Search results for: Waste Plastics
1022 Conversion of Carcinogenic Liquid-Wastes of Poly Vinyl Chloride (PVC) Industry to an Environmentally Safe Product: Corrosion Inhibitor and Biocide
Authors: Mohamed A. Hegazy
Abstract:
Most of Poly Vinyl Chloride (PVC) petrochemical companies produce huge amount of byproduct which characterized as carcinogenic liquid-wastes, insoluble in water, highly corrosive and highly offensive. This byproduct is partially use, a small part, in the production of hydrochloric acid and the huge part is a waste. Therefore, the aim of this work was to conversion of such PVC wastes, to an environmentally safe product that act as a corrosion Inhibitor for metals in aqueous media and as a biocide for microorganisms. This conversion method was accomplished mainly to protect the environment and to produce high economic value-products. The conversion process was established and the final product was tested for the toxicity, water solubility in comparison to the crude product. Furthermore, the end product was tested as a corrosion inhibitor in 1M HCl and as a broad-spectrum biocide against standard microbial strains and against the environmentally isolated Sulfate-reducing bacteria (SRB) microbial community.Keywords: PVC, surfactant, corrosion inhibitor, biocide, SRB
Procedia PDF Downloads 1231021 Planning and Implementing Large-Scale Ecological Connectivity: A Review of Past and Ongoing Practices in Turkey
Authors: Tutku Ak, A. Esra Cengiz, Çiğdem Ayhan Kaptan
Abstract:
The conservation community has been increasingly promoting the concept of ecological connectivity towards the prevention and mitigation of landscape fragmentation. Many tools have been proposed for this purpose in not only Europe, but also around the world. Spatial planning for building connectivity, however, has many problems associated with the complexity of ecological processes at spatial and temporal scales. Furthermore, on the ground implementation could be very difficult potentially leading to ecologically disastrous results and waste of resources. These problems, on the other hand, can be avoided or rectified as more experience is gained with implementation. Therefore, it is the objective of this study to document the experiences gained with connectivity planning in Turkish landscapes. This paper is a preliminary review of the conservation initiatives and projects aimed at protecting and building ecological connectivity in and around Turkey. The objective is to scope existing conservation plans, tools and implementation approaches in Turkey and the ultimate goal is to understand to what degree they have been implemented and what are the constraints and opportunities that are being faced.Keywords: ecological connectivity, large-scale landscapes, planning and implementation, Turkey
Procedia PDF Downloads 5011020 Chromium Reduction Using Bacteria: Bioremediation Technologies
Authors: Baljeet Singh Saharan
Abstract:
Bioremediation is the demand of the day. Tannery and textile effluents/waste waters have lots of pollution due to presence of hexavalent Chromium. Methodologies used in the present investigations include isolation, cultivation and purification of bacterial strain. Further characterization techniques and 16S rRNA sequencing were performed. Efficient bacterial strain capable of reducing hexavalent chromium was obtained. The strain can be used for bioremediation of industrial effluents containing hexavalent Cr. A gram negative, rod shaped and yellowish pigment producing bacterial strain from tannery effluent was isolated using nutrient agar. The 16S rRNA gene sequence similarity indicated that isolate SA13A is associated with genus Luteimonas (99%). This isolate has been found to reduce 100% of hexavalent chromium Cr (VI) (100 mg L-1) 100% in 16 h. Growth conditions were optimized for Cr (VI) reduction. Maximum reduction was observed at a temperature of 37 °C and pH 8.0. Additionally, Luteimonas aestuarii SA13A showed resistance against various heavy metals like Cr+6, Cr+3, Cu+2, Zn+2, Co+2, Ni+2 and Cd+2 . Hence, Luteimonas aestuarii SA13A could be used as potent Cr (VI) reducing strain as well as significant bioremediator in heavy metal contaminated sites.Keywords: bioremediation, chromium, eco-friendly, heavy metals
Procedia PDF Downloads 4651019 Quality Management and Service Organization
Authors: Fatemeh Khalili Varnamkhasti
Abstract:
In recent times, there has been a notable shift in the application of Total Quality Management (TQM) from manufacturing to service organizations, prompting numerous studies on the subject. TQM has firmly established itself across various sectors, emerging as an approach to process improvement, waste reduction, business optimization, and quality performance. Many researchers and academics have recognized the relevance of TQM for sustainable competitive advantage, particularly in service organizations. In light of this, the purpose of this research study is to explore the applicability of TQM within the service framework. The study delves into existing literature on TQM in service organizations and examines the reasons for its occasional shortcomings. Ultimately, the paper provides systematic guidelines for the effective implementation of TQM in service organizations. The findings of this study offer a much-improved understanding of TQM and its practices, shedding light on the evolution of service organizations. Additionally, the study highlights key insights from recent research on TQM in service organizations and proposes a ten-step approach for the successful implementation of TQM in the service sector. This framework aims to provide service managers and professionals with a comprehensive understanding of TQM fundamentals and encourages a deeper exploration of TQM theory.Keywords: quality, control, service, management, teamwork
Procedia PDF Downloads 541018 Date Pits Oil Used as Potential Source for Synthesizing Jet Fuel and Green Diesel Fractions
Authors: Farrukh Jamil, Ala'a H. Al-Muhtaseb, Lamya Al-Haj, Mohab A. Al-Hinai
Abstract:
Date pits are major agricultural waste produced in Oman. Current work was conducted to produce jet fuel and green diesel from hydrodeoxygenation of Date pits oil in the presence of Pd/C catalyst. The hydrodeoxygenation of Date pits oil occurred to be highly efficient at following mild operating conditions such as conditions temperature 300°C pressure 10bar with continuous stirring at 500rpm. Detailed product characterization revealed that large fraction of paraffinic hydrocarbons was found which accounts up to 91.1 % which attributed due to efficient hydrodeoxygenation. Based on the type of components in product oil, it was calculated that the maximum fraction of hydrocarbons formed lies within the range of green diesel 72.0 % then jet fuel 30.4% by using Pd/C catalysts. The densities of product oil were 0.88 kg/m³, the viscosity of products calculated was 3.49 mm²/s. Calorific values for products obtained were 44.11 MJ/kg when Pd/C catalyst was used for hydrodeoxygenation. Based on products analysis it can conclude that Date pits oil could successfully utilize for synthesizing green diesel and jet fuel fraction.Keywords: biomass, jet fuel, green diesel, catalyst
