Search results for: Kazakh speech dataset
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1934

Search results for: Kazakh speech dataset

104 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations

Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso

Abstract:

Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.

Keywords: pipeline, leakage, detection, AI

Procedia PDF Downloads 191
103 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception

Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu

Abstract:

Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.

Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish

Procedia PDF Downloads 146
102 A Quality Index Optimization Method for Non-Invasive Fetal ECG Extraction

Authors: Lucia Billeci, Gennaro Tartarisco, Maurizio Varanini

Abstract:

Fetal cardiac monitoring by fetal electrocardiogram (fECG) can provide significant clinical information about the healthy condition of the fetus. Despite this potentiality till now the use of fECG in clinical practice has been quite limited due to the difficulties in its measuring. The recovery of fECG from the signals acquired non-invasively by using electrodes placed on the maternal abdomen is a challenging task because abdominal signals are a mixture of several components and the fetal one is very weak. This paper presents an approach for fECG extraction from abdominal maternal recordings, which exploits the characteristics of pseudo-periodicity of fetal ECG. It consists of devising a quality index (fQI) for fECG and of finding the linear combinations of preprocessed abdominal signals, which maximize these fQI (quality index optimization - QIO). It aims at improving the performances of the most commonly adopted methods for fECG extraction, usually based on maternal ECG (mECG) estimating and canceling. The procedure for the fECG extraction and fetal QRS (fQRS) detection is completely unsupervised and based on the following steps: signal pre-processing; maternal ECG (mECG) extraction and maternal QRS detection; mECG component approximation and canceling by weighted principal component analysis; fECG extraction by fQI maximization and fetal QRS detection. The proposed method was compared with our previously developed procedure, which obtained the highest at the Physionet/Computing in Cardiology Challenge 2013. That procedure was based on removing the mECG from abdominal signals estimated by a principal component analysis (PCA) and applying the Independent component Analysis (ICA) on the residual signals. Both methods were developed and tuned using 69, 1 min long, abdominal measurements with fetal QRS annotation of the dataset A provided by PhysioNet/Computing in Cardiology Challenge 2013. The QIO-based and the ICA-based methods were compared in analyzing two databases of abdominal maternal ECG available on the Physionet site. The first is the Abdominal and Direct Fetal Electrocardiogram Database (ADdb) which contains the fetal QRS annotations thus allowing a quantitative performance comparison, the second is the Non-Invasive Fetal Electrocardiogram Database (NIdb), which does not contain the fetal QRS annotations so that the comparison between the two methods can be only qualitative. In particular, the comparison on NIdb was performed defining an index of quality for the fetal RR series. On the annotated database ADdb the QIO method, provided the performance indexes Sens=0.9988, PPA=0.9991, F1=0.9989 overcoming the ICA-based one, which provided Sens=0.9966, PPA=0.9972, F1=0.9969. The comparison on NIdb was performed defining an index of quality for the fetal RR series. The index of quality resulted higher for the QIO-based method compared to the ICA-based one in 35 records out 55 cases of the NIdb. The QIO-based method gave very high performances with both the databases. The results of this study foresees the application of the algorithm in a fully unsupervised way for the implementation in wearable devices for self-monitoring of fetal health.

Keywords: fetal electrocardiography, fetal QRS detection, independent component analysis (ICA), optimization, wearable

Procedia PDF Downloads 280
101 Computational Approaches to Study Lineage Plasticity in Human Pancreatic Ductal Adenocarcinoma

Authors: Almudena Espin Perez, Tyler Risom, Carl Pelz, Isabel English, Robert M. Angelo, Rosalie Sears, Andrew J. Gentles

Abstract:

Pancreatic ductal adenocarcinoma (PDAC) is one of the most deadly malignancies. The role of the tumor microenvironment (TME) is gaining significant attention in cancer research. Despite ongoing efforts, the nature of the interactions between tumors, immune cells, and stromal cells remains poorly understood. The cell-intrinsic properties that govern cell lineage plasticity in PDAC and extrinsic influences of immune populations require technically challenging approaches due to the inherently heterogeneous nature of PDAC. Understanding the cell lineage plasticity of PDAC will improve the development of novel strategies that could be translated to the clinic. Members of the team have demonstrated that the acquisition of ductal to neuroendocrine lineage plasticity in PDAC confers therapeutic resistance and is a biomarker of poor outcomes in patients. Our approach combines computational methods for deconvolving bulk transcriptomic cancer data using CIBERSORTx and high-throughput single-cell imaging using Multiplexed Ion Beam Imaging (MIBI) to study lineage plasticity in PDAC and its relationship to the infiltrating immune system. The CIBERSORTx algorithm uses signature matrices from immune cells and stroma from sorted and single-cell data in order to 1) infer the fractions of different immune cell types and stromal cells in bulked gene expression data and 2) impute a representative transcriptome profile for each cell type. We studied a unique set of 300 genomically well-characterized primary PDAC samples with rich clinical annotation. We deconvolved the PDAC transcriptome profiles using CIBERSORTx, leveraging publicly available single-cell RNA-seq data from normal pancreatic tissue and PDAC to estimate cell type proportions in PDAC, and digitally reconstruct cell-specific transcriptional profiles from our study dataset. We built signature matrices and optimized by simulations and comparison to ground truth data. We identified cell-type-specific transcriptional programs that contribute to cancer cell lineage plasticity, especially in the ductal compartment. We also studied cell differentiation hierarchies using CytoTRACE and predict cell lineage trajectories for acinar and ductal cells that we believe are pinpointing relevant information on PDAC progression. Collaborators (Angelo lab, Stanford University) has led the development of the Multiplexed Ion Beam Imaging (MIBI) platform for spatial proteomics. We will use in the very near future MIBI from tissue microarray of 40 PDAC samples to understand the spatial relationship between cancer cell lineage plasticity and stromal cells focused on infiltrating immune cells, using the relevant markers of PDAC plasticity identified from the RNA-seq analysis.

Keywords: deconvolution, imaging, microenvironment, PDAC

Procedia PDF Downloads 128
100 Identification of Clinical Characteristics from Persistent Homology Applied to Tumor Imaging

Authors: Eashwar V. Somasundaram, Raoul R. Wadhwa, Jacob G. Scott

Abstract:

The use of radiomics in measuring geometric properties of tumor images such as size, surface area, and volume has been invaluable in assessing cancer diagnosis, treatment, and prognosis. In addition to analyzing geometric properties, radiomics would benefit from measuring topological properties using persistent homology. Intuitively, features uncovered by persistent homology may correlate to tumor structural features. One example is necrotic cavities (corresponding to 2D topological features), which are markers of very aggressive tumors. We develop a data pipeline in R that clusters tumors images based on persistent homology is used to identify meaningful clinical distinctions between tumors and possibly new relationships not captured by established clinical categorizations. A preliminary analysis was performed on 16 Magnetic Resonance Imaging (MRI) breast tissue segments downloaded from the 'Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis' (I-SPY TRIAL or ISPY1) collection in The Cancer Imaging Archive. Each segment represents a patient’s breast tumor prior to treatment. The ISPY1 dataset also provided the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status data. A persistent homology matrix up to 2-dimensional features was calculated for each of the MRI segmentation. Wasserstein distances were then calculated between all pairwise tumor image persistent homology matrices to create a distance matrix for each feature dimension. Since Wasserstein distances were calculated for 0, 1, and 2-dimensional features, three hierarchal clusters were constructed. The adjusted Rand Index was used to see how well the clusters corresponded to the ER/PR/HER2 status of the tumors. Triple-negative cancers (negative status for all three receptors) significantly clustered together in the 2-dimensional features dendrogram (Adjusted Rand Index of .35, p = .031). It is known that having a triple-negative breast tumor is associated with aggressive tumor growth and poor prognosis when compared to non-triple negative breast tumors. The aggressive tumor growth associated with triple-negative tumors may have a unique structure in an MRI segmentation, which persistent homology is able to identify. This preliminary analysis shows promising results in the use of persistent homology on tumor imaging to assess the severity of breast tumors. The next step is to apply this pipeline to other tumor segment images from The Cancer Imaging Archive at different sites such as the lung, kidney, and brain. In addition, whether other clinical parameters, such as overall survival, tumor stage, and tumor genotype data are captured well in persistent homology clusters will be assessed. If analyzing tumor MRI segments using persistent homology consistently identifies clinical relationships, this could enable clinicians to use persistent homology data as a noninvasive way to inform clinical decision making in oncology.

