Search results for: verbal learning
5749 Learning Programming for Hearing Impaired Students via an Avatar
Authors: Nihal Esam Abuzinadah, Areej Abbas Malibari, Arwa Abdulaziz Allinjawi, Paul Krause
Abstract:
Deaf and hearing-impaired students face many obstacles throughout their education, especially with learning applied sciences such as computer programming. In addition, there is no clear signs in the Arabic Sign Language that can be used to identify programming logic terminologies such as while, for, case, switch etc. However, hearing disabilities should not be a barrier for studying purpose nowadays, especially with the rapid growth in educational technology. In this paper, we develop an Avatar based system to teach computer programming to deaf and hearing-impaired students using Arabic Signed language with new signs vocabulary that is been developed for computer programming education. The system is tested on a number of high school students and results showed the importance of visualization in increasing the comprehension or understanding of concepts for deaf students through the avatar.Keywords: hearing-impaired students, isolation, self-esteem, learning difficulties
Procedia PDF Downloads 1455748 Investigating the Factors Affecting Generalization of Deep Learning Models for Plant Disease Detection
Authors: Praveen S. Muthukumarana, Achala C. Aponso
Abstract:
A large percentage of global crop harvest is lost due to crop diseases. Timely identification and treatment of crop diseases is difficult in many developing nations due to insufficient trained professionals in the field of agriculture. Many crop diseases can be accurately diagnosed by visual symptoms. In the past decade, deep learning has been successfully utilized in domains such as healthcare but adoption in agriculture for plant disease detection is rare. The literature shows that models trained with popular datasets such as PlantVillage does not generalize well on real world images. This paper attempts to find out how to make plant disease identification models that generalize well with real world images.Keywords: agriculture, convolutional neural network, deep learning, plant disease classification, plant disease detection, plant disease diagnosis
Procedia PDF Downloads 1465747 Learners as Consultants: Knowledge Acquisition and Client Organisations-A Student as Producer Case Study
Authors: Barry Ardley, Abi Hunt, Nick Taylor
Abstract:
As a theoretical and practical framework, this study uses the student-as-producer approach to learning in higher education, as adopted by the Lincoln International Business School, University of Lincoln, UK. Students as producer positions learners as skilled and capable agents, able to participate as partners with tutors in live research projects. To illuminate the nature of this approach to learning and to highlight its critical issues, the authors report on two guided student consultancy projects. These were set up with the assistance of two local organisations in the city of Lincoln, UK. Using the student as a producer model to deliver the projects enabled learners to acquire and develop a range of key skills and knowledge not easily accessible in more traditional educational settings. This paper presents a systematic case study analysis of the eight organising principles of the student-as-producer model, as adopted by university tutors. The experience of tutors implementing students as producers suggests that the model can be widely applied to benefit not only the learning and teaching experiences of higher education students and staff but additionally a university’s research programme and its community partners.Keywords: consultancy, learning, student as producer, research
Procedia PDF Downloads 785746 Corpus Linguistic Methods in a Theoretical Study of Quran Verb Tense and Aspect in Translations from Arabic to English
Authors: Jawharah Alasmari
Abstract:
In inflectional morphology of verb, tense and aspect indicate action’s time either past/present or future and their period whether completed or not. The usage and meaning of tense and aspect differ in Arabic and English, therefore is no simple one -to- one mapping from an Arabic verb inflected form an appropriate English translation depends on a range of features, including immediate and wider context of use. The Quranic Arabic Corpus includes seven alternative expertly crafted English translations of each Arabic verses, which provides a test dataset for the study of appropriate Arabic to English translations of verb tense and aspect. We applied Corpus Linguistics Methods in a theoretical study of exemplary verbs, to elicit candidate verbal contexts which influence the choice of English inflection for each verse.Keywords: Corpus linguistics methods, Arabic verb, tense and aspect, English translations
Procedia PDF Downloads 3925745 Machine Learning for Aiding Meningitis Diagnosis in Pediatric Patients
Authors: Karina Zaccari, Ernesto Cordeiro Marujo
Abstract:
This paper presents a Machine Learning (ML) approach to support Meningitis diagnosis in patients at a children’s hospital in Sao Paulo, Brazil. The aim is to use ML techniques to reduce the use of invasive procedures, such as cerebrospinal fluid (CSF) collection, as much as possible. In this study, we focus on predicting the probability of Meningitis given the results of a blood and urine laboratory tests, together with the analysis of pain or other complaints from the patient. We tested a number of different ML algorithms, including: Adaptative Boosting (AdaBoost), Decision Tree, Gradient Boosting, K-Nearest Neighbors (KNN), Logistic Regression, Random Forest and Support Vector Machines (SVM). Decision Tree algorithm performed best, with 94.56% and 96.18% accuracy for training and testing data, respectively. These results represent a significant aid to doctors in diagnosing Meningitis as early as possible and in preventing expensive and painful procedures on some children.Keywords: machine learning, medical diagnosis, meningitis detection, pediatric research
Procedia PDF Downloads 1515744 Improving Similarity Search Using Clustered Data
Authors: Deokho Kim, Wonwoo Lee, Jaewoong Lee, Teresa Ng, Gun-Ill Lee, Jiwon Jeong
Abstract:
