Search results for: nonparametric geographically weighted regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3909

Search results for: nonparametric geographically weighted regression

2109 The Impact of Job Meaningfulness on the Relationships between Job Autonomy, Supportive Organizational Climate, and Job Satisfaction

Authors: Sashank Nyapati, Laura Lorente-Prieto, Maria Peiro

Abstract:

The general objective of this study is to analyse the mediating role of meaningfulness in the relationships between job autonomy and job satisfaction and supportive organizational climate and job satisfaction. Theories such as the Job Characteristics Model, Conservation of Resources theory, as well as the Job Demands-Resources theory were used as theoretical framework. Data was obtained from the 5th European Working Conditions Survey (EWCS), and sample was composed of 1005 and 1000 workers from Spain and Portugal respectively. The analysis was conducted using the SOBEL Macro for SPSS (A multiple regression mediation model) developed by Preacher and Hayes in 2003. Results indicated that Meaningfulness partially mediates both the Job Autonomy-Job Satisfaction as well as the Supportive Organizational Climate-Job Satisfaction relationships. However, the percentages are large enough to draw substantial conclusions, especially that Job Meaningfulness plays an essential – if indirect – role in the amount of Satisfaction that one experiences at work. Some theoretical and practical implications are discussed.

Keywords: meaningfulness, job autonomy, supportive organizational climate, job satisfaction

Procedia PDF Downloads 536
2108 Cash Flow Position and Corporate Performance: A Study of Selected Manufacturing Companies in Nigeria

Authors: Uzoma Emmanuel Igboji

Abstract:

The study investigates the effects of cash flow position on corporate performance in the manufacturing sector of Nigeria, using multiple regression techniques. The study involved a survey of five (5) manufacturing companies quoted on the Nigerian Stock Exchange. The data were obtained from the annual reports of the selected companies under study. The result shows that operating and financing cash flow have a significant positive relationship with corporate performance, while investing cash flow position have a significant negative relationship. The researcher recommended that the regulatory authorities should encourage external auditors of these quoted companies to use cash flow ratios in evaluating the performance of a company before expressing an independent opinion on the financial statement. The will give detailed financial information to existing and potential investors to make informed economic decisions.

Keywords: cash flow, financing, performance, operating

Procedia PDF Downloads 315
2107 The Use of Bituminaria bituminosa (L.) Stirton and Microbial Biotechnologies for Restoration of Degraded Pastoral Lands: The Case of the Middle Atlas of Morocco

Authors: O. Zennouhi, M. El Mderssa, J. Ibijbijen, E. Bouiamrine, L. Nassiri

Abstract:

Rangelands and silvopastoral systems of the middle Atlas are under a heavy pressure, which led to pasture degradation, invasion by non-palatable and toxic species and edaphic aridification due to the regression of the global vegetation cover. In this situation, the introduction of multipurpose leguminous shrubs, such as Bituminaria bituminosa (L.) Stirton, commonly known as bituminous clover, could be a promising socio-ecological alternative for the rehabilitation of these degraded areas. The application of biofertilizers like plant growth promoting rhizobacteria especially phosphate solubilizing bacteria (PSB) can ensure a successful installation of this plant in the selected degraded areas. The main objective of the present work is to produce well-inoculated seedlings using the best efficient PSB strains in the greenhouse to increase their ability to resist to environmental constraints once transplanted to the field in the central Middle Atlas.

Keywords: biofertilizers, bituminaria bituminosa, phosphate solubilizing bacteria, rehabilitation

Procedia PDF Downloads 151
2106 External Validation of Established Pre-Operative Scoring Systems in Predicting Response to Microvascular Decompression for Trigeminal Neuralgia

Authors: Kantha Siddhanth Gujjari, Shaani Singhal, Robert Andrew Danks, Adrian Praeger

Abstract:

Background: Trigeminal neuralgia (TN) is a heterogenous pain syndrome characterised by short paroxysms of lancinating facial pain in the distribution of the trigeminal nerve, often triggered by usually innocuous stimuli. TN has a low prevalence of less than 0.1%, of which 80% to 90% is caused by compression of the trigeminal nerve from an adjacent artery or vein. The root entry zone of the trigeminal nerve is most sensitive to neurovascular conflict (NVC), causing dysmyelination. Whilst microvascular decompression (MVD) is an effective treatment for TN with NVC, all patients do not achieve long-term pain relief. Pre-operative scoring systems by Panczykowski and Hardaway have been proposed but have not been externally validated. These pre-operative scoring systems are composite scores calculated according to a subtype of TN, presence and degree of neurovascular conflict, and response to medical treatments. There is discordance in the assessment of NVC identified on pre-operative magnetic resonance imaging (MRI) between neurosurgeons and radiologists. To our best knowledge, the prognostic impact for MVD of this difference of interpretation has not previously been investigated in the form of a composite scoring system such as those suggested by Panczykowski and Hardaway. Aims: This study aims to identify prognostic factors and externally validate the proposed scoring systems by Panczykowski and Hardaway for TN. A secondary aim is to investigate the prognostic difference between a neurosurgeon's interpretation of NVC on MRI compared with a radiologist’s. Methods: This retrospective cohort study included 95 patients who underwent de novo MVD in a single neurosurgical unit in Melbourne. Data was recorded from patients’ hospital records and neurosurgeon’s correspondence from perioperative clinic reviews. Patient demographics, type of TN, distribution of TN, response to carbamazepine, neurosurgeon, and radiologist interpretation of NVC on MRI, were clearly described prospectively and preoperatively in the correspondence. Scoring systems published by Panczykowski et al. and Hardaway et al. were used to determine composite scores, which were compared with the recurrence of TN recorded during follow-up over 1-year. Categorical data analysed using Pearson chi-square testing. Independent numerical and nominal data analysed with logistical regression. Results: Logistical regression showed that a Panczykowski composite score of greater than 3 points was associated with a higher likelihood of pain-free outcome 1-year post-MVD with an OR 1.81 (95%CI 1.41-2.61, p=0.032). The composite score using neurosurgeon’s impression of NVC had an OR 2.96 (95%CI 2.28-3.31, p=0.048). A Hardaway composite score of greater than 2 points was associated with a higher likelihood of pain-free outcome 1 year post-MVD with an OR 3.41 (95%CI 2.58-4.37, p=0.028). The composite score using neurosurgeon’s impression of NVC had an OR 3.96 (95%CI 3.01-4.65, p=0.042). Conclusion: Composite scores developed by Panczykowski and Hardaway were validated for the prediction of response to MVD in TN. A composite score based on the neurosurgeon’s interpretation of NVC on MRI, when compared with the radiologist’s had a greater correlation with pain-free outcomes 1 year post-MVD.

Keywords: de novo microvascular decompression, neurovascular conflict, prognosis, trigeminal neuralgia

Procedia PDF Downloads 74
2105 Determination of the Bank's Customer Risk Profile: Data Mining Applications

Authors: Taner Ersoz, Filiz Ersoz, Seyma Ozbilge

Abstract:

In this study, the clients who applied to a bank branch for loan were analyzed through data mining. The study was composed of the information such as amounts of loans received by personal and SME clients working with the bank branch, installment numbers, number of delays in loan installments, payments available in other banks and number of banks to which they are in debt between 2010 and 2013. The client risk profile was examined through Classification and Regression Tree (CART) analysis, one of the decision tree classification methods. At the end of the study, 5 different types of customers have been determined on the decision tree. The classification of these types of customers has been created with the rating of those posing a risk for the bank branch and the customers have been classified according to the risk ratings.