Keywords: cancer biology, oncology, persistent homology, radiomics, topological data analysis, tumor imaging

Procedia PDF Downloads 135
99 Golden Dawn's Rhetoric on Social Networks: Populism, Xenophobia and Antisemitism

Authors: Georgios Samaras

Abstract:

New media such as Facebook, YouTube and Twitter introduced the world to a new era of instant communication. An era where online interactions could replace a lot of offline actions. Technology can create a mediated environment in which participants can communicate (one-to-one, one-to-many, and many-to-many) both synchronously and asynchronously and participate in reciprocal message exchanges. Currently, social networks are attracting similar academic attention to that of the internet after its mainstream implementation into public life. Websites and platforms are seen as the forefront of a new political change. There is a significant backdrop of previous methodologies employed to research the effects of social networks. New approaches are being developed to be able to adapt to the growth of social networks and the invention of new platforms. Golden Dawn was the first openly neo-Nazi party post World War II to win seats in the parliament of a European country. Its racist rhetoric and violent tactics on social networks were rewarded by their supporters, who in the face of Golden Dawn’s leaders saw a ‘new dawn’ in Greek politics. Mainstream media banned its leaders and members of the party indefinitely after Ilias Kasidiaris attacked Liana Kanelli, a member of the Greek Communist Party, on live television. This media ban was seen as a treasonous move by a significant percentage of voters, who believed that the system was desperately trying to censor Golden Dawn to favor mainstream parties. The shocking attack on live television received international coverage and while European countries were condemning this newly emerged neo-Nazi rhetoric, almost 7 percent of the Greek population rewarded Golden Dawn with 18 seats in the Greek parliament. Many seem to think that Golden Dawn mobilised its voters online and this approach played a significant role in spreading their message and appealing to wider audiences. No strict online censorship existed back in 2012 and although Golden Dawn was openly used neo-Nazi symbolism, it was allowed to use social networks without serious restrictions until 2017. This paper used qualitative methods to investigate Golden Dawn’s rise in social networks from 2012 to 2019. The focus of the content analysis was set on three social networking platforms: Facebook, Twitter and YouTube, while the existence of Golden Dawn’s website, which was used as a news sharing hub, was also taken into account. The content analysis included text and visual analyses that sampled content from their social networking pages to translate their political messaging through an ideological lens focused on extreme-right populism. The absence of hate speech regulations on social network platforms in 2012 allowed the free expression of those heavily ultranationalist and populist views, as they were employed by Golden Dawn in the Greek political scene. On YouTube, Facebook and Twitter, the influence of their rhetoric was particularly strong. Official channels and MPs profiles were investigated to explore the messaging in-depth and understand its ideological elements.

Keywords: populism, far-right, social media, Greece, golden dawn

Procedia PDF Downloads 148
98 A Case Report on Cognitive-Communication Intervention in Traumatic Brain Injury

Authors: Nikitha Francis, Anjana Hoode, Vinitha George, Jayashree S. Bhat

Abstract:

The interaction between cognition and language, referred as cognitive-communication, is very intricate, involving several mental processes such as perception, memory, attention, lexical retrieval, decision making, motor planning, self-monitoring and knowledge. Cognitive-communication disorders are difficulties in communicative competencies that result from underlying cognitive impairments of attention, memory, organization, information processing, problem solving, and executive functions. Traumatic brain injury (TBI) is an acquired, non - progressive condition, resulting in distinct deficits of cognitive communication abilities such as naming, word-finding, self-monitoring, auditory recognition, attention, perception and memory. Cognitive-communication intervention in TBI is individualized, in order to enhance the person’s ability to process and interpret information for better functioning in their family and community life. The present case report illustrates the cognitive-communicative behaviors and the intervention outcomes of an adult with TBI, who was brought to the Department of Audiology and Speech Language Pathology, with cognitive and communicative disturbances, consequent to road traffic accident. On a detailed assessment, she showed naming deficits along with perseverations and had severe difficulty in recalling the details of the accident, her house address, places she had visited earlier, names of people known to her, as well as the activities she did each day, leading to severe breakdowns in her communicative abilities. She had difficulty in initiating, maintaining and following a conversation. She also lacked orientation to time and place. On administration of the Manipal Manual of Cognitive Linguistic Abilities (MMCLA), she exhibited poor performance on tasks related to visual and auditory perception, short term memory, working memory and executive functions. She attended 20 sessions of cognitive-communication intervention which followed a domain-general, adaptive training paradigm, with tasks relevant to everyday cognitive-communication skills. Compensatory strategies such as maintaining a dairy with reminders of her daily routine, names of people, date, time and place was also recommended. MMCLA was re-administered and her performance in the tasks showed significant improvements. Occurrence of perseverations and word retrieval difficulties reduced. She developed interests to initiate her day-to-day activities at home independently, as well as involve herself in conversations with her family members. Though she lacked awareness about her deficits, she actively involved herself in all the therapy activities. Rehabilitation of moderate to severe head injury patients can be done effectively through a holistic cognitive retraining with a focus on different cognitive-linguistic domains. Selection of goals and activities should have relevance to the functional needs of each individual with TBI, as highlighted in the present case report.

Keywords: cognitive-communication, executive functions, memory, traumatic brain injury

Procedia PDF Downloads 347
97 Multilevel Regression Model - Evaluate Relationship Between Early Years’ Activities of Daily Living and Alzheimer’s Disease Onset Accounting for Influence of Key Sociodemographic Factors Using a Longitudinal Household Survey Data

Authors: Linyi Fan, C.J. Schumaker

Abstract:

Background: Biomedical efforts to treat Alzheimer’s disease (AD) have typically produced mixed to poor results, while more lifestyle-focused treatments such as exercise may fare better than existing biomedical treatments. A few promising studies have indicated that activities of daily life (ADL) may be a useful way of predicting AD. However, the existing cross-sectional studies fail to show how functional-related issues such as ADL in early years predict AD and how social factors influence health either in addition to or in interaction with individual risk factors. This study would helpbetterscreening and early treatments for the elderly population and healthcare practice. The findings have significance academically and practically in terms of creating positive social change. Methodology: The purpose of this quantitative historical, correlational study was to examine the relationship between early years’ ADL and the development of AD in later years. The studyincluded 4,526participantsderived fromRAND HRS dataset. The Health and Retirement Study (HRS) is a longitudinal household survey data set that is available forresearchof retirement and health among the elderly in the United States. The sample was selected by the completion of survey questionnaire about AD and dementia. The variablethat indicates whether the participant has been diagnosed with AD was the dependent variable. The ADL indices and changes in ADL were the independent variables. A four-step multilevel regression model approach was utilized to address the research questions. Results: Amongst 4,526 patients who completed the AD and dementia questionnaire, 144 (3.1%) were diagnosed with AD. Of the 4,526 participants, 3,465 (76.6%) have high school and upper education degrees,4,074 (90.0%) were above poverty threshold. The model evaluatedthe effect of ADL and change in ADL on onset of AD in late years while allowing the intercept of the model to vary by level of education. The results suggested that the only significant predictor of the onset of AD was changes in early years’ ADL (b = 20.253, z = 2.761, p < .05). However, the result of the sensitivity analysis (b = 7.562, z = 1.900, p =.058), which included more control variables and increased the observation period of ADL, are not supported this finding. The model also estimated whether the variances of random effect vary by Level-2 variables. The results suggested that the variances associated with random slopes were approximately zero, suggesting that the relationship between early years’ ADL were not influenced bysociodemographic factors. Conclusion: The finding indicated that an increase in changes in ADL leads to an increase in the probability of onset AD in the future. However, this finding is not support in a broad observation period model. The study also failed to reject the hypothesis that the sociodemographic factors explained significant amounts of variance in random effect. Recommendations were then made for future research and practice based on these limitations and the significance of the findings.