This paper presents a method for improving object search accuracy using a deep learning model. A major limitation to provide accurate similarity with deep learning is the requirement of huge amount of data for training pairwise similarity scores (metrics), which is impractical to collect. Thus, similarity scores are usually trained with a relatively small dataset, which comes from a different domain, causing limited accuracy on measuring similarity. For this reason, this paper proposes a deep learning model that can be trained with a significantly small amount of data, a clustered data which of each cluster contains a set of visually similar images. In order to measure similarity distance with the proposed method, visual features of two images are extracted from intermediate layers of a convolutional neural network with various pooling methods, and the network is trained with pairwise similarity scores which is defined zero for images in identical cluster. The proposed method outperforms the state-of-the-art object similarity scoring techniques on evaluation for finding exact items. The proposed method achieves 86.5% of accuracy compared to the accuracy of the state-of-the-art technique, which is 59.9%. That is, an exact item can be found among four retrieved images with an accuracy of 86.5%, and the rest can possibly be similar products more than the accuracy. Therefore, the proposed method can greatly reduce the amount of training data with an order of magnitude as well as providing a reliable similarity metric.Keywords: visual search, deep learning, convolutional neural network, machine learning
Procedia PDF Downloads 2155743 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction
Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh
Abstract:
Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction
Procedia PDF Downloads 1715742 Quantitative and Qualitative Analysis: Predicting and Improving Students’ Summative Assessment Math Scores at the National College for Nuclear
Authors: Abdelmenen Abobghala, Mahmud Ahmed, Mohamed Alwaheshi, Anwar Fanan, Meftah Mehdawi, Ahmed Abuhatira
Abstract:
This research aims to predict academic performance and identify weak points in students to aid teachers in understanding their learning needs. Both quantitative and qualitative methods are used to identify difficult test items and the factors causing difficulties. The study uses interventions like focus group discussions, interviews, and action plans developed by the students themselves. The research questions explore the predictability of final grades based on mock exams and assignments, the student's response to action plans, and the impact on learning performance. Ethical considerations are followed, respecting student privacy and maintaining anonymity. The research aims to enhance student engagement, motivation, and responsibility for learning.Keywords: prediction, academic performance, weak points, understanding, learning, quantitative methods, qualitative methods, formative assessments, feedback, emotional responses, intervention, focus group discussion, interview, action plan, student engagement, motivation, responsibility, ethical considerations
Procedia PDF Downloads 675741 Forecasting the Temperature at a Weather Station Using Deep Neural Networks
Authors: Debneil Saha Roy
Abstract:
Weather forecasting is a complex topic and is well suited for analysis by deep learning approaches. With the wide availability of weather observation data nowadays, these approaches can be utilized to identify immediate comparisons between historical weather forecasts and current observations. This work explores the application of deep learning techniques to weather forecasting in order to accurately predict the weather over a given forecast horizon. Three deep neural networks are used in this study, namely, Multi-Layer Perceptron (MLP), Long Short Tunn Memory Network (LSTM) and a combination of Convolutional Neural Network (CNN) and LSTM. The predictive performance of these models is compared using two evaluation metrics. The results show that forecasting accuracy increases with an increase in the complexity of deep neural networks.Keywords: convolutional neural network, deep learning, long short term memory, multi-layer perceptron
Procedia PDF Downloads 1775740 Model Canvas and Process for Educational Game Design in Outcome-Based Education
Authors: Ratima Damkham, Natasha Dejdumrong, Priyakorn Pusawiro
Abstract:
This paper explored the solution in game design to help game designers in the educational game designing using digital educational game model canvas (DEGMC) and digital educational game form (DEGF) based on Outcome-based Education program. DEGMC and DEGF can help designers develop an overview of the game while designing and planning their own game. The way to clearly assess players’ ability from learning outcomes and support their game learning design is by using the tools. Designers can balance educational content and entertainment in designing a game by using the strategies of the Business Model Canvas and design the gameplay and players’ ability assessment from learning outcomes they need by referring to the Constructive Alignment. Furthermore, they can use their design plan in this research to write their Game Design Document (GDD). The success of the research was evaluated by four experts’ perspectives in the education and computer field. From the experiments, the canvas and form helped the game designers model their game according to the learning outcomes and analysis of their own game elements. This method can be a path to research an educational game design in the future.Keywords: constructive alignment, constructivist theory, educational game, outcome-based education
Procedia PDF Downloads 3545739 Learning Grammars for Detection of Disaster-Related Micro Events
Authors: Josef Steinberger, Vanni Zavarella, Hristo Tanev
Abstract:
Natural disasters cause tens of thousands of victims and massive material damages. We refer to all those events caused by natural disasters, such as damage on people, infrastructure, vehicles, services and resource supply, as micro events. This paper addresses the problem of micro - event detection in online media sources. We present a natural language grammar learning algorithm and apply it to online news. The algorithm in question is based on distributional clustering and detection of word collocations. We also explore the extraction of micro-events from social media and describe a Twitter mining robot, who uses combinations of keywords to detect tweets which talk about effects of disasters.Keywords: online news, natural language processing, machine learning, event extraction, crisis computing, disaster effects, Twitter