Procedia PDF Downloads 2941017 Synthesis and Characterization of Carboxymethyl Cellulose from Rice Stubble Cellulose
Authors: Rungsinee Sothornvit, Pattrathip Rodsamran
Abstract:
Rice stubble consists of a high content of cellulose and can be synthesized as a cellulose derivative such as carboxymethyl cellulose (CMC) to value added products from agricultural waste. Therefore, the synthesis conditions and characterization the properties of CMC from rice stubble (CMCr) were investigated. Hemicellulose and lignin were first removed from the rice stubble using 10% NaOH at 55 C for 3 h and 5% NaOCl at 75 C for 15 min, respectively. Rice stubble cellulose was swollen in 30% NaOH and isopropanol as a solvent. The content of chloroacetic acid (5–7 g in 5 g of alkali cellulose), reaction temperature (50 and 70 C) and time (180, 270 and 360 min) were explored to obtain CMC. It was found that synthesis conditions did not affect significantly on moisture content and pH of CMCr. The best quality of CMCr was synthesized by using 7 g of chloroacetic acid and reacted at 50 C for 180 min based on 5 g of rice stubble cellulose. Degree of substitution (DS), viscosity and purity of CMCr were 0.64, 36.03 cP and 90.18 %, respectively. Furthermore, Fourier transform infrared (FT–IR) spectroscopy confirmed the presence of carboxymethyl substituents. CMCr was categorized in commercial scale as a low viscosity material and it can be used as film forming packaging materials for food and pharmaceutical product applications.Keywords: rice stubble, cellulose, carboxymethyl cellulose, degree of substitution, purity
Procedia PDF Downloads 3931016 Environmental Pollution and Health Risks of Residents Living near Ewekoro Cement Factory, Ewekoro, Nigeria
Authors: Michael Ajide Oyinloye
Abstract:
The natural environment is made up of air, water and soil. The release of emission of industrial waste into anyone of the components of the environment causes pollution. Industrial pollution significantly threatens the inherent right of people, to the enjoyment of a safe and secure environment. The aim of this paper is to assess the effect of environmental pollution and health risks of residents living near Ewekoro Cement factory. The research made use of IKONOS imagery for Geographical Information System (GIS) to buffer and extract buildings that are less than 1 km to the plant, within 1 km to 5 km and above 5 km to the factory. Also, a questionnaire was used to elicit information on the socio-economic factors, the effect of environmental pollution on residents and measures adopted to control industrial pollution on the residents. Findings show that most buildings that between less than 1 km and 1 km to 5 km to the factory have high health risk in the study area. The study recommended total relocation for the residents of the study area to reduce risk health problems.Keywords: environmental pollution, health risk, GIS, satellite imagery, ewekoro
Procedia PDF Downloads 5421015 Comparison of Several Peat Qualities as Amendment to Improve Afforestation of Mine Wastes
Authors: Marie Guittonny-LarchevêQue
Abstract:
In boreal Canada, industrial activities such as forestry, peat extraction and metal mines often occur nearby. At closure, mine waste storage facilities have to be reclaimed. On tailings storage facilities, tree plantations can achieve rapid restoration of forested landscapes. However, trees poorly grow in mine tailings and organic amendments like peat are required to improve tailings’ structure and nutrients. Canada is a well-known producer of horticultural quality peat, but some lower quality peats coming from areas adjacent to the reclaimed mines could allow successful revegetation. In particular, hemic peat coming from the bottom of peat-bogs is more decomposed than fibric peat and is less valued for horticulture. Moreover, forest peat is sometimes excavated and piled by the forest industry after cuttings to stimulate tree regeneration on the exposed mineral soil. The objective of this project was to compare the ability of peats of differing quality and origin to improve tailings structure, nutrients and tree development. A greenhouse experiment was conducted along one growing season in 2016 with a complete randomized block design combining 8 repetitions (blocks) x 2 tree species (Populus tremuloides and Pinus banksiana) x 6 substrates (tailings, commercial horticultural peat, and mixtures of tailings with commercial peat, forest peat, local fibric peat, or local hemic peat) x 2 fertilization levels (with or without mineral fertilization). The used tailings came from a gold mine and were low in sulfur and trace metals. The commercial peat had a slightly acidic pH (around 6) while other peats had a clearly acidic pH (around 3). However, mixing peat with slightly alkaline tailings resulted in a pH close to 7 whatever the tested peats. The macroporosity of mixtures was intermediate between the low values of tailings (4%) and the high values of commercial peat alone (34%). Seedling survival was lower on tailings for poplar compared to all other treatments, with or without fertilization. Survival and growth were similar among all treatments for pine. Fertilization had no impact on the maximal height and diameter of poplar seedlings but changed the relative performance of the substrates. When not fertilized, poplar seedlings grown in commercial peat were the highest and largest, and the smallest and slenderest in tailings, with intermediate values in mixtures. When fertilized, poplar seedlings grown in commercial peat were smaller and slender compared to all other substrates. However for this species, foliar, shoot, and root biomass production was the greatest in commercial peat and the lowest in tailings compared to all mixtures, whether fertilized or not. The mixture with local fibric peat provided the seedlings with the lowest foliar N concentrations compared to all other substrates whatever the species or the fertilization treatment. At the short-term, the performance of all the tested peats were close when mixed to tailings, showing that peats of lower quality could be valorized instead of using horticultural peat. These results demonstrate that intersectorial synergies in accordance with the principles of circular economy may be developed in boreal Canada between local industries around the reclamation of mine waste dumps.Keywords: boreal trees, mine spoil, mine revegetation, intersectorial synergies