Keywords: alzheimer’s disease, epidemiology, moderation, multilevel modeling

Procedia PDF Downloads 135
96 Navigating Complex Communication Dynamics in Qualitative Research

Authors: Kimberly M. Cacciato, Steven J. Singer, Allison R. Shapiro, Julianna F. Kamenakis

Abstract:

This study examines the dynamics of communication among researchers and participants who have various levels of hearing, use multiple languages, have various disabilities, and who come from different social strata. This qualitative methodological study focuses on the strategies employed in an ethnographic research study examining the communication choices of six sets of parents who have Deaf-Disabled children. The participating families varied in their communication strategies and preferences including the use of American Sign Language (ASL), visual-gestural communication, multiple spoken languages, and pidgin forms of each of these. The research team consisted of two undergraduate students proficient in ASL and a Deaf principal investigator (PI) who uses ASL and speech as his main modes of communication. A third Hard-of-Hearing undergraduate student fluent in ASL served as an objective facilitator of the data analysis. The team created reflexive journals by audio recording, free writing, and responding to team-generated prompts. They discussed interactions between the members of the research team, their evolving relationships, and various social and linguistic power differentials. The researchers reflected on communication during data collection, their experiences with one another, and their experiences with the participating families. Reflexive journals totaled over 150 pages. The outside research assistant reviewed the journals and developed follow up open-ended questions and prods to further enrich the data. The PI and outside research assistant used NVivo qualitative research software to conduct open inductive coding of the data. They chunked the data individually into broad categories through multiple readings and recognized recurring concepts. They compared their categories, discussed them, and decided which they would develop. The researchers continued to read, reduce, and define the categories until they were able to develop themes from the data. The research team found that the various communication backgrounds and skills present greatly influenced the dynamics between the members of the research team and with the participants of the study. Specifically, the following themes emerged: (1) students as communication facilitators and interpreters as barriers to natural interaction, (2) varied language use simultaneously complicated and enriched data collection, and (3) ASL proficiency and professional position resulted in a social hierarchy among researchers and participants. In the discussion, the researchers reflected on their backgrounds and internal biases of analyzing the data found and how social norms or expectations affected the perceptions of the researchers in writing their journals. Through this study, the research team found that communication and language skills require significant consideration when working with multiple and complex communication modes. The researchers had to continually assess and adjust their data collection methods to meet the communication needs of the team members and participants. In doing so, the researchers aimed to create an accessible research setting that yielded rich data but learned that this often required compromises from one or more of the research constituents.

Keywords: American Sign Language, complex communication, deaf-disabled, methodology

Procedia PDF Downloads 118
95 Spatiotemporal Changes in Drought Sensitivity Captured by Multiple Tree-Ring Parameters of Central European Conifers

Authors: Krešimir Begović, Miloš Rydval, Jan Tumajer, Kristyna Svobodová, Thomas Langbehn, Yumei Jiang, Vojtech Čada, Vaclav Treml, Ryszard Kaczka, Miroslav Svoboda

Abstract:

Environmental changes have increased the frequency and intensity of climatic extremes, particularly hotter droughts, leading to altered tree growth patterns and multi-year lags in tree recovery. The effects of shifting climatic conditions on tree growth are inhomogeneous across species’ natural distribution ranges, with large spatial heterogeneity and inter-population variability, but generally have significant consequences for contemporary forest dynamics and future ecosystem functioning. Despite numerous studies on the impacts of regional drought effects, large uncertainties remain regarding the mechanistic basis of drought legacy effects on wood formation and the ability of individual species to cope with increasingly drier growing conditions and rising year-to-year climatic variability. To unravel the complexity of climate-growth interactions and assess species-specific responses to severe droughts, we combined forward modeling of tree growth (VS-lite model) with correlation analyses against climate (temperature, precipitation, and the SPEI-3 moisture index) and growth responses to extreme drought events from multiple tree-ring parameters (tree-width and blue intensity parameters). We used an extensive dataset with over 1000 tree-ring samples from 23 nature forest reserves across an altitudinal range in Czechia and Slovakia. Our results revealed substantial spatiotemporal variability in growth responses to summer season temperature and moisture availability across species and tree-ring parameters. However, a general trend of increasing spring moisture-growth sensitivity in recent decades was observed in the Scots pine mountain forests and lowland forests of both species. The VS-lite model effectively captured nonstationary climate-growth relationships and accurately estimated high-frequency growth variability, indicating a significant incidence of regional drought events and growth reductions. Notably, growth reductions during extreme drought years and discrete legacy effects identified in individual wood components were most pronounced in the lowland forests. Together with the observed growth declines in recent decades, these findings suggest an increasing vulnerability of Norway spruce and Scots pine in dry lowlands under intensifying climatic constraints.

Keywords: dendroclimatology, Vaganova–Shashkin lite, conifers, central Europe, drought, blue intensity

Procedia PDF Downloads 58
94 Geovisualisation for Defense Based on a Deep Learning Monocular Depth Reconstruction Approach

Authors: Daniel R. dos Santos, Mateus S. Maldonado, Estevão J. R. Batista

Abstract:

The military commanders increasingly dependent on spatial awareness, as knowing where enemy are, understanding how war battle scenarios change over time, and visualizing these trends in ways that offer insights for decision-making. Thanks to advancements in geospatial technologies and artificial intelligence algorithms, the commanders are now able to modernize military operations on a universal scale. Thus, geovisualisation has become an essential asset in the defense sector. It has become indispensable for better decisionmaking in dynamic/temporal scenarios, operation planning and management for the war field, situational awareness, effective planning, monitoring, and others. For example, a 3D visualization of war field data contributes to intelligence analysis, evaluation of postmission outcomes, and creation of predictive models to enhance decision-making and strategic planning capabilities. However, old-school visualization methods are slow, expensive, and unscalable. Despite modern technologies in generating 3D point clouds, such as LIDAR and stereo sensors, monocular depth values based on deep learning can offer a faster and more detailed view of the environment, transforming single images into visual information for valuable insights. We propose a dedicated monocular depth reconstruction approach via deep learning techniques for 3D geovisualisation of satellite images. It introduces scalability in terrain reconstruction and data visualization. First, a dataset with more than 7,000 satellite images and associated digital elevation model (DEM) is created. It is based on high resolution optical and radar imageries collected from Planet and Copernicus, on which we fuse highresolution topographic data obtained using technologies such as LiDAR and the associated geographic coordinates. Second, we developed an imagery-DEM fusion strategy that combine feature maps from two encoder-decoder networks. One network is trained with radar and optical bands, while the other is trained with DEM features to compute dense 3D depth. Finally, we constructed a benchmark with sparse depth annotations to facilitate future research. To demonstrate the proposed method's versatility, we evaluated its performance on no annotated satellite images and implemented an enclosed environment useful for Geovisualisation applications. The algorithms were developed in Python 3.0, employing open-source computing libraries, i.e., Open3D, TensorFlow, and Pythorch3D. The proposed method provides fast and accurate decision-making with GIS for localization of troops, position of the enemy, terrain and climate conditions. This analysis enhances situational consciousness, enabling commanders to fine-tune the strategies and distribute the resources proficiently.

Keywords: depth, deep learning, geovisualisation, satellite images

Procedia PDF Downloads 10
93 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 136
92 Prosodic Transfer in Foreign Language Learning: A Phonetic Crosscheck of Intonation and F₀ Range between Italian and German Native and Non-Native Speakers

Authors: Violetta Cataldo, Renata Savy, Simona Sbranna

Abstract:

Background: Foreign Language Learning (FLL) is characterised by prosodic transfer phenomena regarding pitch accents placement, intonation patterns, and pitch range excursion from the learners’ mother tongue to their Foreign Language (FL) which suggests that the gradual development of general linguistic competence in FL does not imply an equally correspondent improvement of the prosodic competence. Topic: The present study aims to monitor the development of prosodic competence of learners of Italian and German throughout the FLL process. The primary object of this study is to investigate the intonational features and the f₀ range excursion of Italian and German from a cross-linguistic perspective; analyses of native speakers’ productions point out the differences between this pair of languages and provide models for the Target Language (TL). A following crosscheck compares the L2 productions in Italian and German by non-native speakers to the Target Language models, in order to verify the occurrence of prosodic interference phenomena, i.e., type, degree, and modalities. Methodology: The subjects of the research are university students belonging to two groups: Italian native speakers learning German as FL and German native speakers learning Italian as FL. Both of them have been divided into three subgroups according to the FL proficiency level (beginners, intermediate, advanced). The dataset consists of wh-questions placed in situational contexts uttered in both speakers’ L1 and FL. Using a phonetic approach, analyses have considered three domains of intonational contours (Initial Profile, Nuclear Accent, and Terminal Contour) and two dimensions of the f₀ range parameter (span and level), which provide a basis for comparison between L1 and L2 productions. Findings: Results highlight a strong presence of prosodic transfer phenomena affecting L2 productions in the majority of both Italian and German learners, irrespective of their FL proficiency level; the transfer concerns all the three domains of the contour taken into account, although with different modalities and characteristics. Currently, L2 productions of German learners show a pitch span compression on the domain of the Terminal Contour compared to their L1 towards the TL; furthermore, German learners tend to use lower pitch range values in deviation from their L1 when improving their general linguistic competence in Italian FL proficiency level. Results regarding pitch range span and level in L2 productions by Italian learners are still in progress. At present, they show a similar tendency to expand the pitch span and to raise the pitch level, which also reveals a deviation from the L1 possibly in the direction of German TL. Conclusion: Intonational features seem to be 'resistant' parameters to which learners appear not to be particularly sensitive. By contrast, they show a certain sensitiveness to FL pitch range dimensions. Making clear which the most resistant and the most sensitive parameters are when learning FL prosody could lay groundwork for the development of prosodic trainings thanks to which learners could finally acquire a clear and natural pronunciation and intonation.

Keywords: foreign language learning, German, Italian, L2 prosody, pitch range, transfer

Procedia PDF Downloads 286
91 Employing Remotely Sensed Soil and Vegetation Indices and Predicting ‎by Long ‎Short-Term Memory to Irrigation Scheduling Analysis

Authors: Elham Koohikerade, Silvio Jose Gumiere

Abstract:

In this research, irrigation is highlighted as crucial for improving both the yield and quality of ‎potatoes due to their high sensitivity to soil moisture changes. The study presents a hybrid Long ‎Short-Term Memory (LSTM) model aimed at optimizing irrigation scheduling in potato fields in ‎Quebec City, Canada. This model integrates model-based and satellite-derived datasets to simulate ‎soil moisture content, addressing the limitations of field data. Developed under the guidance of the ‎Food and Agriculture Organization (FAO), the simulation approach compensates for the lack of direct ‎soil sensor data, enhancing the LSTM model's predictions. The model was calibrated using indices ‎like Surface Soil Moisture (SSM), Normalized Vegetation Difference Index (NDVI), Enhanced ‎Vegetation Index (EVI), and Normalized Multi-band Drought Index (NMDI) to effectively forecast ‎soil moisture reductions. Understanding soil moisture and plant development is crucial for assessing ‎drought conditions and determining irrigation needs. This study validated the spectral characteristics ‎of vegetation and soil using ECMWF Reanalysis v5 (ERA5) and Moderate Resolution Imaging ‎Spectrometer (MODIS) data from 2019 to 2023, collected from agricultural areas in Dolbeau and ‎Peribonka, Quebec. Parameters such as surface volumetric soil moisture (0-7 cm), NDVI, EVI, and ‎NMDI were extracted from these images. A regional four-year dataset of soil and vegetation moisture ‎was developed using a machine learning approach combining model-based and satellite-based ‎datasets. The LSTM model predicts soil moisture dynamics hourly across different locations and ‎times, with its accuracy verified through cross-validation and comparison with existing soil moisture ‎datasets. The model effectively captures temporal dynamics, making it valuable for applications ‎requiring soil moisture monitoring over time, such as anomaly detection and memory analysis. By ‎identifying typical peak soil moisture values and observing distribution shapes, irrigation can be ‎scheduled to maintain soil moisture within Volumetric Soil Moisture (VSM) values of 0.25 to 0.30 ‎m²/m², avoiding under and over-watering. The strong correlations between parcels suggest that a ‎uniform irrigation strategy might be effective across multiple parcels, with adjustments based on ‎specific parcel characteristics and historical data trends. The application of the LSTM model to ‎predict soil moisture and vegetation indices yielded mixed results. While the model effectively ‎captures the central tendency and temporal dynamics of soil moisture, it struggles with accurately ‎predicting EVI, NDVI, and NMDI.‎

Keywords: irrigation scheduling, LSTM neural network, remotely sensed indices, soil and vegetation ‎monitoring

Procedia PDF Downloads 41
90 Predicting Provider Service Time in Outpatient Clinics Using Artificial Intelligence-Based Models

Authors: Haya Salah, Srinivas Sharan

Abstract:

Healthcare facilities use appointment systems to schedule their appointments and to manage access to their medical services. With the growing demand for outpatient care, it is now imperative to manage physician's time effectively. However, high variation in consultation duration affects the clinical scheduler's ability to estimate the appointment duration and allocate provider time appropriately. Underestimating consultation times can lead to physician's burnout, misdiagnosis, and patient dissatisfaction. On the other hand, appointment durations that are longer than required lead to doctor idle time and fewer patient visits. Therefore, a good estimation of consultation duration has the potential to improve timely access to care, resource utilization, quality of care, and patient satisfaction. Although the literature on factors influencing consultation length abound, little work has done to predict it using based data-driven approaches. Therefore, this study aims to predict consultation duration using supervised machine learning algorithms (ML), which predicts an outcome variable (e.g., consultation) based on potential features that influence the outcome. In particular, ML algorithms learn from a historical dataset without explicitly being programmed and uncover the relationship between the features and outcome variable. A subset of the data used in this study has been obtained from the electronic medical records (EMR) of four different outpatient clinics located in central Pennsylvania, USA. Also, publicly available information on doctor's characteristics such as gender and experience has been extracted from online sources. This research develops three popular ML algorithms (deep learning, random forest, gradient boosting machine) to predict the treatment time required for a patient and conducts a comparative analysis of these algorithms with respect to predictive performance. The findings of this study indicate that ML algorithms have the potential to predict the provider service time with superior accuracy. While the current approach of experience-based appointment duration estimation adopted by the clinic resulted in a mean absolute percentage error of 25.8%, the Deep learning algorithm developed in this study yielded the best performance with a MAPE of 12.24%, followed by gradient boosting machine (13.26%) and random forests (14.71%). Besides, this research also identified the critical variables affecting consultation duration to be patient type (new vs. established), doctor's experience, zip code, appointment day, and doctor's specialty. Moreover, several practical insights are obtained based on the comparative analysis of the ML algorithms. The machine learning approach presented in this study can serve as a decision support tool and could be integrated into the appointment system for effectively managing patient scheduling.

Keywords: clinical decision support system, machine learning algorithms, patient scheduling, prediction models, provider service time

Procedia PDF Downloads 121
89 Harnessing Emerging Creative Technology for Knowledge Discovery of Multiwavelenght Datasets

Authors: Basiru Amuneni

Abstract:

Astronomy is one domain with a rise in data. Traditional tools for data management have been employed in the quest for knowledge discovery. However, these traditional tools become limited in the face of big. One means of maximizing knowledge discovery for big data is the use of scientific visualisation. The aim of the work is to explore the possibilities offered by emerging creative technologies of Virtual Reality (VR) systems and game engines to visualize multiwavelength datasets. Game Engines are primarily used for developing video games, however their advanced graphics could be exploited for scientific visualization which provides a means to graphically illustrate scientific data to ease human comprehension. Modern astronomy is now in the era of multiwavelength data where a single galaxy for example, is captured by the telescope several times and at different electromagnetic wavelength to have a more comprehensive picture of the physical characteristics of the galaxy. Visualising this in an immersive environment would be more intuitive and natural for an observer. This work presents a standalone VR application that accesses galaxy FITS files. The application was built using the Unity Game Engine for the graphics underpinning and the OpenXR API for the VR infrastructure. The work used a methodology known as Design Science Research (DSR) which entails the act of ‘using design as a research method or technique’. The key stages of the galaxy modelling pipeline are FITS data preparation, Galaxy Modelling, Unity 3D Visualisation and VR Display. The FITS data format cannot be read by the Unity Game Engine directly. A DLL (CSHARPFITS) which provides a native support for reading and writing FITS files was used. The Galaxy modeller uses an approach that integrates cleaned FITS image pixels into the graphics pipeline of the Unity3d game Engine. The cleaned FITS images are then input to the galaxy modeller pipeline phase, which has a pre-processing script that extracts, pixel, galaxy world position, and colour maps the FITS image pixels. The user can visualise image galaxies in different light bands, control the blend of the image with similar images from different sources or fuse images for a holistic view. The framework will allow users to build tools to realise complex workflows for public outreach and possibly scientific work with increased scalability, near real time interactivity with ease of access. The application is presented in an immersive environment and can use all commercially available headset built on the OpenXR API. The user can select galaxies in the scene, teleport to the galaxy, pan, zoom in/out, and change colour gradients of the galaxy. The findings and design lessons learnt in the implementation of different use cases will contribute to the development and design of game-based visualisation tools in immersive environment by enabling informed decisions to be made.