Procedia PDF Downloads 4785738 Analysing Tertiary Lecturers’ Teaching Practices and Their English Major Students’ Learning Practices with Information and Communication Technology (ICT) Utilization in Promoting Higher-Order Thinking Skills (HOTs)
Authors: Malini Ganapathy, Sarjit Kaur
Abstract:
Maximising learning with higher-order thinking skills with Information and Communications Technology (ICT) has been deep-rooted and emphasised in various developed countries such as the United Kingdom, the United States of America and Singapore. The transformation of the education curriculum in the Malaysia Education Development Plan (PPPM) 2013-2025 focuses on the concept of Higher Order Thinking (HOT) skills which aim to produce knowledgeable students who are critical and creative in their thinking and can compete at the international level. HOT skills encourage students to apply, analyse, evaluate and think creatively in and outside the classroom. In this regard, the National Education Blueprint (2013-2025) is grounded based on high-performing systems which promote a transformation of the Malaysian education system in line with the vision of Malaysia’s National Philosophy in achieving educational outcomes which are of world class status. This study was designed to investigate ESL students’ learning practices on the emphasis of promoting HOTs while using ICT in their curricula. Data were collected using a stratified random sampling where 100 participants were selected to take part in the study. These respondents were a group of undergraduate students who undertook ESL courses in a public university in Malaysia. A three-part questionnaire consisting of demographic information, students’ learning experience and ICT utilization practices was administered in the data collection process. Findings from this study provide several important insights on students’ learning experiences and ICT utilization in developing HOT skills.Keywords: English as a second language students, critical and creative thinking, learning, information and communication technology and higher order thinking skills
Procedia PDF Downloads 4905737 Fostering Students' Engagement with Historical Issues Surrounding the Field of Graphic Design
Authors: Sara Corvino
Abstract:
The aim of this study is to explore the potential of inclusive learning and assessment strategies to foster students' engagement with historical debates surrounding the field of graphic design. The goal is to respond to the diversity of L4 Graphic Design students, at Nottingham Trent University, in a way that instead of 'lowering standards' can benefit everyone. This research tests, measures, and evaluates the impact of a specific intervention, an assessment task, to develop students' critical visual analysis skills and stimulate a deeper engagement with the subject matter. Within the action research approach, this work has followed a case study research method to understand students' views and perceptions of a specific project. The primary methods of data collection have been: anonymous electronic questionnaire and a paper-based anonymous critical incident questionnaire. NTU College of Business Law and Social Sciences Research Ethics Committee granted the Ethical approval for this research in November 2019. Other methods used to evaluate the impact of this assessment task have been Evasys's report and students' performance. In line with the constructivist paradigm, this study embraces an interpretative and contextualized analysis of the collected data within the triangulation analytical framework. The evaluation of both qualitative and quantitative data demonstrates that active learning strategies and the disruption of thinking patterns can foster greater students' engagement and can lead to meaningful learning.Keywords: active learning, assessment for learning, graphic design, higher education, student engagement
Procedia PDF Downloads 1785736 Cardiovascular Disease Prediction Using Machine Learning Approaches
Abstract:
It is estimated that heart disease accounts for one in ten deaths worldwide. United States deaths due to heart disease are among the leading causes of death according to the World Health Organization. Cardiovascular diseases (CVDs) account for one in four U.S. deaths, according to the Centers for Disease Control and Prevention (CDC). According to statistics, women are more likely than men to die from heart disease as a result of strokes. A 50% increase in men's mortality was reported by the World Health Organization in 2009. The consequences of cardiovascular disease are severe. The causes of heart disease include diabetes, high blood pressure, high cholesterol, abnormal pulse rates, etc. Machine learning (ML) can be used to make predictions and decisions in the healthcare industry. Thus, scientists have turned to modern technologies like Machine Learning and Data Mining to predict diseases. The disease prediction is based on four algorithms. Compared to other boosts, the Ada boost is much more accurate.Keywords: heart disease, cardiovascular disease, coronary artery disease, feature selection, random forest, AdaBoost, SVM, decision tree
Procedia PDF Downloads 1535735 Accelerating Quantum Chemistry Calculations: Machine Learning for Efficient Evaluation of Electron-Repulsion Integrals
Authors: Nishant Rodrigues, Nicole Spanedda, Chilukuri K. Mohan, Arindam Chakraborty
Abstract:
A crucial objective in quantum chemistry is the computation of the energy levels of chemical systems. This task requires electron-repulsion integrals as inputs, and the steep computational cost of evaluating these integrals poses a major numerical challenge in efficient implementation of quantum chemical software. This work presents a moment-based machine-learning approach for the efficient evaluation of electron-repulsion integrals. These integrals were approximated using linear combinations of a small number of moments. Machine learning algorithms were applied to estimate the coefficients in the linear combination. A random forest approach was used to identify promising features using a recursive feature elimination approach, which performed best for learning the sign of each coefficient but not the magnitude. A neural network with two hidden layers were then used to learn the coefficient magnitudes along with an iterative feature masking approach to perform input vector compression, identifying a small subset of orbitals whose coefficients are sufficient for the quantum state energy computation. Finally, a small ensemble of neural networks (with a median rule for decision fusion) was shown to improve results when compared to a single network.Keywords: quantum energy calculations, atomic orbitals, electron-repulsion integrals, ensemble machine learning, random forests, neural networks, feature extraction