Procedia PDF Downloads 2501014 Synthesis of Green Fuel Additive from Waste Bio-Glycerol
Authors: Ala’a H. Al-Muhtaseb, Farrukh Jamil, Lamya Al-Haj, Mohab Al-Hinai
Abstract:
Bio-glycerol is considered as high boiling polar triol and immiscible with fossil fuel fractions due to which it is transformed into its respective ketals and acetals which help to improve the quality of diesel emitting less amount of aldehydes and carbon monoxide. Solketal visual appearance is transparent and it is odorless organic liquid used as fuel additive for diesel to improve its cold flow properties. Condensation of bio-glycerol with bio-acetone in presence of beta zeolite has been done for synthesizing solketal. It was observed that glycerol conversion and selectivity of solketal was largely effected by temperature, as it increases from 40 ºC to 60 ºC the conversion of glycerol rises from 80.04 % to 94.26 % and selectivity of solketal from 80.0 % to 94.21 % but further increase in temperature to 100 ºC glycerol conversion reduced to 93.06 % and solketal selectivity to 92.08 %. At the optimum conditions, the bio-glycerol conversion and solketal yield were about 94.26% and 94.21wt% respectively. This process offers an attractive route for converting bio-glycerol, the main by-product of biodiesel to solketal with bio-acetone; a value-added green product with potential industrial applications as a valuable green fuel additive or combustion promoter for gasoline/diesel engines.Keywords: bio-acetone, bio-glycerol, acetylation, solketal
Procedia PDF Downloads 2631013 Structural and Ion Exchange Studies of Terpolymer Resin Derived from 4, 4'-Biphenol-4,4'-Oxydianiline-Formaldehyde
Authors: Pawan P. Kalbende, Anil B. Zade
Abstract:
A novel terpolymer resin has been synthesized by condensation polymerization reaction of 4,4’-biphenol and 4,4’-oxydianiline with formaldehyde in presence of 2M hydrochloric acid as catalyst. Composition of resin was determined on the basis of their elemental analysis and further characterized by UV-Visible, infra-red and nuclear magnetic resonance spectroscopy to confine the most probable structure of synthesized terpolymer. Newly synthesized terpolymer was proved to be a selective chelating ion-exchanger for certain metal ions and were studied for Fe3+, Cu2+, Ni2+, Co2+, Zn2+, Cd2+, Hg2+ and Pb2+ ions using their metal nitrate solutions. A batch equilibrium method was employed to study the selectivity of metal ions uptake involving the measurements of the distribution of a given metal ion between the terpolymer sample and a solution containing the metal ion. The study was carried out over a wide pH range, shaking time and in media of different electrolytes at different ionic strengths. Distribution ratios of metal ions were found to be increased by rising pH of the solutions. Hence, it can be used to recover certain metal ions from waste water for the purpose of purification of water and removal of iron from boiler water.Keywords: terpolymers, ion-exchangers, distribution ratio, metal ion uptake
Procedia PDF Downloads 2961012 Effect of Curing Temperature on Mechanical Properties of Jute Fiber Reinforced Polylactic Acid Based Green Composite
Authors: Sehijpal Singh Khangura, Jai Inder Preet Singh, Vikas Dhawan
Abstract:
Global warming, growing awareness of the environment, waste management issues, dwindling fossil resources, and rising oil prices resulted to increase the research in the materials that are friendly to our health and environment. Due to these reasons, green products are increasingly being promoted for sustainable development. In this work, fully biodegradable green composites have been developed using jute fibers as reinforcement and poly lactic acid as matrix material by film stacking technique. The effect of curing temperature during development of composites ranging from 160 °C, 170 °C, 180 °C and 190 °C was investigated for various mechanical properties. Results obtained from various tests indicate that impact strength decreases with an increase in curing temperature, but tensile and flexural strength increases till 180 °C, thereafter both the properties decrease. This study gives an optimum curing temperature for the development of jute/PLA composites.Keywords: natural fibers, polymer matrix composites, jute, compression molding, biodegradation
Procedia PDF Downloads 1451011 The Layered Transition Metal Dichalcogenides as Materials for Storage Clean Energy: Ab initio Investigations
Authors: S. Meziane, H. I. Faraoun, C. Esling
Abstract:
Transition metal dichalcogenides have potential applications in power generation devices that convert waste heat into electric current by the so-called Seebeck and Hall effects thus providing an alternative energy technology to reduce the dependence on traditional fossil fuels. In this study, the thermoelectric properties of 1T and 2HTaX2 (X= S or Se) dichalcogenide superconductors have been computed using the semi-classical Boltzmann theory. Technologically, the task is to fabricate suitable materials with high efficiency. It is found that 2HTaS2 possesses the largest value of figure of merit ZT= 1.27 at 175 K. From a scientific point of view, we aim to model the underlying materials properties and in particular the transport phenomena as mediated by electrons and lattice vibrations responsible for superconductivity, Charge Density Waves (CDW) and metal/insulator transitions as function of temperature. The goal of the present work is to develop an understanding of the superconductivity of these selected materials using the transport properties at the fundamental level.Keywords: Ab initio, High efficiency, Power generation devices, Transition metal dichalcogenides
Procedia PDF Downloads 1971010 Theoretical and Experimental Study on the NO Reduction by H₂ over Char Decorated with Ni at low Temperatures
Authors: Kaixuan Feng, Ruixiang Lin, Yuyan Hu, Yuheng Feng, Dezhen Chen, Tongcheng Cao
Abstract:
In this study, we propose a reaction system for the low-temperature reduction of NO by H₂ on carbon-based materials decorated with 5%wt. Ni. This cost-effective catalyst system efficiently utilizes pyrolysis carbon-based materials and waste hydrogen. Additionally, it yields environmentally friendly products without requiring extra heat sources in practical SCR devices. Density functional theory elucidates the mechanism of NO heterogeneous reduction by H₂ on Ni-decorated char surfaces. Two distinct reaction paths were identified, one involving the intermediate product N₂O and the other not. These pathways exhibit different rate-determination steps and activation energies. Kinetic analysis indicates that the N₂O byproduct pathway has a lower activation energy. Experimental results corroborate the theoretical findings. Thus, this research enhances our mechanistic understanding of the NO-H₂ reaction over char and offers insights for optimizing catalyst design in low-temperature NO reduction.Keywords: char-based catalysis, NO reduction, DFT study, heterogeneous reaction, low-temperature H₂-reduction
Procedia PDF Downloads 791009 To Optimise the Mechanical Properties of Structural Concrete by Partial Replacement of Natural Aggregates by Glass Aggregates
Authors: Gavin Gengan, Hsein Kew
Abstract:
Glass from varying recycling processes is considered a material that can be used as aggregate. Waste glass is available from different sources and has been used in the construction industry over the last decades. This current study aims to use recycled glass as a partial replacement for conventional aggregate materials. The experimental programme was designed to optimise the mechanical properties of structural concrete made with recycled glass aggregates (GA). NA (natural aggregates) was partially substituted by GA in a mix design of concrete of 30N/mm2 in proportions of 10%, 20%, and 25% 30%, 40%, and 50%. It was found that with an increasing proportion of GA, there is a decline in compressive strength. The optimum percentage replacement of NA by GA is 25%. The heat of hydration was also investigated with thermocouples placed in the concrete. This revealed an early acceleration of hydration heat in glass concrete, resulting from the thermal properties of glass. The gain in the heat of hydration and the better bonding of glass aggregates together with the pozzolanic activity of the finest glass particles caused the concrete to develop early age and long-term strength higher than that of control concreteKeywords: concrete, compressive strength, glass aggregates, heat of hydration, pozzolanic
Procedia PDF Downloads 2081008 Education in Technology for Sustainable Development Applied to School Gardens
Authors: Sara Blanc, José V. Benlloch-Dualde, Laura Grindei, Ana C. Torres, Angélica Monteiro
Abstract:
This paper presents a study that leads a new experience by introducing digital learning applied to a case study focused on primary and secondary school garden-based education. The approach represents an example of interaction among different education and research agents at different countries and levels, such as universities, public and private research, and schools, to get involved in the implementation of education for sustainable development that will make students become more sensible to natural environment, more responsible for their consumption, more aware about waste reduction and recycling, more conscious of the sustainable use of natural resources and, at the same time, more ‘digitally competent’. The experience was designed attending to the European digital education context and OECD directives in transversal skills education. The paper presents the methodology carried out in the study as well as outcomes obtained from experience.Keywords: school gardens, primary education, secondary education, science technology and innovation in education, digital learning, sustainable development goals, university, knowledge transference
Procedia PDF Downloads 1181007 Applications of Green Technology and Biomimicry in Civil Engineering with a Maglev Car Elevator
Authors: Sameer Ansari, Suhas Nitsure
Abstract:
Biomimicry has made a big move into the built environment by adapting nature's solutions to human designs and inventions. We can examine numerous aspects of the built environment right from generating energy, fed by rainwater and powered by sun to over all land use impacts. This paper discusses the potential of a man made building which will work for the welfare of humans and reduce the impact of the harmful environment on us which we ourselves created for us. Building services inspired by nature such as building walls from homeostasis in organisms, natural ventilation from termites, artificial aggregates from natural aggregates, solar panels from photosynthesis and building structure itself compared to tree as a cantilever. Environmental services such as using CO2 as a feedstock for construction related activities, using Ornilux glasses and saving birds from collision with buildings, using prefabricated steel for fast building members- save time and also negligible waste as no formwork is used. Maglev inspired car elevators in building which is unique and giving all together new direction to technology.Keywords: biomimicry, green technology, maglev car elevator, civil engineering
Procedia PDF Downloads 5761006 Kinetic Rate Comparison of Methane Catalytic Combustion of Palladium Catalysts Impregnated onto ɤ-Alumina and Bio-Char
Authors: Noor S. Nasri, Eric C. A. Tatt, Usman D. Hamza, Jibril Mohammed, Husna M. Zain
Abstract:
Climate change has becoming a global environmental issue that may trigger irreversible changes in the environment with catastrophic consequences for human, animals and plants on our planet. Methane, carbon dioxide and nitrous oxide are the greenhouse gases (GHG) and as the main factor that significantly contributes to the global warming. Mainly carbon dioxide be produced and released to atmosphere by thermal industrial and power generation sectors. Methane is dominant component of natural gas releases significant of thermal heat, and the gaseous pollutants when homogeneous thermal combustion takes place at high temperature. Heterogeneous catalytic Combustion (HCC) principle is promising technologies towards environmental friendly energy production should be developed to ensure higher yields with lower pollutants gaseous emissions and perform complete combustion oxidation at moderate temperature condition as comparing to homogeneous high thermal combustion. Hence the principle has become a very interesting alternative total oxidation for the treatment of pollutants gaseous emission especially NOX product formation. Noble metals are dispersed on a support-porous HCC such as γ- Al2O3, TiO2 and ThO2 to increase thermal stability of catalyst and to increase to effectiveness of catalytic combustion. Support-porous HCC material to be selected based on factors of the surface area, porosity, thermal stability, thermal conductivity, reactivity with reactants or products, chemical