Keywords: astronomy, visualisation, multiwavelenght dataset, virtual reality

Procedia PDF Downloads 91
88 Social Media Governance in UK Higher Education Institutions

Authors: Rebecca Lees, Deborah Anderson

Abstract:

Whilst the majority of research into social media in education focuses on the applications for teaching and learning environments, this study looks at how such activities can be managed by investigating the current state of social media regulation within UK higher education. Social media has pervaded almost all aspects of higher education; from marketing, recruitment and alumni relations to both distance and classroom-based learning and teaching activities. In terms of who uses it and how it is used, social media is growing at an unprecedented rate, particularly amongst the target market for higher education. Whilst the platform presents opportunities not found in more traditional methods of communication and interaction, such as speed and reach, it also carries substantial risks that come with inappropriate use, lack of control and issues of privacy. Typically, organisations rely on the concept of a social contract to guide employee behaviour to conform to the expectations of that organisation. Yet, where academia and social media intersect applying the notion of a social contract to enforce governance may be problematic; firstly considering the emphasis on treating students as customers with a growing focus on the use and collection of satisfaction metrics; and secondly regarding the notion of academic’s freedom of speech, opinion and discussion, which is a long-held tradition of learning instruction. Therefore the need for sound governance procedures to support expectations over online behaviour is vital, especially when the speed and breadth of adoption of social media activities has in the past outrun organisations’ abilities to manage it. An analysis of the current level of governance was conducted by gathering relevant policies, guidelines and best practice documentation available online via internet search and institutional requests. The documents were then subjected to a content analysis in the second phase of this study to determine the approach taken by institutions to apply such governance. Documentation was separated according to audience, i.e.: applicable to staff, students or all users. Given many of these included guests and visitors to the institution within their scope being easily accessible was considered important. Yet, within the UK only about half of all education institutions had explicit social media governance documentation available online without requiring member access or considerable searching. Where they existed, the majority focused solely on employee activities and tended to be policy based rather than rooted in guidelines or best practices, or held a fallback position of governing online behaviour via implicit instructions within IT and computer regulations. Explicit instructions over expected online behaviours is therefore lacking within UK HE. Given the number of educational practices that now include significant online components, it is imperative that education organisations keep up to date with the progress of social media use. Initial results from the second phase of this study which analyses the content of the governance documentation suggests they require reading levels at or above the target audience, with some considerable variability in length and layout. Further analysis will add to this growing field of investigating social media governance within higher education.

Keywords: governance, higher education, policy, social media

Procedia PDF Downloads 184
87 Teacher Training for Bilingual Education of Deaf Students in Brazil

Authors: Mara Aparecida De Castilho Lopes. Maria Eliza Mattosinho Bernardes

Abstract:

The education of deaf individuals in Brazil is grounded in the bilingual approach, which presupposes Brazilian Sign Language (Libras) as the first language for these students. In this perspective, Portuguese should be taught as a second language in its written form, ensuring that deaf students also have access to various academic subjects in sign language. Brazilian legislation (Federal Decree No. 5626 of 2005) mandates the teaching of Brazilian Sign Language in university teacher training programs, but there is no pre-established minimum workload. As a result, there is a significant disparity in the teaching and quality of teacher education across the Brazilian territory. Added to this fact is the general lack of awareness within society regarding the linguistic status of Libras, leading to a shortage of competent teachers for its use and instruction, particularly in higher education. Recently, Federal Law No. 14191 of 2021 established bilingual education for the deaf as a mode of instruction, indicating the need for adjustments in teacher training within higher education teacher preparation programs. Given this context, the objective of the present study was to analyze the teaching proposals for Brazilian Sign Language for students in teacher training programs at public universities in Brazil, presenting alternatives to overcome the current models and academic pathways of teaching and learning. In addition to analyzing Brazilian teaching models, an analysis of a continuing education model for teachers in a French institution was also conducted - considering the historical Franco-Brazilian path of deaf education in Brazil. The analysis of the current teacher training model for deaf education in Brazil revealed that initial exposure to sign language and its linguistic structure is not sufficient to provide future teachers with opportunities to reflect on bilingual teaching methods and practices, as seen in other definitions of bilingualism - bilingual education for proficient listeners in two oral languages. As a result, a training proposal was developed for an experimental interdisciplinary course, integrating the curriculum of an initial and continuing teacher training program alongside the Alfredo Bossi Chair at the University of São Paulo. This proposal is structured into three disciplines, which constitute consecutive moments in teacher education: Fundamental Aspects of Brazilian Sign Language, Bilingual Teaching Methodology, and Teaching Investigation Project - interdisciplinary engagement in the field of deafness. The last offered discipline represents an interdisciplinary supervised internship proposal, considering the multi-professional context that constitutes deaf education within a bilingual approach. In interdisciplinary work within the field of deafness, dialogue between teachers and other professionals who work with deaf students from different perspectives - teachers, speech therapists, and sign language interpreters - is frequently necessary. Through alternative avenues, these actions aim to direct the linguistic development of deaf students within their learning processes. Based on the innovative curriculum proposal described here, the intention is to contribute to the enhancement of teacher education in Brazil, with the goal of ensuring bilingual education for deaf students.

Keywords: bilingual education, teacher training, historical-cultural approach, interdisciplinary education, inclusive education

Procedia PDF Downloads 91
86 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks

Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios

Abstract:

To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.

Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand

Procedia PDF Downloads 142
85 A Model for Teaching Arabic Grammar in Light of the Common European Framework of Reference for Languages

Authors: Erfan Abdeldaim Mohamed Ahmed Abdalla

Abstract:

The complexity of Arabic grammar poses challenges for learners, particularly in relation to its arrangement, classification, abundance, and bifurcation. The challenge at hand is a result of the contextual factors that gave rise to the grammatical rules in question, as well as the pedagogical approach employed at the time, which was tailored to the needs of learners during that particular historical period. Consequently, modern-day students encounter this same obstacle. This requires a thorough examination of the arrangement and categorization of Arabic grammatical rules based on particular criteria, as well as an assessment of their objectives. Additionally, it is necessary to identify the prevalent and renowned grammatical rules, as well as those that are infrequently encountered, obscure and disregarded. This paper presents a compilation of grammatical rules that require arrangement and categorization in accordance with the standards outlined in the Common European Framework of Reference for Languages (CEFR). In addition to facilitating comprehension of the curriculum, accommodating learners' requirements, and establishing the fundamental competencies for achieving proficiency in Arabic, it is imperative to ascertain the conventions that language learners necessitate in alignment with explicitly delineated benchmarks such as the CEFR criteria. The aim of this study is to reduce the quantity of grammatical rules that are typically presented to non-native Arabic speakers in Arabic textbooks. This reduction is expected to enhance the motivation of learners to continue their Arabic language acquisition and to approach the level of proficiency of native speakers. The primary obstacle faced by learners is the intricate nature of Arabic grammar, which poses a significant challenge in the realm of study. The proliferation and complexity of regulations evident in Arabic language textbooks designed for individuals who are not native speakers is noteworthy. The inadequate organisation and delivery of the material create the impression that the grammar is being imparted to a student with the intention of memorising "Alfiyyat-Ibn-Malik." Consequently, the sequence of grammatical rules instruction was altered, with rules originally intended for later instruction being presented first and those intended for earlier instruction being presented subsequently. Students often focus on learning grammatical rules that are not necessarily required while neglecting the rules that are commonly used in everyday speech and writing. Non-Arab students are taught Arabic grammar chapters that are infrequently utilised in Arabic literature and may be a topic of debate among grammarians. The aforementioned findings are derived from the statistical analysis and investigations conducted by the researcher, which will be disclosed in due course of the research. To instruct non-Arabic speakers on grammatical rules, it is imperative to discern the most prevalent grammatical frameworks in grammar manuals and linguistic literature (study sample). The present proposal suggests the allocation of grammatical structures across linguistic levels, taking into account the guidelines of the CEFR, as well as the grammatical structures that are necessary for non-Arabic-speaking learners to generate a modern, cohesive, and comprehensible language.

