

Procedia PDF Downloads 155
2213 An ANN Approach for Detection and Localization of Fatigue Damage in Aircraft Structures

Authors: Reza Rezaeipour Honarmandzad

Abstract:

In this paper we propose an ANN for detection and localization of fatigue damage in aircraft structures. We used network of piezoelectric transducers for Lamb-wave measurements in order to calculate damage indices. Data gathered by the sensors was given to neural network classifier. A set of neural network electors of different architecture cooperates to achieve consensus concerning the state of each monitored path. Sensed signal variations in the ROI, detected by the networks at each path, were used to assess the state of the structure as well as to localize detected damage and to filter out ambient changes. The classifier has been extensively tested on large data sets acquired in the tests of specimens with artificially introduced notches as well as the results of numerous fatigue experiments. Effect of the classifier structure and test data used for training on the results was evaluated.

Keywords: ANN, fatigue damage, aircraft structures, piezoelectric transducers, lamb-wave measurements

Procedia PDF Downloads 422
2212 Biosphere Compatibility and Sustainable Development

Authors: Zinaida I. Ivanova, Olga V. Yudenkova

Abstract:

The article addresses the pressing need to implement the principle of the biosphere compatibility as the core prerequisite for sustainable development. The co-authors argue that a careful attitude towards the biosphere, termination of its overutilization, analysis of the ratio between the biospheric potential of a specific area and its population numbers, coupled with population regulation techniques represent the factors that may solve the problems of ecological depletion. However these problems may only be tackled through the employment of the high-quality human capital, capable of acting with account for the principles of nature conservation.

Keywords: biosphere compatibility, eco-centered conscience, human capital, sustainable development

Procedia PDF Downloads 393
2211 Knowledge Discovery and Data Mining Techniques in Textile Industry

Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler

Abstract:

This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.

Keywords: data mining, textile production, decision trees, classification

Procedia PDF Downloads 356
2210 Gathering Space after Disaster: Understanding the Communicative and Collective Dimensions of Resilience through Field Research across Time in Hurricane Impacted Regions of the United States

Authors: Jack L. Harris, Marya L. Doerfel, Hyunsook Youn, Minkyung Kim, Kautuki Sunil Jariwala

Abstract:

Organizational resilience refers to the ability to sustain business or general work functioning despite wide-scale interruptions. We focus on organization and businesses as a pillar of their communities and how they attempt to sustain work when a natural disaster impacts their surrounding regions and economies. While it may be more common to think of resilience as a trait possessed by an organization, an emerging area of research recognizes that for organizations and businesses, resilience is a set of processes that are constituted through communication, social networks, and organizing. Indeed, five processes, robustness, rapidity, resourcefulness, redundancy, and external availability through social media have been identified as critical to organizational resilience. These organizing mechanisms involve multi-level coordination, where individuals intersect with groups, organizations, and communities. Because the nature of such interactions are often networks of people and organizations coordinating material resources, information, and support, they necessarily require some way to coordinate despite being displaced. Little is known, however, if physical and digital spaces can substitute one for the other. We thus are guided by the question, is digital space sufficient when disaster creates a scarcity of physical space? This study presents a cross-case comparison based on field research from four different regions of the United States that were impacted by Hurricanes Katrina (2005), Sandy (2012), Maria (2017), and Harvey (2017). These four cases are used to extend the science of resilience by examining multi-level processes enacted by individuals, communities, and organizations that together, contribute to the resilience of disaster-struck organizations, businesses, and their communities. Using field research about organizations and businesses impacted by the four hurricanes, we code data from interviews, participant observations, field notes, and document analysis drawn from New Orleans (post-Katrina), coastal New Jersey (post-Sandy), Houston Texas (post-Harvey), and the lower keys of Florida (post-Maria). This paper identifies an additional organizing mechanism, networked gathering spaces, where citizens and organizations, alike, coordinate and facilitate information sharing, material resource distribution, and social support. Findings show that digital space, alone, is not a sufficient substitute to effectively sustain organizational resilience during a disaster. Because the data are qualitative, we expand on this finding with specific ways in which organizations and the people who lead them worked around the problem of scarce space. We propose that gatherings after disaster are a sixth mechanism that contributes to organizational resilience.

Keywords: communication, coordination, disaster management, information and communication technologies, interorganizational relationships, resilience, work

Procedia PDF Downloads 174
2209 Bacterial Diversity Reports Contamination around the Ichkeul Lake in Tunisia

Authors: Zeina Bourhane, Anders Lanzen, Christine Cagnon, Olfa Ben Said, Cristiana Cravo-Laureau, Robert Duran

Abstract:

The anthropogenic pressure in coastal areas increases dramatically with the exploitation of environmental resources. Biomonitoring coastal areas are crucial to determine the impact of pollutants on bacterial communities in soils and sediments since they provide important ecosystem services. However, relevant biomonitoring tools allowing fast determination of the ecological status are yet to be defined. Microbial ecology approaches provide useful information for developing such microbial monitoring tools reporting on the effect of environmental stressors. Chemical and microbial molecular approaches were combined in order to determine microbial bioindicators for assessing the ecological status of soil and river ecosystems around the Ichkeul Lake (Tunisia), an area highly impacted by human activities. Samples were collected along soil/river/lake continuums in three stations around the Ichkeul Lake influenced by different human activities at two seasons (summer and winter). Contaminant pressure indexes (PI), including PAHs (Polycyclic aromatic hydrocarbons), alkanes, and OCPs (Organochlorine pesticides) contents, showed significant differences in the contamination level between the stations with seasonal variation. Bacterial communities were characterized by 16S ribosomal RNAs (rRNA) gene metabarcoding. Although microgAMBI indexes, determined from the sequencing data, were in accordance with contaminant contents, they were not sufficient to fully explain the PI. Therefore, further microbial indicators are still to be defined. The comparison of bacterial communities revealed the specific microbial assemblage for soil, river, and lake sediments, which were significantly correlated with contaminant contents and PI. Such observation offers the possibility to define a relevant set of bioindicators for reporting the effects of human activities on the microbial community structure. Such bioindicators might constitute useful monitoring tools for the management of microbial communities in coastal areas.

Keywords: bacterial communities, biomonitoring, contamination, human impacts, microbial bioindicators

Procedia PDF Downloads 169
2208 Reducing Energy Consumption and GHG Emission by Integration of Flare Gas with Fuel Gas Network in Refinery

Authors: N. Tahouni, M. Gholami, M. H. Panjeshahi

Abstract:

Gas flaring is one of the most GHG emitting sources in the oil and gas industries. It is also a major way for wasting such an energy that could be better utilized and even generates revenue. Minimize flaring is an effective approach for reducing GHG emissions and also conserving energy in flaring systems. Integrating waste and flared gases into the fuel gas networks (FGN) of refineries is an efficient tool. A fuel gas network collects fuel gases from various source streams and mixes them in an optimal manner, and supplies them to different fuel sinks such as furnaces, boilers, turbines, etc. In this article we use fuel gas network model proposed by Hasan et al. as a base model and modify some of its features and add constraints on emission pollution by gas flaring to reduce GHG emissions as possible. Results for a refinery case study showed that integration of flare gas stream with waste and natural gas streams to construct an optimal FGN can significantly reduce total annualized cost and flaring emissions.

Keywords: flaring, fuel gas network, GHG emissions, stream

Procedia PDF Downloads 350