stability, catalytic activity, and catalyst life. γ- Al2O3 with high catalytic activity and can last longer life of catalyst, is commonly used as the support for Pd catalyst at low temperatures. Sustainable and renewable support-material of bio-mass char was derived from agro-industrial waste material and used to compare with those the conventional support-porous material. The abundant of biomass wastes generated in palm oil industries is one potential source to convert the wastes into sustainable material as replacement of support material for catalysts. Objective of this study was to compare the kinetic rate of reaction the combustion of methane on Palladium (Pd) based catalyst with Al2O3 support and bio-char (Bc) support derived from shell kernel. The 2wt% Pd was prepared using incipient wetness impregnation method and the HCC performance was accomplished using tubular quartz reactor with gas mixture ratio of 3% methane and 97% air. Material characterization was determined using TGA, SEM, and BET surface area. The methane porous-HCC conversion was carried out by online gas analyzer connected to the reactor that performed porous-HCC. BET surface area for prepared 2 wt% Pd/Bc is smaller than prepared 2wt% Pd/ Al2O3 due to its low porosity between particles. The order of catalyst activity based on kinetic rate on reaction of catalysts in low temperature is prepared 2wt% Pd/Bc > calcined 2wt% Pd/ Al2O3 > prepared 2wt% Pd/ Al2O3 > calcined 2wt% Pd/Bc. Hence the usage of agro-industrial bio-mass waste material can enhance the sustainability principle.Keywords: catalytic-combustion, environmental, support-bio-char material, sustainable and renewable material
Procedia PDF Downloads 3891005 Inventory Optimization in Restaurant Supply Chain Outlets
Authors: Raja Kannusamy
Abstract:
The research focuses on reducing food waste in the restaurant industry. A study has been conducted on the chain of retail restaurant outlets. It has been observed that the food wastages are due to the inefficient inventory management systems practiced in the restaurant outlets. The major food items which are wasted more in quantity are being selected across the retail chain outlets. A moving average forecasting method has been applied for the selected food items so that their future demand could be predicted accurately and food wastage could be avoided. It has been found that the moving average prediction method helps in predicting forecasts accurately. The demand values obtained from the moving average method have been compared to the actual demand values and are found to be similar with minimum variations. The inventory optimization technique helps in reducing food wastage in restaurant supply chain outlets.Keywords: food wastage, restaurant supply chain, inventory optimisation, demand forecasting
Procedia PDF Downloads 911004 Risk of Plastic Shrinkage Cracking in Recycled Aggregate Concrete
Authors: M. Eckert, M. Oliveira
Abstract:
The intensive use of natural aggregates, near cities and towns, associated to the increase of the global population, leads to its depletion and increases the transport distances. The uncontrolled deposition of construction and demolition waste in landfills and city outskirts, causes pollution and takes up space. The use of recycled aggregates in concrete preparation would contribute to mitigate the problem. However, it arises the problem that the high water absorption of recycled aggregate decreases the bleeding rate of concrete, and when this gets lower than the evaporation rate, plastic shrinkage cracking occurs. This phenomenon can be particularly problematic in hot and windy curing environments. Cracking facilitates the flow of liquid and gas into concrete which attacks the reinforcement and degrades the concrete. These factors reduce the durability of concrete structures and consequently the lifetime of buildings. A ring test was used, cured in a wind tunnel, to evaluate the plastic shrinkage cracking sensitivity of recycled aggregate concrete, in order to implement preventive means to control this phenomenon. The role of several aggregate properties on the concrete segregation and cracking mechanisms were also discussed.Keywords: recycled aggregate, plastic shrinkage cracking, wind tunnel, durability
Procedia PDF Downloads 4211003 Influence of Transportation Mode to the Deterioration Rate: Case Study of Food Transport by Ship
Authors: Danijela Tuljak-Suban, Valter Suban
Abstract:
Food as perishable goods represents a specific and sensitive part in the supply chain theory, since changing of its physical or chemical characteristics considerably influences the approach to stock management. The most delicate phase of this process is transportation, where it becomes difficult to ensure stability conditions that limit the deterioration, since the value of the deterioration rate could be easily influenced by the transportation mode. Fuzzy definition of variables allows taking into account these variations. Furthermore an appropriate choice of the defuzzification method permits to adapt results, as much as possible, to real conditions. In the article will be applied the those methods to the relationship between the deterioration rate of perishable goods and transportation by ship, with the aim: (a) to minimize the total costs function, defined as the sum of the ordering cost, holding cost, disposing cost and transportation costs, and (b) to improve supply chain sustainability by reducing the environmental impact and waste disposal costs.Keywords: perishable goods, fuzzy reasoning, transport by ship, supply chain sustainability
Procedia PDF Downloads 5431002 Numerical Analysis of the Computational Fluid Dynamics of Co-Digestion in a Large-Scale Continuous Stirred Tank Reactor
Authors: Sylvana A. Vega, Cesar E. Huilinir, Carlos J. Gonzalez
Abstract:
Co-digestion in anaerobic biodigesters is a technology improving hydrolysis by increasing methane generation. In the present study, the dimensional computational fluid dynamics (CFD) is numerically analyzed using Ansys Fluent software for agitation in a full-scale Continuous Stirred Tank Reactor (CSTR) biodigester during the co-digestion process. For this, a rheological study of the substrate is carried out, establishing rotation speeds of the stirrers depending on the microbial activity and energy ranges. The substrate is organic waste from industrial sources of sanitary water, butcher, fishmonger, and dairy. Once the rheological behavior curves have been obtained, it is obtained that it is a non-Newtonian fluid of the pseudoplastic type, with a solids rate of 12%. In the simulation, the rheological results of the fluid are considered, and the full-scale CSTR biodigester is modeled. It was coupling the second-order continuity differential equations, the three-dimensional Navier Stokes, the power-law model for non-Newtonian fluids, and three turbulence models: k-ε RNG, k-ε Realizable, and RMS (Reynolds Stress Model), for a 45° tilt vane impeller. It is simulated for three minutes since it is desired to study an intermittent mixture with a saving benefit of energy consumed. The results show that the absolute errors of the power number associated with the k-ε RNG, k-ε Realizable, and RMS models were 7.62%, 1.85%, and 5.05%, respectively, the numbers of power obtained from the analytical-experimental equation of Nagata. The results of the generalized Reynolds number show that the fluid dynamics have a transition-turbulent flow regime. Concerning the Froude number, the result indicates there is no need to implement baffles in the biodigester design, and the power number provides a steady trend close to 1.5. It is observed that the levels of design speeds within the biodigester are approximately 0.1 m/s, which are speeds suitable for the microbial community, where they can coexist and feed on the substrate in co-digestion. It is concluded that the model that more accurately predicts the behavior of fluid dynamics within the reactor is the k-ε Realizable model. The flow paths obtained are consistent with what is stated in the referenced literature, where the 45° inclination PBT impeller is the right type of agitator to keep particles in suspension and, in turn, increase the dispersion of gas in the liquid phase. If a 24/7 complete mix is considered under stirred agitation, with a plant factor of 80%, 51,840 kWh/year are estimated. On the contrary, if intermittent agitations of 3 min every 15 min are used under the same design conditions, reduce almost 80% of energy costs. It is a feasible solution to predict the energy expenditure of an anaerobic biodigester CSTR. It is recommended to use high mixing intensities, at the beginning and end of the joint phase acetogenesis/methanogenesis. This high intensity of mixing, in the beginning, produces the activation of the bacteria, and once reaching the end of the Hydraulic Retention Time period, it produces another increase in the mixing agitations, favoring the final dispersion of the biogas that may be trapped in the biodigester bottom.Keywords: anaerobic co-digestion, computational fluid dynamics, CFD, net power, organic waste
Procedia PDF Downloads 1141001 Mechanical Properties and Microstructural Analysis of Al6061-Red Mud Composites
Authors: M. Gangadharappa, M. Ravi Kumar, H. N. Reddappa
Abstract:
The mechanical properties and morphological analysis of Al6061-Red mud particulate composites were investigated. The compositions of the composite include a matrix of Al6061 and the red mud particles of 53-75 micron size as reinforcement ranging from 0% to 12% at an interval of 2%. Stir casting technique was used to fabricate Al6061-Red mud composites. Density measurement, estimation of percentage porosity, tensile properties, fracture toughness, hardness value, impact energy, percentage elongation and percentage reduction in area. Further, the microstructures and SEM examinations were investigated to characterize the composites produced. The result shows that a uniform dispersion of the red mud particles along the grain boundaries of the Al6061 alloy. The tensile strength and hardness values increases with the addition of Red mud particles, but there is a slight decrease in the impact energy values, values of percentage elongation and percentage reduction in area as the reinforcement increases. From these results of investigation, we concluded that the red mud, an industrial waste can be used to enhance the properties of Al6061 alloy for engineering applications.Keywords: Al6061, red mud, tensile strength, hardness and microstructures
Procedia PDF Downloads 5621000 Evaluation of a Reconditioning Procedure for Batteries: Case Study on Li-Ion Batteries
Authors: I.-A. Ciobotaru, I.-E. Ciobotaru, D.-I. Vaireanu
Abstract:
Currently, an ascending trend of battery use may be observed, together with an increase of the generated amount of waste. Efforts have been focused on the recycling of batteries; however, extending their lifetime may be a more adequate alternative, and the development of such methods may prove to be more cost efficient as compared to recycling. In this context, this paper presents the analysis of a proposed process for the reconditioning of some lithium-ions batteries. The analysis is performed based on two criteria, the first one referring to the technical aspect of the reconditioning process and the second to the economic aspects. The main technical parameters taken into consideration are the values of capacitance and internal resistance of the lithium-ion batteries. The economic criterion refers to the evaluation of the efficiency of the reconditioning procedure reported to its total cost for the investigated lithium-ion batteries. Based on the cost analysis, one introduced a novel coefficient that correlates the efficiency of the aforementioned process and its corresponding costs. The reconditioning procedure for the lithium-ion batteries proposed in this paper proved to be valid, efficient, and with reasonable costs.Keywords: cost assessment, lithium-ion battery, reconditioning coefficient, reconditioning procedure
Procedia PDF Downloads 138999 “To Err Is Human…” Revisiting Oral Error Correction in Class
Authors: David Steven Rosenstein
Abstract:
The widely accepted “Input Theory” of language acquisition proposes that language is basically acquired unconsciously through extensive exposure to all kinds of natural oral and written sources, especially those where the level of the input is slightly above the learner’s competence. As such, it implies that oral error correction by teachers in a classroom is unnecessary, a waste of time, and maybe even counterproductive. And yet, oral error correction by teachers in the classroom continues to be a very common phenomenon. While input theory advocates claim that such correction doesn’t work, interrupts a student’s train of thought, harms fluency, and may cause students embarrassment and fear, many teachers would disagree. They would claim that students know they make mistakes and want to be corrected in order to know they are improving, thereby encouraging students’ desire to keep studying. Moreover, good teachers can create a positive atmosphere where students will not be embarrassed or fearful. Perhaps now is the time to revisit oral error correction in the classroom and consider the results of research carried out long ago by the present speaker. The research indicates that oral error correction may be beneficial in many cases.Keywords: input theory, language acquisition, teachers' corrections, recurrent errors