Keywords: client classification, loan suitability, risk rating, CART analysis

Procedia PDF Downloads 338
2104 Native Language Identification with Cross-Corpus Evaluation Using Social Media Data: ’Reddit’

Authors: Yasmeen Bassas, Sandra Kuebler, Allen Riddell

Abstract:

Native language identification is one of the growing subfields in natural language processing (NLP). The task of native language identification (NLI) is mainly concerned with predicting the native language of an author’s writing in a second language. In this paper, we investigate the performance of two types of features; content-based features vs. content independent features, when they are evaluated on a different corpus (using social media data “Reddit”). In this NLI task, the predefined models are trained on one corpus (TOEFL), and then the trained models are evaluated on different data using an external corpus (Reddit). Three classifiers are used in this task; the baseline, linear SVM, and logistic regression. Results show that content-based features are more accurate and robust than content independent ones when tested within the corpus and across corpus.

Keywords: NLI, NLP, content-based features, content independent features, social media corpus, ML

Procedia PDF Downloads 137
2103 Impact of Microfinance in Promoting Rural Economic Growth in Nigeria

Authors: Udeh Anastasia Ifeoma

Abstract:

The need to develop the rural areas in developing countries where there have been decades of neglect are on the increase. It is against this background that this paper examined the impact of micro finance contribution to Nigeria’s gross domestic product. Time series data for 12-years period 1999-2010 were collated from Central Bank of Nigeria published annual reports. The least squares (LS) regression was used to analyze the data. The result revealed that microfinance activities have negative and non-significant contribution to gross domestic product in Nigeria. The paper recommends that rural poverty is often a product of poor infrastructural facilities; therefore government should make a conscious effort towards industrializing the rural areas thereby motivating the micro finance institutions to locate their offices and extend credit facilities to rural areas thereby improving rural economic growth.

Keywords: microfinance, rural economic growth, Nigeria, developing countries

Procedia PDF Downloads 451
2102 Design and Development of Hybrid Rocket Motor

Authors: Aniket Aaba Kadam, Manish Mangesh Panchal, Roushan Ashit Sharma

Abstract:

This project focuses on the design and development of a lab-scale hybrid rocket motor to accurately determine the regression rate of a fuel/oxidizer combination consisting of solid paraffin and gaseous oxygen (GOX). Hybrid motors offer the advantage of on-demand thrust control over both solid and liquid systems in certain applications. The thermodynamic properties of the propellant combination were calculated using NASA CEA at different chamber pressures and corresponding O/F values to determine initial operating conditions with suitable peak temperatures and optimal O/F values. The project also includes the design of the injector orifice and the determination of the final design configurations of the motor casing, pressure control setup, and valve configuration. This research will be valuable in advancing the understanding of paraffin-based propulsion and improving the performance of hybrid rocket motors.

Keywords: hybrid rocket, NASA CEA, injector, thrust control

Procedia PDF Downloads 103
2101 Prediction of Dubai Financial Market Stocks Movement Using K-Nearest Neighbor and Support Vector Regression

Authors: Abdulla D. Alblooshi

Abstract:

The stock market is a representation of human behavior and psychology, such as fear, greed, and discipline. Those are manifested in the form of price movements during the trading sessions. Therefore, predicting the stock movement and prices is a challenging effort. However, those trading sessions produce a large amount of data that can be utilized to train an AI agent for the purpose of predicting the stock movement. Predicting the stock market price action will be advantageous. In this paper, the stock movement data of three DFM listed stocks are studied using historical price movements and technical indicators value and used to train an agent using KNN and SVM methods to predict the future price movement. MATLAB Toolbox and a simple script is written to process and classify the information and output the prediction. It will also compare the different learning methods and parameters s using metrics like RMSE, MAE, and R².

Keywords: KNN, ANN, style, SVM, stocks, technical indicators, RSI, MACD, moving averages, RMSE, MAE

Procedia PDF Downloads 171
2100 Predictors of Response to Interferone Therapy in Chronic Hepatitis C Virus Infection

Authors: Ali Kassem, Ehab Fawzy, Mahmoud Sef el-eslam, Fatma Salah- Eldeen, El zahraa Mohamed

Abstract:

Introduction: The combination of interferon (INF) and ribavirin is the preferred treatment for chronic hepatitis C viral (HCV) infection. However, nonresponse to this therapy remains common and is associated with several factors such as HCV genotype and HCV viral load in addition to host factors such as sex, HLA type and cytokine polymorphisms. Aim of the work: The aim of this study was to determine predictors of response to (INF) therapy in chronic HCV infected patients treated with INF alpha and ribavirin combination therapy. Patients and Methods: The present study included 110 patients (62 males, 48 females) with chronic HCV infection. Their ages ranged from 20-59 years. Inclusion criteria were organized according to the protocol of the Egyptian National Committee for control of viral hepatitis. Patients included in this study were recruited to receive INF ribavirin combination therapy; 54 patients received pegylated NF α-2a (180 μg) and weight based ribavirin therapy (1000 mg if < 75 kg, 1200 mg if > 75 kg) for 48 weeks and 53 patients received pegylated INF α-2b (1.5 ug/kg/week) and weight based ribavirin therapy (800 mg if < 65 kg, 1000 mg if 65-75 kg and 1200 mg if > 75kg). One hundred and seven liver biopsies were included in the study and submitted to histopathological examination. Hematoxylin and eosin (H&E) stained sections were done to assess both the grade and the stage of chronic viral hepatitis, in addition to the degree of steatosis. Modified hepatic activity index (HAI) grading, modified Ishak staging and Metavir grading and staging systems were used. Laboratory follow up including: HCV PCR at the 12th week to assess the early virologic response (EVR) and at the 24th week were done. At the end of the course: HCV PCR was done at the end of the course and tested 6 months later to document end virologic response (ETR) and sustained virologic response (SVR) respectively. Results One hundred seven patients; 62 males (57.9 %) and 45 females (42.1%) completed the course and included in this study. The age of patients ranged from 20-59 years with a mean of 40.39±10.03 years. Six months after the end of treatment patients were categorized into two groups: Group (1): patients who achieved sustained virological response (SVR). Group (2): patients who didn't achieve sustained virological response (non SVR) including non-responders, breakthrough and relapsers. In our study, 58 (54.2%) patients showed SVR, 18 (16.8%) patients were non-responders, 15 (14%) patients showed break-through and 16 (15 %) patients were relapsers. Univariate binary regression analysis of the possible risk factors of non SVR showed that the significant factors were higher age, higher fasting insulin level, higher Metavir stage and higher grade of hepatic steatosis. Multivariate binary regression analysis showed that the only independent risk factor for non SVR was high fasting insulin level. Conclusion: Younger age, lower Metavir stage, lower steatosis grade and lower fasting insulin level are good predictors of SVR and could be used in predicting the treatment response of pegylated interferon/ribavirin therapy.

Keywords: chronic HCV infection, interferon ribavirin combination therapy, predictors to antiviral therapy, treatment response

Procedia PDF Downloads 396
2099 College Students’ Multitasking and Its Causes

Authors: Huey-Wen Chou, Shuo-Heng Liang

Abstract:

This study focuses on studying college students’ multitasking with cellphones/laptops during lectures. In-class multitasking behavior is defined as the activities students engaged that are irrelevant to learning. This study aims to understand if students' learning engagement affects students' multitasking as well as to investigate the causes or motivations that contribute to the occurrence of multitasking behavior. Survey data were collected and analyzed by PLS method and multiple regression to test the research model and hypothesis. Major results include: 1. Students' multitasking motivation positively predicts students’ in-class multitasking. 2. Factors affecting multitasking in class, including efficiency, entertainment and social needs, significantly impact on multitasking. 3. Polychronic personality traits will positively predict students’ multitasking. 4. Students' classroom learning engagement negatively predicts multitasking. 5. Course attributes negatively predict student learning engagement and positively predict student multitasking.

Keywords: engagement, monochronic personality, multitasking, learning, personality traits

Procedia PDF Downloads 133
2098 Knowledge Discovery and Data Mining Techniques in Textile Industry

Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler

Abstract:

This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.