Procedia PDF Downloads 1145734 Sense Environmental Hormones in Elementary School Teachers and Their in Service Learning Motivation
Authors: Fu-Chi Chuang, Yu-Liang, Chang, Wen-Der Wang
Abstract:
Our environment has been contaminated by many artificial chemicals, such as plastics, pesticides. Many of them have hormone-like activity and are classified as 'environmental hormone (also named endocrine disruptors)'. These chemicals interfere with or mimic hormones have adverse effects that persist into adulthood. Environmental education is an important way to teach students to become engaged in real-world issues that transcend classroom walls. Elementary education is the first stage to perform environmental education and it is an important component to help students develop adequate environmental knowledge, attitudes, and behavior. However, elementary teachers' knowledge plays a critical role in this mission. Therefore, we use a questionnaire to survey the knowledge of environmental hormone of elementary school teachers and their learning motivation of the environmental hormone-regarding knowledge. We collected 218 questionnaires from Taiwanese elementary teachers and the results indicate around 73% of elementary teachers do not have enough knowledge about environmental hormones. Our results also reveal the in-service elementary teachers’ learning motivation of environmental hormones knowledge is positively enhanced once they realized their insufficient cognitive ability of environmental hormones. We believe our study will provide the powerful reference for Ministry of Education to set up the policy of environmental education to enrich all citizens sufficient knowledge of the effects of the environmental hormone on organisms, and further to enhance our correct environmental behaviors.Keywords: elementary teacher, environmental hormones, learning motivation, questionnaire
Procedia PDF Downloads 3135733 ePA-Coach: Design of the Intelligent Virtual Learning Coach for Senior Learners in Support of Digital Literacy in the Context of Electronic Patient Record
Authors: Ilona Buchem, Carolin Gellner
Abstract:
Over the last few years, the call for the support of senior learners in the development of their digital literacy has become prevalent, mainly due to the progression towards ageing societies paired with advances in digitalisation in all spheres of life, including e-health and electronic patient record (EPA). While major research efforts in supporting senior learners in developing digital literacy have been invested so far in e-learning focusing on knowledge acquisition and cognitive tasks, little research exists in learning models which target virtual mentoring and coaching with the help of pedagogical agents and address the social dimensions of learning. Research from studies with students in the context of formal education has already provided methods for designing intelligent virtual agents in support of personalised learning. However, this research has mostly focused on cognitive skills and has not yet been applied to the context of mentoring/coaching of senior learners, who have different characteristics and learn in different contexts. In this paper, we describe how insights from previous research can be used to develop an intelligent virtual learning coach (agent) for senior learners with a focus on building the social relationship between the agent and the learner and the key task of the agent to socialize learners to the larger context of digital literacy with a focus on electronic health records. Following current approaches to mentoring and coaching, the agent is designed not to enhance and monitor the cognitive performance of the learner but to serve as a trusted friend and advisor, whose role is to provide one-to-one guidance and support sharing of experiences among learners (peers). Based on literature review and synopsis of research on virtual agents and current coaching/mentoring models under consideration of the specific characteristics and requirements of senior learners, we describe the design framework which was applied to design an intelligent virtual learning coach as part of the e-learning system for digital literacy of senior learners in the ePA-Coach project founded by the German Ministry of Education and Research. This paper also presents the results from the evaluation study, which compared the use of the first prototype of the virtual learning coach designed according to the design framework with a voice narration in a multimedia learning environment with senior learners. The focus of the study was to validate the agent design in the context of the persona effect (Lester et al., 1997). Since the persona effect is related to the hypothesis that animated agents are perceived as more socially engaging, the study evaluated possible impacts of agent coaching in comparison with voice coaching on motivation, engagement, experience, and digital literacy.Keywords: virtual learning coach, virtual mentor, pedagogical agent, senior learners, digital literacy, electronic health records
Procedia PDF Downloads 1175732 An Embarrassingly Simple Semi-supervised Approach to Increase Recall in Online Shopping Domain to Match Structured Data with Unstructured Data
Authors: Sachin Nagargoje
Abstract:
Complete labeled data is often difficult to obtain in a practical scenario. Even if one manages to obtain the data, the quality of the data is always in question. In shopping vertical, offers are the input data, which is given by advertiser with or without a good quality of information. In this paper, an author investigated the possibility of using a very simple Semi-supervised learning approach to increase the recall of unhealthy offers (has badly written Offer Title or partial product details) in shopping vertical domain. The author found that the semisupervised learning method had improved the recall in the Smart Phone category by 30% on A=B testing on 10% traffic and increased the YoY (Year over Year) number of impressions per month by 33% at production. This also made a significant increase in Revenue, but that cannot be publicly disclosed.Keywords: semi-supervised learning, clustering, recall, coverage