Procedia PDF Downloads 32998 Health Risk Assessment from Potable Water Containing Tritium and Heavy Metals
Authors: Olga A. Momot, Boris I. Synzynys, Alla A. Oudalova
Abstract:
Obninsk is situated in the Kaluga region 100 km southwest of Moscow on the left bank of the Protva River. Several enterprises utilizing nuclear energy are operating in the town. A special attention in the region where radiation-hazardous facilities are located has traditionally been paid to radioactive gas and aerosol releases into the atmosphere; liquid waste discharges into the Protva river and groundwater pollution. Municipal intakes involve 34 wells arranged 15 km apart in a sequence north-south along the foot of the left slope of the Protva river valley. Northern and southern water intakes are upstream and downstream of the town, respectively. They belong to river valley intakes with mixed feeding, i.e. precipitation infiltration is responsible for a smaller part of groundwater, and a greater amount is being formed by overflowing from Protva. Water intakes are maintained by the Protva river runoff, the volume of which depends on the precipitation fallen out and watershed area. Groundwater contamination with tritium was first detected in a sanitary-protective zone of the Institute of Physics and Power Engineering (SRC-IPPE) by Roshydromet researchers when realizing the “Program of radiological monitoring in the territory of nuclear industry enterprises”. A comprehensive survey of the SRC-IPPE’s industrial site and adjacent territories has revealed that research nuclear reactors and accelerators where tritium targets are applied as well as radioactive waste storages could be considered as potential sources of technogenic tritium. All the above sources are located within the sanitary controlled area of intakes. Tritium activity in water of springs and wells near the SRC-IPPE is about 17.4 – 3200 Bq/l. The observed values of tritium activity are below the intervention levels (7600 Bq/l for inorganic compounds and 3300 Bq/l for organically bound tritium). The risk has being assessed to estimate possible effect of considered tritium concentrations on human health. Data on tritium concentrations in pipe-line drinking water were used for calculations. The activity of 3H amounted to 10.6 Bq/l and corresponded to the risk of such water consumption of ~ 3·10-7 year-1. The risk value given in magnitude is close to the individual annual death risk for population living near a NPP – 1.6·10-8 year-1 and at the same time corresponds to the level of tolerable risk (10-6) and falls within “risk optimization”, i.e. in the sphere for planning the economically sound measures on exposure risk reduction. To estimate the chemical risk, physical and chemical analysis was made of waters from all springs and wells near the SRC-IPPE. Chemical risk from groundwater contamination was estimated according to the EPA US guidance. The risk of carcinogenic diseases at a drinking water consumption amounts to 5·10-5. According to the classification accepted the health risk in case of spring water consumption is inadmissible. The compared assessments of risk associated with tritium exposure, on the one hand, and the dangerous chemical (e.g. heavy metals) contamination of Obninsk drinking water, on the other hand, have confirmed that just these chemical pollutants are responsible for health risk.Keywords: radiation-hazardous facilities, water intakes, tritium, heavy metal, health risk
Procedia PDF Downloads 240997 The Traditional Ceramics Value in the Middle East
Authors: Abdelmessih Malak Sadek Labib
Abstract:
Ceramic materials are known for their stability in harsh environments and excellent electrical, mechanical, and thermal properties. They have been widely used in various applications despite the emergence of new materials such as plastics and composites. However, ceramics are often brittle, which can lead to catastrophic failure. The fragility of ceramics and the mechanisms behind their failure have been a topic of extensive research, particularly in load-bearing applications like veneers. Porcelain, a type of traditional pottery, is commonly used in such applications. Traditional pottery consists of clay, silica, and feldspar, and the presence of quartz in the ceramic body can lead to microcracks and stress concentrations. The mullite hypothesis suggests that the strength of porcelain can be improved by increasing the interlocking of mullite needles in the ceramic body. However, there is a lack of reports on Young's moduli in the literature, leading to erroneous conclusions about the mechanical behavior of porcelain. This project aims to investigate the role of quartz and mullite on the mechanical strength of various porcelains while considering factors such as particle size, flexural strength, and fractographic forces. Research Aim: The aim of this research project is to assess the role of quartz and mullite in enhancing the mechanical strength of different porcelains. The project will also explore the effect of reducing particle size on the properties of porcelain, as well as investigate flexural strength and fractographic techniques. Methodology: The methodology for this project involves using scientific expressions and a mix of modern English to ensure the understanding of all attendees. It will include the measurement of Young's modulus and the evaluation of the mechanical behavior of porcelains through various experimental techniques. Findings: The findings of this study will provide a realistic assessment of the role of quartz and mullite in strengthening and reducing the fragility of porcelain. The research will also contribute to a better understanding of the mechanical behavior of ceramics, specifically in load-bearing applications. Theoretical Importance: The theoretical importance of this research lies in its contribution to the understanding of the factors influencing the mechanical strength and fragility of ceramics, particularly porcelain. By investigating the interplay between quartz, mullite, and other variables, this study will enhance our knowledge of the properties and behavior of traditional ceramics. Data Collection and Analysis Procedures: Data for this research will be collected through experiments involving the measurement of Young's modulus and other mechanical properties of porcelains. The effects of quartz, mullite, particle size, flexural strength, and fractographic forces will be examined and analyzed using