Keywords: data mining, textile production, decision trees, classification

Procedia PDF Downloads 349
2097 The Mediation Effect of Customer Satisfaction in the Relationship between Service Quality, Corporate Image to Customer Loyalty

Authors: Rizwan Ali, Hammad Zafar

Abstract:

The purpose of this research is to investigate the mediation effect of customer satisfaction in the relationship between service quality, corporate image to customer loyalty, in Pakistan banking sector. The population of this research is banking customers and sample size of 210 respondents. This research uses the SPSS, Correlation, ANOVA and regression analysis techniques along with AMOS methods. The service quality and corporate image applied by the banks are not all variables can directly affect customer loyalty, but must first going through satisfaction. Which means that banks must first need to understand what the customer basic needs through variable service quality and corporate image so that the customers feel loyal when the level of satisfaction is resolved. The service quality provided by the banking industry needs to be improved in order to improve customer satisfaction and loyalty of banking services, especially for banks in Pakistan.

Keywords: customer loyalty, service quality, corporate image, customer satisfaction

Procedia PDF Downloads 103
2096 Estimation of the Acute Toxicity of Halogenated Phenols Using Quantum Chemistry Descriptors

Authors: Khadidja Bellifa, Sidi Mohamed Mekelleche

Abstract:

Phenols and especially halogenated phenols represent a substantial part of the chemicals produced worldwide and are known as aquatic pollutants. Quantitative structure–toxicity relationship (QSTR) models are useful for understanding how chemical structure relates to the toxicity of chemicals. In the present study, the acute toxicities of 45 halogenated phenols to Tetrahymena Pyriformis are estimated using no cost semi-empirical quantum chemistry methods. QSTR models were established using the multiple linear regression technique and the predictive ability of the models was evaluated by the internal cross-validation, the Y-randomization and the external validation. Their structural chemical domain has been defined by the leverage approach. The results show that the best model is obtained with the AM1 method (R²= 0.91, R²CV= 0.90, SD= 0.20 for the training set and R²= 0.96, SD= 0.11 for the test set). Moreover, all the Tropsha’ criteria for a predictive QSTR model are verified.

Keywords: halogenated phenols, toxicity mechanism, hydrophobicity, electrophilicity index, quantitative stucture-toxicity relationships

Procedia PDF Downloads 301
2095 Class-Size and Instructional Materials as Correlates of Pupils Learning and Academic Achievement in Primary School

Authors: Aanuoluwapo Olusola Adesanya, Adesina Joseph

Abstract:

This paper examined the class-size and instructional materials as correlates of pupils learning and academic achievement in primary school. The population of the study comprised 198 primary school pupils in three selected schools in Ogun State, Nigeria. Data were collected through questionnaire and were analysed with the use of multiple regression and ANOVA to analysed the correlation between class-size, instructional materials (independent variables) and learning achievement (dependent variable). The findings revealed that schools having an average class-size of 30 and below with use of instructional materials obtained better results than schools having more than 30 and above. The main score were higher in the school in schools having 30 and below than schools with 30 and above. It was therefore recommended that government, stakeholders and NGOs should provide more classrooms and supply of adequate instructional materials in all primary schools in the state to cater for small class-size.

Keywords: class-size, instructional materials, learning, academic achievement

Procedia PDF Downloads 350
2094 Biodegradable Polymeric Vesicles Containing Magnetic Nanoparticles, Quantum Dots and Anticancer Drugs for Drug Delivery and Imaging

Authors: Fei Ye, Åsa Barrefelt, Manuchehr Abedi-Valugerdi, Khalid M. Abu-Salah, Salman A. Alrokayan, Mamoun Muhammed, Moustapha Hassan

Abstract:

With appropriate encapsulation in functional nanoparticles drugs are more stable in physiological environment and the kinetics of the drug can be more carefully controlled and monitored. Furthermore, targeted drug delivery can be developed to improve chemotherapy in cancer treatment, not only by enhancing intracellular uptake by target cells but also by reducing the adverse effects in non-target organs. Inorganic imaging agents, delivered together with anti-cancer drugs, enhance the local imaging contrast and provide precise diagnosis as well as evaluation of therapy efficacy. We have developed biodegradable polymeric vesicles as a nanocarrier system for multimodal bio-imaging and anticancer drug delivery. The poly (lactic-co-glycolic acid) PLGA) vesicles were fabricated by encapsulating inorganic imaging agents of superparamagnetic iron oxide nanoparticles (SPION), manganese-doped zinc sulfide (MN:ZnS) quantum dots (QDs) and the anticancer drug busulfan into PLGA nanoparticles via an emulsion-evaporation method. T2-weighted magnetic resonance imaging (MRI) of PLGA-SPION-Mn:ZnS phantoms exhibited enhanced negative contrast with r2 relaxivity of approximately 523 s-1 mM-1 Fe. Murine macrophage (J774A) cellular uptake of PLGA vesicles started fluorescence imaging at 2 h and reached maximum intensity at 24 h incubation. The drug delivery ability PLGA vesicles was demonstrated in vitro by release of busulfan. PLGA vesicles degradation was studied in vitro, showing that approximately 32% was degraded into lactic and glycolic acid over a period of 5 weeks. The biodistribution of PLGA vesicles was investigated in vivo by MRI in a rat model. Change of contrast in the liver could be visualized by MRI after 7 min and maximal signal loss detected after 4 h post-injection of PLGA vesicles. Histological studies showed that the presence of PLGA vesicles in organs was shifted from the lungs to the liver and spleen over time.

Keywords: biodegradable polymers, multifunctional nanoparticles, quantum dots, anticancer drugs

Procedia PDF Downloads 472
2093 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Pegah Eshraghi, Zahra Sadat Zomorodian, Mohammad Tahsildoost

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 98
2092 The Roles of Pay Satisfaction and Intent to Leave on Counterproductive Work Behavior among Non-Academic University Employees

Authors: Abiodun Musbau Lawal, Sunday Samson Babalola, Uzor Friday Ordu

Abstract:

Issue of employees counterproductive work behavior in government owned organization in emerging economies has continued to be a major concern. This study investigated the factors of pay satisfaction, intent to leave and age as predictors of counterproductive work behavior among non-academic employee in a Nigerian federal government owned university. A sample of 200 non-academic employees completed questionnaires. Hierarchical multiple regression was conducted to determine the contribution of each of the predictor variables on the criterion variable on counterproductive work behavior. Results indicate that age of participants (β = -.18; p < .05) significantly independently predicted CWB by accounting for 3% of the explained variance. Addition of pay satisfaction (β = -.14; p < .05) significantly accounted for 5% of the explained variance, while intent to leave (β = -.17; p < .05) further resulted in 8% of the explained variance in counterproductive work behavior. The importance of these findings with regards to reduction in counterproductive work behavior is highlighted.

Keywords: counterproductive, work behaviour, pay satisfaction, intent to leave

Procedia PDF Downloads 384
2091 Current Status and a Forecasting Model of Community Household Waste Generation: A Case Study on Ward 24 (Nirala), Khulna, Bangladesh

Authors: Md. Nazmul Haque, Mahinur Rahman

Abstract:

The objective of the research is to determine the quantity of household waste generated and forecast the future condition of Ward No 24 (Nirala). For performing that, three core issues are focused: (i) the capacity and service area of the dumping stations; (ii) the present waste generation amount per capita per day; (iii) the responsibility of the local authority in the household waste collection. This research relied on field survey-based data collection from all stakeholders and GIS-based secondary analysis of waste collection points and their coverage. However, these studies are mostly based on the inherent forecasting approaches, cannot predict the amount of waste correctly. The findings of this study suggest that Nirala is a formal residential area introducing a better approach to the waste collection - self-controlled and collection system. Here, a forecasting model proposed for waste generation as Y = -2250387 + 1146.1 * X, where X = year.