Procedia PDF Downloads 1225731 Open Educational Resources (OER): Deciding upon Openness
Authors: Eunice H. Li
Abstract:
This e-poster explores some of the issues that are linked to Open Educational Resources (OER). It describes how OER is explained by experts in the field and relates its value in attaining and using knowledge. ‘Open', 'open pedagogy', self-direction, freedom, and autonomy are the main issues identified for the discussion. All of these issues make essential contributions to OER in one way or another. Nevertheless, there are seemingly areas of contentions with regard to applying these concepts in teaching and learning practices. For this e-Poster, it is the teaching-learning aspects of OER that it is primarily concerned with. The basis for the discussion comes from a 2013 critique of OER presented by Jeremy Knox of the University of Edinburgh, tutor of the MSc in Digital Education Programme. This discussion is also supported by the analysis of other research work and papers in this area. The general view on OER is that it is a useful tool for the advancement of learner-centred models of education, but in whatever context, pedagogy cannot be diminished and overlooked. It should take into consideration how to deal with the issues identified above in order to allow learners to gain full benefit from OER.Keywords: open, pedagogy, e-learning technologies, autonomy, knowledge
Procedia PDF Downloads 4005730 Francophone University Students' Attitudes Towards English Accents in Cameroon
Authors: Eric Agrie Ambele
Abstract:
The norms and models for learning pronunciation in relation to the teaching and learning of English pronunciation are key issues nowadays in English Language Teaching in ESL contexts. This paper discusses these issues based on a study on the attitudes of some Francophone university students in Cameroon towards three English accents spoken in Cameroon: Cameroon Francophone English (CamFE), Cameroon English (CamE), and Hyperlectal Cameroon English (near standard British English). With the desire to know more about the treatment that these English accents receive among these students, an aspect that had hitherto received little attention in the literature, a language attitude questionnaire, and the matched-guise technique was used to investigate this phenomenon. Two methods of data analysis were employed: (1) the percentage count procedure, and (2) the semantic differential scale. The findings reveal that the participants’ attitudes towards the selected accents vary in degree. Though Hyperlectal CamE emerged first, CamE second and CamFE third, no accent, on average, received a negative evaluation. It can be deduced from this findings that, first, CamE is gaining more and more recognition and can stand as an autonomous accent; second, that the participants all rated Hyperlectal CamE higher than CamE implies that they would be less motivated in a context where CamE is the learning model. By implication, in the teaching of English pronunciation to francophone learners learning English in Cameroon, Hyperlectal Cameroon English should be the model.Keywords: teaching pronunciation, English accents, Francophone learners, attitudes
Procedia PDF Downloads 1975729 Enhancing Higher Education Teaching and Learning Processes: Examining How Lecturer Evaluation Make a Difference
Authors: Daniel Asiamah Ameyaw
Abstract:
This research attempts to investigate how lecturer evaluation makes a difference in enhancing higher education teaching and learning processes. The research questions to guide this research work states first as, “What are the perspectives on the difference made by evaluating academic teachers in order to enhance higher education teaching and learning processes?” and second, “What are the implications of the findings for Policy and Practice?” Data for this research was collected mainly through interviewing and partly documents review. Data analysis was conducted under the framework of grounded theory. The findings showed that for individual lecturer level, lecturer evaluation provides a continuous improvement of teaching strategies, and serves as source of data for research on teaching. At the individual student level, it enhances students learning process; serving as source of information for course selection by students; and by making students feel recognised in the educational process. At the institutional level, it noted that lecturer evaluation is useful in personnel and management decision making; it assures stakeholders of quality teaching and learning by setting up standards for lecturers; and it enables institutions to identify skill requirement and needs as a basis for organising workshops. Lecturer evaluation is useful at national level in terms of guaranteeing the competencies of graduates who then provide the needed manpower requirement of the nation. Besides, it mentioned that resource allocation to higher educational institution is based largely on quality of the programmes being run by the institution. The researcher concluded, that the findings have implications for policy and practice, therefore, higher education managers are expected to ensure that policy is implemented as planned by policy-makers so that the objectives can successfully be achieved.Keywords: academic quality, higher education, lecturer evaluation, teaching and learning processes
Procedia PDF Downloads 1435728 [Keynote Talk]: Study of Cooperative Career Education between Universities and Companies
Authors: Azusa Katsumata
Abstract:
Where there is collaboration between universities and companies in the educational context, companies seek ‘knowledge’ from universities and provide a ‘place of practice’ to them. Several universities have introduced activities aimed at the mutual enlightenment of a diversity of people in career education. However, several programs emphasize on delivering results, and on practicing the prepared materials as planned. Few programs focus on unexpected failures and setbacks. This way of learning is important in career education so that classmates can help each other, overcome difficulties, draw out each other’s strengths, and learn from them. Seijo University in Tokyo offered Tokyo Tourism, a Project-Based Learning course, as a first-year career education course until 2016. In cooperation with a travel agency, students participate in planning actual tourism products for foreigners visiting Japan, undertake tours serving as guides. This paper aims to study the 'learning platform' created by a series of processes such as the fieldwork, planning tours, the presentation, selling the tourism products, and guiding the tourists. We conducted a questionnaire to measure the development of work-related skills in class. From the results of the questionnaire, we can see, in the example of this class, that students demonstrated an increased desire to be pro-active and an improved motivation to learn. Students have not, however, acquired policy or business skills. This is appropriate for first-year careers education, but we need to consider how this can be incorporated into future courses. In the questionnaire filled out by the students after the class, the following results were found. Planning and implementing travel products while learning from each other, and helping the teams has led to improvements in the student workforce. This course is a collaborative project between Japanese universities and the 2020 Tokyo Olympics and Paralympic Games committee.Keywords: university career education, platform of learning, project-based learning, collaboration between university and company
Procedia PDF Downloads 1615727 Parents’ Experiences in Using Mobile Tablets with Their Child with Autism to Encourage the Development of Social Communication Skills: The Development of a Parents’ Guide
Authors: Chrysoula Mangafa
Abstract:
Autism is a lifelong condition that affects how individuals interact with others and make sense of the world around them. The two core difficulties associated with autism are difficulties in social communication and interaction, and the manifestation of restricted, repetitive patterns of behaviour. However, children with autism may also have many talents and special interests among which is their affinity with digital technologies. Despite the increasing use of mobile tablets in schools and homes and the children’s motivation in using them, there is limited guidance on how to use the tablets to teach children with autism-specific skills. This study aims to fill this gap in knowledge by providing guidelines about the ways in which iPads and other tablets can be used by parents/carers and their child at home to support the development of social communication skills. Semi-structured interviews with 10 parents of primary school aged children with autism were conducted with the aim to explore their experiences in using mobile devices, such as iPads and Android tablets, and social activities with their children to create opportunities for social communication development. The interview involved questions about the parents’ knowledge and experience in autism, their understanding of social communication skills, the use of technology at home, and their links with the child’s school. Qualitative analysis of the interviews showed that parents used a variety of strategies to boost their child’s social communication skills. Among these strategies were a) the use of communication symbols, b) the use of the child’s special interest as motivator to gain their attention, and c) allowing time to their child to respond. It was also found that parents engaged their child in joint activities such as cooking, role play and creating social stories together on the device. Seven out of ten parents mentioned that the tablet is a motivating tool that can be used to teach social communication skills, nonetheless all parents raised concerns over screen time and their child’s sharing difficulties. The need for training and advice as well as building stronger links with their child’s school was highlighted. In particular, it was mentioned that recommendations would be welcomed about how parents can address their child’s difficulties in initiating or sustaining a conversation, taking turns and sharing, understanding other people’s feelings and facial expressions, and showing interest to other people. The findings of this study resulted in the development of a parents’ guide based on evidence-based practice and the participants’ experiences and concerns. The proposed guidelines aim to urge parents to feel more confident in using the tablet with their child in more collaborative ways. In particular, the guide offers recommendations about how to develop verbal and non-verbal communication, gives examples of tablet-based activities to interact and create things together, as well as it offers suggestions on how to provide a worry-free tablet experience and how to connect with the school.Keywords: families, perception and cognition in early development, school-age intervention, social development
Procedia PDF Downloads 1615726 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning
Authors: Walid Cherif
Abstract:
Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.Keywords: data mining, knowledge discovery, machine learning, similarity measurement, supervised classification
Procedia PDF Downloads 4655725 Minimizing Learning Difficulties in Teaching Mathematics
Authors: Hari Sharan Pandit
Abstract:
Mathematics teaching in Nepal has been centralized and guided by the notion of transfer of knowledge and skills from teachers to students. The overemphasis on an algorithm-centric approach of mathematics teaching and the focus on ‘rote–learning’ as the ultimate way of solving mathematical problems since the early years of schooling have been creating severe problems in school-level mathematics in Nepal. In this context, the author argues that students should learn real-world mathematical problems through various interesting, creative and collaborative, as well as artistic and alternative ways of knowing. The collaboration-incorporated pedagogy is an distinct pedagogical approach that offers a better alternative as an integrated and interdisciplinary approach to learning that encourages students to think more broadly and critically about real-world problems. The paper, as a summarized report of action research designed, developed and implemented by the author, focuses on the needs and usefulness of collaboration-incorporated pedagogy in the Nepali context to make mathematics teaching more meaningful for producing creative and critical citizens. This paper is useful for mathematics teachers, teacher educators and researchers who argue on arts integration in mathematics teaching.Keywords: algorithm-centric, rote-learning, collaboration - incorporated pedagogy, action research