Keywords: grammar, Arabic, functional, framework, problems, standards, statistical, popularity, analysis

Procedia PDF Downloads 91
84 Developing Writing Skills of Learners with Persistent Literacy Difficulties through the Explicit Teaching of Grammar in Context: Action Research in a Welsh Secondary School

Authors: Jean Ware, Susan W. Jones

Abstract:

Background: The benefits of grammar instruction in the teaching of writing is contested in most English speaking countries. A majority of Anglophone countries abandoned the teaching of grammar in the 1950s based on the conclusions that it had no positive impact on learners’ development of reading, writing, and language. Although the decontextualised teaching of grammar is not helpful in improving writing, a curriculum with a focus on grammar in an embedded and meaningful way can help learners develop their understanding of the mechanisms of language. Although British learners are generally not taught grammar rules explicitly, learners in schools in France, the Netherlands, and Germany are taught explicitly about the structure of their own language. Exposing learners to grammatical analysis can help them develop their understanding of language. Indeed, if learners are taught that each part of speech has an identified role in the sentence. This means that rather than have to memorise lists of words or spelling patterns, they can focus on determining each word or phrase’s task in the sentence. These processes of categorisation and deduction are higher order thinking skills. When considering definitions of dyslexia available in Great Britain, the explicit teaching of grammar in context could help learners with persistent literacy difficulties. Indeed, learners with dyslexia often develop strengths in problem solving; the teaching of grammar could, therefore, help them develop their understanding of language by using analytical and logical thinking. Aims: This study aims at gaining a further understanding of how the explicit teaching of grammar in context can benefit learners with persistent literacy difficulties. The project is designed to identify ways of adapting existing grammar focussed teaching materials so that learners with specific learning difficulties such as dyslexia can use them to further develop their writing skills. It intends to improve educational practice through action, analysis and reflection. Research Design/Methods: The project, therefore, uses an action research design and multiple sources of evidence. The data collection tools used were standardised test data, teacher assessment data, semi-structured interviews, learners’ before and after attempts at a writing task at the beginning and end of the cycle, documentary data and lesson observation carried out by a specialist teacher. Existing teaching materials were adapted for use with five Year 9 learners who had experienced persistent literacy difficulties from primary school onwards. The initial adaptations included reducing the amount of content to be taught in each lesson, and pre teaching some of the metalanguage needed. Findings: Learners’ before and after attempts at the writing task were scored by a colleague who did not know the order of the attempts. All five learners’ scores were higher on the second writing task. Learners reported that they had enjoyed the teaching approach. They also made suggestions to be included in the second cycle, as did the colleague who carried out observations. Conclusions: Although this is a very small exploratory study, these results suggest that adapting grammar focused teaching materials shows promise for helping learners with persistent literacy difficulties develop their writing skills.

Keywords: explicit teaching of grammar in context, literacy acquisition, persistent literacy difficulties, writing skills

Procedia PDF Downloads 156
83 Perceptions of Teachers toward Inclusive Education Focus on Hearing Impairment

Authors: Chalise Kiran

Abstract:

The prime idea of inclusive education is to mainstream every child in education. However, it will be challenging for implementation when there are policy and practice gaps. It will be even more challenging when children have disabilities. Generally, the focus will be on the policy gap, but the problem may not always be with policy. The proper practice could be a challenge in the countries like Nepal. In determining practice, the teachers’ perceptions toward inclusive will play a vital role. Nepal has categorized disability in 7 types (physical, visual, hearing, vision/hearing, speech, mental, and multiple). Out of these, hearing impairment is the study realm. In the context of a limited number of researches on children with disabilities and rare researches on CWHI and their education in Nepal, this study is a pioneering effort in knowing basically the problems and challenges of CWHI focused on inclusive education in the schools including gaps and barriers in its proper implementation. Philosophically, the paradigm of the study is post-positivism. In the post-positivist worldview, the quantitative approach with the description of the situation and inferential relationship are revealed out in the study. This is related to the natural model of objective reality. The data were collected from an individual survey with the teachers and head teachers of 35 schools in Nepal. The survey questionnaire was prepared and filled by the respondents from the schools where the CWHI study in 7 provincial 20 districts of Nepal. Through these considerations, the perceptions of CWHI focused inclusive education were explored in the study. The data were analyzed using both descriptive and inferential tools on which the Likert scale-based analysis was done for descriptive analysis, and chi-square mathematical tool was used to know the significant relationship between dependent variables and independent variables. The descriptive analysis showed that the majority of teachers have positive perceptions toward implementing CWHI focused inclusive education, and the majority of them have positive perceptions toward CWHI focused inclusive education, though there are some problems and challenges. The study has found out the major challenges and problems categorically. Some of them are: a large number of students in a single class; availability of generic textbooks for CWHI and no availability of textbooks to all students; less opportunity for teachers to acquire knowledge on CWHI; not adequate teachers in the schools; no flexibility in the curriculum; less information system in schools; no availability of educational consular; disaster-prone students; no child abuse control strategy; no disabled-friendly schools; no free health check-up facility; no participation of the students in school activities and in child clubs and so on. By and large, it is found that teachers’ age, gender, years of experience, position, employment status, and disability with him or her show no statistically significant relation to successfully implement CWHI focused inclusive education and perceptions to CWHI focused inclusive education in schools. However, in some of the cases, the set null hypothesis was rejected, and some are completely retained. The study has suggested policy implications, implications for educational authority, and implications for teachers and parents categorically.

Keywords: children with hearing impairment, disability, inclusive education, perception

Procedia PDF Downloads 112
82 Mandate of Heaven and Serving the People in Chinese Political Rhetoric: An Evolving Discourse System across Three Thousand Years

Authors: Weixiao Wei, Chris Shei

Abstract:

This paper describes Mandate of Heaven as a source of justification for the ruling regime from ancient China approximately three thousand years ago. Initially, the kings of Shang dynasty simply nominated themselves as the sons of Heaven sent to Earth to rule the common people. As the last generation of the kings became corrupted and ruled withbrutal force and crueltywhich directly caused their destruction, the successive kings of Zhou dynasty realised the importance of virtue and the provision of goods to the people. Legitimacy of the ruling regimes became rested not entirely on random allocation of the throne by an unknown supernatural force but on a foundation comprising morality and the ability to provide goods. The latter composite was picked up by the current ruling regime, the Chinese Communist Party, and became the cornerstone of its political legitimacy, also known as ‘performance legitimacy’ where economic development accounts for the satisfaction of the people in place of election and other democratic means of providing legal-rational legitimacy. Under this circumstance, it becomes important as well for the ruling party to use political rhetoric to convince people of the good performance of the government in the economy, morality, and foreign policy. Thus, we see a lot of propaganda materials in both government policy statements and international press conference announcements. The former consists mainly of important speeches made by prominent figures in Party conferences which are not only made publicly available on the government websites but also become obligatory reading materials for university entrance examinations. The later consists of announcements about foreign policies and strategies and actions taken by the government regarding foreign affairsmade in international conferences and offered in Chinese-English bilingual versions on official websites. This documentation strategy creates an impressive image of the Chinese Communist Party that is domestically competent and international strong, taking care of the people it governs in terms of economic needs and defending the country against any foreign interference and global adversities. This political discourse system comprising reading materials fully extractable from government websites also becomes excellent repertoire for teaching and researching in contemporary Chinese language, discourse and rhetoric, Chinese culture and tradition, Chinese political ideology, and Chinese-English translation. This paper aims to provide a detailed and comprehensive description of the current Chinese political discourse system, arguing about its lineage from the rhetorical convention of Mandate of Heaven in ancient China and its current concentration on serving the people in place of election, human rights, and freedom of speech. The paper will also provide guidelines as to how this discourse system and the manifestation of official documents created under this system can become excellent research and teaching materials in applied linguistics.