Keywords: eco-friendly environment, household waste, linear regression, waste management

Procedia PDF Downloads 285
2090 Relationship between Growth of Non-Performing Assets and Credit Risk Management Practices in Indian Banks

Authors: Sirus Sharifi, Arunima Haldar, S. V. D. Nageswara Rao

Abstract:

The study attempts to analyze the impact of credit risk management practices of Indian scheduled commercial banks on their non-performing assets (NPAs). The data on credit risk practices was collected by administering a questionnaire to risk managers/executives at different banks. The data on NPAs (from 2012 to 2016) is sourced from Prowess, a database compiled by the Centre for Monitoring Indian Economy (CMIE). The model was estimated using cross-sectional regression method. As expected, the findings suggest that there is a negative relationship between credit risk management and NPA growth in Indian banks. The study has implications for Indian banks given the high level of losses, and the implementation of Basel III norms by the central bank, i.e. Reserve Bank of India (RBI). Evidence on credit risk management in Indian banks, and their relationship with non-performing assets held by them.

Keywords: credit risk, identification, Indian Banks, NPAs, ownership

Procedia PDF Downloads 408
2089 Peer-To-Peer Lending and Macroeconomics: Searching for a Link

Authors: Asror Nigmonov Asqar Ogli, Sitora Inoyatova Amonovna

Abstract:

It has been a decade when the crowdfunding and P2P lending opportunities were created. Today, the market of these modern alternative investments is becoming increasingly complex to navigate. There are overwhelming amount of peer-to-peer lending platforms both in developed and emerging economies. This study looks into this market via the cross country empirical study. In this respect, it tests the effect of various macroeconomic factors on P2P loan lending. Based on the existing literature that largely lacks empirical investigations, it builds regression model that aims to explore the relationship between economy and P2P lending. Though the author found it extremely difficult to compare the findings with earlier studies, this paper had identified certain tendencies in the data and had certain policy implications. However, the paper could not find any significant effect of economic variables on P2P lending. The paper can be considered as a starting point in empirical investigation of P2P lending and highlights room further research based on limitations of the study.

Keywords: peer-to-peer lending, crowdfunding, marketplace lending, alternative finance, fintech

Procedia PDF Downloads 199
2088 The Effects of Corporate Governance on Firm’s Financial Performance: A Study of Family and Non-family Owned Firms in Pakistan

Authors: Saad Bin Nasir

Abstract:

This research will examine the impact of corporate governance on firm performance in family and non-family owned firms in Pakistan. For the purpose of this research, corporate governance mechanisms which included are board size, board composition, leadership structure, board meetings are taken as independent variable and firm performance taken as dependent variable and it will be measured with return on asset and return on equity. Firm size and firm’s age will be taken as control variables. Secondary data will collect from audited annul reports of companies and panel data regression model will applied, to check the impact of corporate governance on firm performance.

Keywords: board size, board composition, Leadership Structure, board meetings, firm performance, family and non-family owned firms

Procedia PDF Downloads 373
2087 Integrated Mass Rapid Transit (MRT) and Bus System in Singapore: MRT Ridership and the Provision of Feeder Bus Services

Authors: Devansh Jain, Shu Ting Goh

Abstract:

With the aim of improving the quality of life of people of Singapore with provision of better transport services, Land and Transport Authority Singapore recently published its Master Plan 2013. The major objectives mentioned in the plan were to make a comprehensive public transport network with better quality Mass Rapid Transit, bus services along with cycling and walking. MRT is the backbone of the transport system in Singapore, and to promote and increase the MRT ridership, good accessibility to access the MRT stations is a necessity. The aim of this paper is to investigate the relationship between MRT ridership and the provision of feeder bus services in Singapore planning areas and also to understand the hub and spoke model adopted by Singapore for provision of transport services. The findings of the study will lead to conclusions made from the Regression model developed by the various factors affecting MRT ridership, and hence will benefit to enhance the services provided by the system.