Procedia PDF Downloads 135724 Differentiated Instruction for All Learners: Strategies for Full Inclusion
Authors: Susan Dodd
Abstract:
This presentation details the methodology for teachers to identify and support a population of students who have historically been overlooked in regards to their educational needs. The twice exceptional (2e) student is a learner who is considered gifted and also has a learning disability, as defined by the Individuals with Disabilities Education Act (IDEA). Many of these students remain underserved throughout their educational careers because their exceptionalities may mask each other, resulting in a special population of students who are not achieving to their fullest potential. There are three common scenarios that may make the identification of a 2e student challenging. First, the student may have been identified as gifted, and her disability may go unnoticed. She could also be considered an under-achiever, or she may be able to compensate for her disability under the school works becomes more challenging. In the second scenario, the student may be identified as having a learning disability and is only receiving remedial services where his giftedness will not be highlighted. His overall IQ scores may be misleading because they were impacted by his learning disability. In the third scenario, the student is able to compensate for her ability well enough to maintain average scores, and she goes undetected as both gifted and learning disabled. Research in the area identifies the complexity involved in identifying 2e students, and how multiple forms of assessment are required. It is important for teachers to be aware of the common characteristics exhibited by many 2e students, so these learners can be identified and appropriately served. Once 2e students have been identified, teachers are then challenged to meet the varying needs of these exceptional learners. Strength-based teaching entails simultaneously providing gifted instruction as well as individualized accommodations for those students. Research in this field has yielded strategies that have proven helpful for teaching 2e students, as well as other students who may be struggling academically. Differentiated instruction, while necessary in all classrooms, is especially important for 2e students, as is encouragement for academic success. Teachers who take the time to really know their students will have a better understanding of each student’s strengths and areas for growth, and therefore tailor instruction to extend the intellectual capacities for optimal achievement. Teachers should also understand that some learning activities can prove very frustrating to students, and these activities can be modified based on individual student needs. Because 2e students can often become discouraged by their learning challenges, it is especially important for teachers to assist students in recognizing their own strengths and maintaining motivation for learning. Although research on the needs of 2e students has spanned across two decades, this population remains underserved in many educational institutions. Teacher awareness of the identification of and the support strategies for 2e students is critical for their success.Keywords: gifted, learning disability, special needs, twice exceptional
Procedia PDF Downloads 1795723 An Experimental Study of Self-Regulated Learning with High School Gifted Pupils
Authors: Prakash Singh
Abstract:
Research studies affirm the view that gifted pupils are endowed with unique personality traits, enabling them to study at higher levels of thinking, at a faster pace, and with a greater degree of autonomy than their average counterparts. The focus of this study was whether high school gifted pupils are capable of studying an advanced level curriculum on their own by employing self-regulated learning (SRL) strategies. To be self-regulated, pupils are required to be metacognitively, motivationally, and behaviourally active participants in their own learning processes so that they are able to initiate and direct their personal curriculum efforts to acquire cognitive skills and knowledge, instead of being solely reliant on their teachers. Researchers working with gifted populations concede that limited studies have been conducted thus far to examine gifted pupils’ expertise in using SRL strategies to assume ownership of their learning. In order to conduct this investigation, an enriched module in Accounting for specifically gifted grade eleven pupils was developed, incorporating advanced level content, and use was made of the Post-test-Only Control Group Design to accomplish this research objective. The results emanating from this empirical study strongly suggest that SRL strategies can be employed to overcome a narrow, rigid approach that limits the education of gifted pupils in the regular classroom of the high school. SRL can meaningfully offer an alternative way to implement an advanced level curriculum for the gifted in the mainstream of education. This can be achieved despite the limitations of differentiation in the regular classroom.Keywords: advanced level curriculum, high school gifted pupils, self-regulated learning, teachers’ professional competencies
Procedia PDF Downloads 4025722 Development of an Instructional Model for Health Education Based On Social Cognitive Theory and Strategic Life Planning to Enhance Self-Regulation and Learning Achievement of Lower Secondary School Students
Authors: Adisorn Bansong, Walai Isarankura Na Ayudhaya, Aumporn Makanong
Abstract:
A Development of an Instructional Model for Health Education was the aim to develop and study the effectiveness of an instructional model for health education to enhance self-regulation and learning achievement of lower secondary school students. It was the Quasi-Experimental Designs, used a Single-group Interrupted Time-series Designs, conducted by 2 phases: 1. To develop an instructional model based on Social Cognitive Theory and Strategic Life Planning. 2. To trial and evaluate effectiveness of an instructional model. The results as the following: i. An Instructional Model for Health Education consists of five main components: a) Attention b) Forethought c) Tactic Planning d) Execution and e) Reflection. ii. After an Instructional Model for Health Education has used for a semester trial, found the 4.07 percent of sample’s Self-Regulation higher and learning achievement on post-test were significantly higher than pre-test at .05 levels (p = .033, .000).Keywords: social cognitive theory, strategic life planning, self-regulation, learning achievement