Keywords: mandate of heaven, Chinese communist party, performance legitimacy, serving the people, political discourse

Procedia PDF Downloads 110
81 Evaluating the Impact of Early Maternal Incarceration on Male Delinquent Behavior during Emerging Adulthood through the Mediating Mechanism of Mastery

Authors: Richard Abel

Abstract:

In the United States, increased incarceration rates have caused many adolescents to feel the strain of parental absence. This absence is then manifest through adolescent feelings of parental rejection. Additionally, upon reentry maternal incarceration may be related to adolescents experienced perceived excessive disciple. It is possible parents engage in this manner of discipline attempting to prevent the child from taking the same path to incarceration as the parent. According to General Strain Theory, adolescents encountering strain are likely to experience negative emotions. The emotion that is most likely to lead to delinquency is anger through reduced inhibitions and motivation to act. Additionally, males are more likely to engage in delinquent behavior, regardless of experiencing strain. This is not the case for every male who experiences maternal incarceration, parental rejection, excessive discipline, or anger. There are protective factors that enable agency within individuals. One such protective factor is mastery, or the perception that one is in control of his or her own future. The model proposed in this research suggests maternal incarceration is associated with increased parental rejection and excessive discipline in males. Males experiencing parental rejection and excessive discipline are likely to experience increased anger, which is then associated with increases in delinquent behavior. This model explores whether agency, in the form of mastery, mediates the relationship between strains and negative emotions, or between negative emotions and delinquent behavior. The Kaplan Longitudinal and Multigenerational Study (KLAMS) dataset is uniquely situated to analyze this model providing longitudinal data collected from both parents and their offspring. Maternal incarceration is constructed using parental responses such that the mother was incarcerated after the child’s birth, and any incarceration that happened prior to birth is excluded. The remaining variables of the study are all constructed from varying waves of the adolescent survey. Parental rejection, along with control variables for age, race, parental socioeconomic status, neighborhood effects, delinquent peers, and prior delinquent behavior are all constructed using Wave I data. To increase causal inference, the negative emotion of anger and the mediating variable of mastery are measured during Wave II. Lastly, delinquent behavior is measured at Wave III. Results of the analysis show expected relationships such that adolescent males encountering maternal incarceration show increased perception of parental rejection and excessive discipline. Additionally, there is a positive relationship between parental rejection and excessive discipline at Wave I and feelings of anger at Wave II for males. For males experiencing either of these strains in Wave I, feelings of anger in Wave II are found to be associated with increased delinquent behavior in Wave III. Mastery was found to mediate the relationship between both parental rejection and excessive discipline and anger, but no such mediation occurs in the relationship between anger and delinquency, regardless of the strain being experienced. These findings suggest adolescent males who feel they are in control of their own lives are less likely to experience negative emotions produced by the occurrence of strain, thereby decreasing male engagement in delinquent behavior later in life.

Keywords: delinquency, mastery, maternal incarceration, strain

Procedia PDF Downloads 133
80 Self-Organizing Maps for Exploration of Partially Observed Data and Imputation of Missing Values in the Context of the Manufacture of Aircraft Engines

Authors: Sara Rejeb, Catherine Duveau, Tabea Rebafka

Abstract:

To monitor the production process of turbofan aircraft engines, multiple measurements of various geometrical parameters are systematically recorded on manufactured parts. Engine parts are subject to extremely high standards as they can impact the performance of the engine. Therefore, it is essential to analyze these databases to better understand the influence of the different parameters on the engine's performance. Self-organizing maps are unsupervised neural networks which achieve two tasks simultaneously: they visualize high-dimensional data by projection onto a 2-dimensional map and provide clustering of the data. This technique has become very popular for data exploration since it provides easily interpretable results and a meaningful global view of the data. As such, self-organizing maps are usually applied to aircraft engine condition monitoring. As databases in this field are huge and complex, they naturally contain multiple missing entries for various reasons. The classical Kohonen algorithm to compute self-organizing maps is conceived for complete data only. A naive approach to deal with partially observed data consists in deleting items or variables with missing entries. However, this requires a sufficient number of complete individuals to be fairly representative of the population; otherwise, deletion leads to a considerable loss of information. Moreover, deletion can also induce bias in the analysis results. Alternatively, one can first apply a common imputation method to create a complete dataset and then apply the Kohonen algorithm. However, the choice of the imputation method may have a strong impact on the resulting self-organizing map. Our approach is to address simultaneously the two problems of computing a self-organizing map and imputing missing values, as these tasks are not independent. In this work, we propose an extension of self-organizing maps for partially observed data, referred to as missSOM. First, we introduce a criterion to be optimized, that aims at defining simultaneously the best self-organizing map and the best imputations for the missing entries. As such, missSOM is also an imputation method for missing values. To minimize the criterion, we propose an iterative algorithm that alternates the learning of a self-organizing map and the imputation of missing values. Moreover, we develop an accelerated version of the algorithm by entwining the iterations of the Kohonen algorithm with the updates of the imputed values. This method is efficiently implemented in R and will soon be released on CRAN. Compared to the standard Kohonen algorithm, it does not come with any additional cost in terms of computing time. Numerical experiments illustrate that missSOM performs well in terms of both clustering and imputation compared to the state of the art. In particular, it turns out that missSOM is robust to the missingness mechanism, which is in contrast to many imputation methods that are appropriate for only a single mechanism. This is an important property of missSOM as, in practice, the missingness mechanism is often unknown. An application to measurements on one type of part is also provided and shows the practical interest of missSOM.

Keywords: imputation method of missing data, partially observed data, robustness to missingness mechanism, self-organizing maps

Procedia PDF Downloads 151
79 Consumers Attitude toward the Latest Trends in Decreasing Energy Consumption of Washing Machine

Authors: Farnaz Alborzi, Angelika Schmitz, Rainer Stamminger

Abstract:

Reducing water temperatures in the wash phase of a washing programme and increasing the overall cycle durations are the latest trends in decreasing energy consumption of washing programmes. Since the implementation of the new energy efficiency classes in 2010, manufacturers seem to apply the aforementioned washing strategy with lower temperatures combined with longer programme durations extensively to realise energy-savings needed to meet the requirements of the highest energy efficiency class possible. A semi-representative on-line survey in eleven European countries (Czech Republic, Finland, France, Germany, Hungary, Italy, Poland, Romania, Spain, Sweden and the United Kingdom) was conducted by Bonn University in 2015 to shed light on consumer opinion and behaviour regarding the effects of the lower washing temperature and longer cycle duration in laundry washing on consumers’ acceptance of the programme. The risk of the long wash cycle is that consumers might not use the energy efficient Standard programmes and will think of this option as inconvenient and therefore switch to shorter, but more energy consuming programmes. Furthermore, washing in a lower temperature may lead to the problem of cross-contamination. Washing behaviour of over 5,000 households was studied in this survey to provide support and guidance for manufacturers and policy designers. Qualified households were chosen following a predefined quota: -Involvement in laundry washing: substantial, -Distribution of gender: more than 50 % female , -Selected age groups: -20–39 years, -40–59 years, -60–74 years, -Household size: 1, 2, 3, 4 and more than 4 people. Furthermore, Eurostat data for each country were used to calculate the population distribution in the respective age class and household size as quotas for the consumer survey distribution in each country. Before starting the analyses, the validity of each dataset was controlled with the aid of control questions. After excluding the outlier data, the number of the panel diminished from 5,100 to 4,843. The primary outcome of the study is European consumers are willing to save water and energy in a laundry washing but reluctant to use long programme cycles since they don’t believe that the long cycles could be energy-saving. However, the results of our survey don’t confirm that there is a relation between frequency of using Standard cotton (Eco) or Energy-saving programmes and the duration of the programmes. It might be explained by the fact that the majority of washing programmes used by consumers do not take so long, perhaps consumers just choose some additional time reduction option when selecting those programmes and this finding might be changed if the Energy-saving programmes take longer. Therefore, it may be assumed that introducing the programme duration as a new measure on a revised energy label would strongly influence the consumer at the point of sale. Furthermore, results of the survey confirm that consumers are more willing to use lower temperature programmes in order to save energy than accepting longer programme cycles and majority of them accept deviation from the nominal temperature of the programme as long as the results are good.