appropriate statistical techniques and fractographic analysis. Questions Addressed: This research project aims to address the following questions: (1) How does the presence of quartz and mullite affect the mechanical strength of porcelain? (2) What is the impact of reducing particle size on the properties of porcelain? (3) How do flexural strength and fractographic forces influence the behavior of porcelains? Conclusion: In conclusion, this research project aims to enhance the understanding of the role of quartz and mullite in strengthening and reducing the fragility of porcelain. By investigating the mechanical properties of porcelains and considering factors such as particle size, flexural strength, and fractographic forces, this study will contribute to the knowledge of traditional ceramics and their potential applications. The findings will have practical implications for the use of ceramics in various fields.Keywords: stability, harsh environments, electrical, techniques, mechanical disadvantages, materials
Procedia PDF Downloads 68996 Geotechnical Characterization of an Industrial Waste Landfill: Stability and Environmental Study
Authors: Maria Santana, Jose Estaire
Abstract:
Even though recycling strategies are becoming more important in recent years, there is still a huge amount of industrial by-products that are the disposal of at landfills. Due to the size, possible dangerous composition, and heterogeneity, most of the wastes are located at landfills without a basic geotechnical characterization. This lack of information may have an important influence on the correct stability calculations. This paper presents the results of geotechnical characterization of some industrial wastes disposed at one landfill. The shear strength parameters were calculated based on direct shear test results carried out in a large shear box owned by CEDEX, which has a shear plane of 1 x 1 m. These parameters were also compared with the results obtained in a 30 x 30 cm shear box. The paper includes a sensitive analysis of the global safety factor of the landfill's overall stability as a function of shear strength variation. The stability calculations were assessed for various hydrological scenarios to simulate the design and performance of the leachate drainage system. The characterization was completed with leachate tests to study the potential impact on the environment.Keywords: industrial wastes, landfill, leachate tests, stability
Procedia PDF Downloads 195995 Alignment of Information System Strategy and Green Information System Strategy: Comprehension and A Review of the Literature
Authors: Wartika Memed Purawinata, Kridanto Surendro, Husni Sastramiharja, Iping Supriana S.
Abstract:
The information system is one of the contributors to environmental degradation and pollution are known to be released, such as the increasing of use of IT equipment and energy consumption , life cycles of IT equipment are getting shorter, IT equipment waste disposal and so on, therefore the information system should have a role in related environmental issues. Organization need to develop the ability of green to minimize negative impacts on the environment. Although the green information system is an important topic, many organizations fail to manage the environment in a way that is adequate because they ignore aspect of strategy. Alignment strategy is very important to ensure that all people do the activities of the organization headed in the same direction. Alignment strategy helps organization, determine which is more important for organization, and then make road mad to achieve the organization goal. Therefore, this paper discusses the review of the alignment, information systems strategy, and IS green strategy. With this discussion is expected there is an understanding about the alignment of information systems strategy and strategy of green IS, and its relationship with the achievement of business goals that have commitment to reduce the negative impact of information systems on the environment.Keywords: alignment, strategy, information system, green
Procedia PDF Downloads 456994 Effect of Leachate Presence on Shear Strength Parameters of Bentonite-Amended Zeolite Soil
Authors: R. Ziaie Moayed, H. Keshavarz Hedayati
Abstract:
Over recent years, due to increased population and increased waste production, groundwater protection has become more important, therefore, designing engineered barrier systems such as landfill liners to prevent the entry of leachate into groundwater should be done with greater accuracy. These measures generally involve the application of low permeability soils such as clays. Bentonite is a natural clay with low permeability which makes it a suitable soil for using in liners. Also zeolite with high cation exchange capacity can help to reduce of hazardous materials risk. Bentonite expands when wet, absorbing as much as several times its dry mass in water. This property may effect on some structural properties of soil such as shear strength. In present study, shear strength parameters are determined by both leachates polluted and not polluted bentonite-amended zeolite soil with mixing rates (B/Z) of 5%-10% and 20% with unconfined compression test to obtain the differences. It is shown that leachate presence causes reduction in resistance in general.Keywords: bentonite, leachate, shear strength parameters, unconfined compression test
Procedia PDF Downloads 106993 Formulation and Physico-Mechanical Characterization of a Self-Compacting Concrete Containing Seashells as an Addition Material
Authors: Brahim Safi, Mohammed Saidi, A. Benmounah, Jozef Mitterpach
Abstract:
The aim of this work is to study the rheological and physico-mechanical properties of a self-compacting concrete elaborated with sea shells as an addition cementitious (total replacement of limestone fillers) and sand (partial and total substitution fine aggregate). Also, this present study is registered in the context of sustainable development by using this waste type which caused environmental problems. After preparation the crushed shells (obtaining fine aggregate) and finely crushed shells (obtaining end powder), concretes were manufactured using these two products. Rheological characterization tests (fluidity, filling capacity and segregation) and physico-mechanical properties (density and strength) were carried on these concretes. The results obtained show that it can be used as fin addition (by total replacement of limestone) or also used as sand by total substitution of natural sand.Keywords: seashells, limestone, sand, self-compacting concrete, fluidity, compressive strength, flexural strength
Procedia PDF Downloads 272