Procedia PDF Downloads 4655721 Spatial Conceptualization in French and Italian Speakers: A Contrastive Approach in the Context of the Linguistic Relativity Theory
Authors: Camilla Simoncelli
Abstract:
The connection between language and cognition has been one of the main interests of linguistics from several years. According to the Sapir-Whorf Linguistic Relativity Theory, the way we perceive reality depends on the language we speak which in turn has a central role in the human cognition. This paper is in line with this research work with the aim of analyzing how language structures reflect on our cognitive abilities even in the description of space, which is generally considered as a human natural and universal domain. The main objective is to identify the differences in the encoding of spatial inclusion relationships in French and Italian speakers to make evidence that a significant variation exists at various levels even in two similar systems. Starting from the constitution a corpora, the first step of the study has been to establish the relevant complex prepositions marking an inclusion relation in French and Italian: au centre de, au cœur de, au milieu de, au sein de, à l'intérieur de and the opposition entre/parmi in French; al centro di, al cuore di, nel mezzo di, in seno a, all'interno di and the fra/tra contrast in Italian. These prepositions had been classified on the base of the type of Noun following them (e.g. mass nouns, concrete nouns, abstract nouns, body-parts noun, etc.) following the Collostructional Analysis of lexemes with the purpose of analyzing the preferred construction of each preposition comparing the relations construed. Comparing the Italian and the French results it has been possible to define the degree of representativeness of each target Noun for the chosen preposition studied. Lexicostatistics and Statistical Association Measures showed the values of attraction or repulsion between lexemes and a given preposition, highlighting which words are over-represented or under-represented in a specific context compared to the expected results. For instance, a Noun as Dibattiti has a negative value for the Italian Al cuore di (-1,91), but it has a strong positive representativeness for the corresponding French Au cœur de (+677,76). The value, positive or negative, is the result of a hypergeometric distribution law which displays the current use of some relevant nouns in relations of spatial inclusion by French and Italian speakers. Differences on the kind of location conceptualization denote syntactic and semantic constraints based on spatial features as well as on linguistic peculiarity, too. The aim of this paper is to demonstrate that the domain of spatial relations is basic to human experience and is linked to universally shared perceptual mechanisms which create mental representations depending on the language use. Therefore, linguistic coding strongly correlates with the way spatial distinctions are conceptualized for non-verbal tasks even in close language systems, like Italian and French.Keywords: cognitive semantics, cross-linguistic variations, locational terms, non-verbal spatial representations
Procedia PDF Downloads 1135720 Enhancing Critical Reflective Practice in Fieldwork Education: An Exploratory Study of the Role of Social Work Agencies in the Welfare Context of Hong Kong
Authors: Yee-May Chan
Abstract:
In recent decades, it is observed that social work agencies have participated actively, and thus, have gradually been more influential in social work education in Hong Kong. The neo-liberal welfare ideologies and changing funding mode have transformed the landscape in social work practice and have also had a major influence on the fieldwork environment in Hong Kong. The aim of this research is to explore the educational role of social work agencies and examine in particular whether they are able to enhance or hinder critical reflective learning in fieldwork. In-depth interviews with 15 frontline social workers and managers in different social work agencies were conducted to collect their views and experience in helping social work students in fieldwork. The overall findings revealed that under the current social welfare context most social workers consider that the most important role of social work agencies in fieldwork is to help students prepare to fit-in the practice requirements and work within agencies’ boundary. The fit-for-purpose and down-to-earth view of fieldwork practice is seen as prevalent among most social workers. This narrow perception of agency’s role seems to be more favourable to competence-based approaches. In contrast, though critical reflection has been seen as important in addressing the changing needs of service users, the role of enhancing critical reflective learning has not been clearly expected or understood by most agency workers. The notion of critical reflection, if considered, has been narrowly perceived in fieldwork learning. The findings suggest that the importance of critical reflection is found to be subordinate to that of practice competence. The lack of critical reflection in the field is somehow embedded in the competence-based social work practice. In general, social work students’ critical reflection has not been adequately supported or enhanced in fieldwork agencies, nor critical reflective practice has been encouraged in fieldwork process. To address this situation, the role of social work agencies in fieldwork should be re-examined. To maximise critical reflective learning in the field, critical reflection as an avowed objective in fieldwork learning should be clearly stated. Concrete suggestions are made to help fieldwork agencies become more prepared to critical reflective learning. It is expected that the research can help social work communities to reflect upon the current realities of fieldwork context and to identify ways to strengthen agencies’ capacities to enhance critical reflective learning and practice of social work students.Keywords: competence-based social work, critical reflective learning, fieldwork agencies, neo-liberal welfare
Procedia PDF Downloads 321