Keywords: duration, energy-saving, standard programmes, washing temperature

Procedia PDF Downloads 221
78 Learning the History of a Tuscan Village: A Serious Game Using Geolocation Augmented Reality

Authors: Irene Capecchi, Tommaso Borghini, Iacopo Bernetti

Abstract:

An important tool for the enhancement of cultural sites is serious games (SG), i.e., games designed for educational purposes; SG is applied in cultural sites through trivia, puzzles, and mini-games for participation in interactive exhibitions, mobile applications, and simulations of past events. The combination of Augmented Reality (AR) and digital cultural content has also produced examples of cultural heritage recovery and revitalization around the world. Through AR, the user perceives the information of the visited place in a more real and interactive way. Another interesting technological development for the revitalization of cultural sites is the combination of AR and Global Positioning System (GPS), which integrated have the ability to enhance the user's perception of reality by providing historical and architectural information linked to specific locations organized on a route. To the author’s best knowledge, there are currently no applications that combine GPS AR and SG for cultural heritage revitalization. The present research focused on the development of an SG based on GPS and AR. The study area is the village of Caldana in Tuscany, Italy. Caldana is a fortified Renaissance village; the most important architectures are the walls, the church of San Biagio, the rectory, and the marquis' palace. The historical information is derived from extensive research by the Department of Architecture at the University of Florence. The storyboard of the SG is based on the history of the three characters who built the village: marquis Marcello Agostini, who was commissioned by Cosimo I de Medici, Grand Duke of Tuscany, to build the village, his son Ippolito and his architect Lorenzo Pomarelli. The three historical characters were modeled in 3D using the freeware MakeHuman and imported into Blender and Mixamo to associate a skeleton and blend shapes to have gestural animations and reproduce lip movement during speech. The Unity Rhubarb Lip Syncer plugin was used for the lip sync animation. The historical costumes were created by Marvelous Designer. The application was developed using the Unity 3D graphics and game engine. The AR+GPS Location plugin was used to position the 3D historical characters based on GPS coordinates. The ARFoundation library was used to display AR content. The SG is available in two versions: for children and adults. the children's version consists of finding a digital treasure consisting of valuable items and historical rarities. Players must find 9 village locations where 3D AR models of historical figures explaining the history of the village provide clues. To stimulate players, there are 3 levels of rewards for every 3 clues discovered. The rewards consist of AR masks for archaeologist, professor, and explorer. At the adult level, the SG consists of finding the 16 historical landmarks in the village, and learning historical and architectural information interactively and engagingly. The application is being tested on a sample of adults and children. Test subjects will be surveyed on a Likert scale to find out their perceptions of using the app and the learning experience between the guided tour and interaction with the app.

Keywords: augmented reality, cultural heritage, GPS, serious game

Procedia PDF Downloads 95
77 Teachers’ Language Insecurity in English as a Second Language Instruction: Developing Effective In-Service Training

Authors: Mamiko Orii

Abstract:

This study reports on primary school second language teachers’ sources of language insecurity. Furthermore, it aims to develop an in-service training course to reduce anxiety and build sufficient English communication skills. Language/Linguistic insecurity refers to a lack of confidence experienced by language speakers. In particular, second language/non-native learners often experience insecurity, influencing their learning efficacy. While language learner insecurity has been well-documented, research on the insecurity of language teaching professionals is limited. Teachers’ language insecurity or anxiety in target language use may adversely affect language instruction. For example, they may avoid classroom activities requiring intensive language use. Therefore, understanding teachers’ language insecurity and providing continuing education to help teachers to improve their proficiency is vital to improve teaching quality. This study investigated Japanese primary school teachers’ language insecurity. In Japan, teachers are responsible for teaching most subjects, including English, which was recently added as compulsory. Most teachers have never been professionally trained in second language instruction during college teacher certificate preparation, leading to low confidence in English teaching. Primary source of language insecurity is a lack of confidence regarding English communication skills. Their actual use of English in classrooms remains unclear. Teachers’ classroom speech remains a neglected area requiring improvement. A more refined programme for second language teachers could be constructed if we can identify areas of need. Two questionnaires were administered to primary school teachers in Tokyo: (1) Questionnaire A: 396 teachers answered questions (using a 5-point scale) concerning classroom teaching anxiety and general English use and needs for in-service training (Summer 2021); (2) Questionnaire B: 20 teachers answered detailed questions concerning their English use (Autumn 2022). Questionnaire A’s responses showed that over 80% of teachers have significant language insecurity and anxiety, mainly when speaking English in class or teaching independently. Most teachers relied on a team-teaching partner (e.g., ALT) and avoided speaking English. Over 70% of the teachers said they would like to participate in training courses in classroom English. Questionnaire B’s results showed that teachers could use simple classroom English, such as greetings and basic instructions (e.g., stand up, repeat after me), and initiate conversation (e.g., asking questions). In contrast, teachers reported that conversations were mainly carried on in a simple question-answer style. They had difficulty continuing conversations. Responding to learners’ ‘on-the-spot’ utterances was particularly difficult. Instruction in turn-taking patterns suitable in the classroom communication context is needed. Most teachers received grammar-based instruction during their entire English education. They were predominantly exposed to displayed questions and form-focused corrective feedback. Therefore, strategies such as encouraging teachers to ask genuine questions (i.e., referential questions) and responding to students with content feedback are crucial. When learners’ utterances are incorrect or unsatisfactory, teachers should rephrase or extend (recast) them instead of offering explicit corrections. These strategies support a continuous conversational flow. These results offer benefits beyond Japan’s English as a second Language context. They will be valuable in any context where primary school teachers are underprepared but must provide English-language instruction.

Keywords: english as a second/non-native language, in-service training, primary school, teachers’ language insecurity

Procedia PDF Downloads 68
76 Electrical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: electrical disaggregation, DTW, general appliance modeling, event detection

Procedia PDF Downloads 78
75 Deep Learning Framework for Predicting Bus Travel Times with Multiple Bus Routes: A Single-Step Multi-Station Forecasting Approach

Authors: Muhammad Ahnaf Zahin, Yaw Adu-Gyamfi

Abstract:

Bus transit is a crucial component of transportation networks, especially in urban areas. Any intelligent transportation system must have accurate real-time information on bus travel times since it minimizes waiting times for passengers at different stations along a route, improves service reliability, and significantly optimizes travel patterns. Bus agencies must enhance the quality of their information service to serve their passengers better and draw in more travelers since people waiting at bus stops are frequently anxious about when the bus will arrive at their starting point and when it will reach their destination. For solving this issue, different models have been developed for predicting bus travel times recently, but most of them are focused on smaller road networks due to their relatively subpar performance in high-density urban areas on a vast network. This paper develops a deep learning-based architecture using a single-step multi-station forecasting approach to predict average bus travel times for numerous routes, stops, and trips on a large-scale network using heterogeneous bus transit data collected from the GTFS database. Over one week, data was gathered from multiple bus routes in Saint Louis, Missouri. In this study, Gated Recurrent Unit (GRU) neural network was followed to predict the mean vehicle travel times for different hours of the day for multiple stations along multiple routes. Historical time steps and prediction horizon were set up to 5 and 1, respectively, which means that five hours of historical average travel time data were used to predict average travel time for the following hour. The spatial and temporal information and the historical average travel times were captured from the dataset for model input parameters. As adjacency matrices for the spatial input parameters, the station distances and sequence numbers were used, and the time of day (hour) was considered for the temporal inputs. Other inputs, including volatility information such as standard deviation and variance of journey durations, were also included in the model to make it more robust. The model's performance was evaluated based on a metric called mean absolute percentage error (MAPE). The observed prediction errors for various routes, trips, and stations remained consistent throughout the day. The results showed that the developed model could predict travel times more accurately during peak traffic hours, having a MAPE of around 14%, and performed less accurately during the latter part of the day. In the context of a complicated transportation network in high-density urban areas, the model showed its applicability for real-time travel time prediction of public transportation and ensured the high quality of the predictions generated by the model.

Keywords: gated recurrent unit, mean absolute percentage error, single-step forecasting, travel time prediction.

Procedia PDF Downloads 72