Keywords: quality of life, public transport, mass rapid transit, ridership

Procedia PDF Downloads 247
2086 Suitable Site Selection of Small Dams Using Geo-Spatial Technique: A Case Study of Dadu Tehsil, Sindh

Authors: Zahid Khalil, Saad Ul Haque, Asif Khan

Abstract:

Decision making about identifying suitable sites for any project by considering different parameters is difficult. Using GIS and Multi-Criteria Analysis (MCA) can make it easy for those projects. This technology has proved to be an efficient and adequate in acquiring the desired information. In this study, GIS and MCA were employed to identify the suitable sites for small dams in Dadu Tehsil, Sindh. The GIS software is used to create all the spatial parameters for the analysis. The parameters that derived are slope, drainage density, rainfall, land use / land cover, soil groups, Curve Number (CN) and runoff index with a spatial resolution of 30m. The data used for deriving above layers include 30-meter resolution SRTM DEM, Landsat 8 imagery, and rainfall from National Centre of Environment Prediction (NCEP) and soil data from World Harmonized Soil Data (WHSD). Land use/Land cover map is derived from Landsat 8 using supervised classification. Slope, drainage network and watershed are delineated by terrain processing of DEM. The Soil Conservation Services (SCS) method is implemented to estimate the surface runoff from the rainfall. Prior to this, SCS-CN grid is developed by integrating the soil and land use/land cover raster. These layers with some technical and ecological constraints are assigned weights on the basis of suitability criteria. The pairwise comparison method, also known as Analytical Hierarchy Process (AHP) is taken into account as MCA for assigning weights on each decision element. All the parameters and group of parameters are integrated using weighted overlay in GIS environment to produce suitable sites for the Dams. The resultant layer is then classified into four classes namely, best suitable, suitable, moderate and less suitable. This study reveals a contribution to decision-making about suitable sites analysis for small dams using geospatial data with minimal amount of ground data. This suitability maps can be helpful for water resource management organizations in determination of feasible rainwater harvesting structures (RWH).

Keywords: Remote sensing, GIS, AHP, RWH

Procedia PDF Downloads 389
2085 Impacts on Marine Ecosystems Using a Multilayer Network Approach

Authors: Nelson F. F. Ebecken, Gilberto C. Pereira, Lucio P. de Andrade

Abstract:

Bays, estuaries and coastal ecosystems are some of the most used and threatened natural systems globally. Its deterioration is due to intense and increasing human activities. This paper aims to monitor the socio-ecological in Brazil, model and simulate it through a multilayer network representing a DPSIR structure (Drivers, Pressures, States-Impacts-Responses) considering the concept of Management based on Ecosystems to support decision-making under the National/State/Municipal Coastal Management policy. This approach considers several interferences and can represent a significant advance in several scientific aspects. The main objective of this paper is the coupling of three different types of complex networks, the first being an ecological network, the second a social network, and the third a network of economic activities, in order to model the marine ecosystem. Multilayer networks comprise two or more "layers", which may represent different types of interactions, different communities, different points in time, and so on. The dependency between layers results from processes that affect the various layers. For example, the dispersion of individuals between two patches affects the network structure of both samples. A multilayer network consists of (i) a set of physical nodes representing entities (e.g., species, people, companies); (ii) a set of layers, which may include multiple layering aspects (e.g., time dependency and multiple types of relationships); (iii) a set of state nodes, each of which corresponds to the manifestation of a given physical node in a layer-specific; and (iv) a set of edges (weighted or not) to connect the state nodes among themselves. The edge set includes the intralayer edges familiar and interlayer ones, which connect state nodes between layers. The applied methodology in an existent case uses the Flow cytometry process and the modeling of ecological relationships (trophic and non-trophic) following fuzzy theory concepts and graph visualization. The identification of subnetworks in the fuzzy graphs is carried out using a specific computational method. This methodology allows considering the influence of different factors and helps their contributions to the decision-making process.

Keywords: marine ecosystems, complex systems, multilayer network, ecosystems management

Procedia PDF Downloads 113
2084 Physicochemical Properties of Pea Protein Isolate (PPI)-Starch and Soy Protein Isolate (SPI)-Starch Nanocomplexes Treated by Ultrasound at Different pH Values

Authors: Gulcin Yildiz, Hao Feng

Abstract:

Soybean proteins are the most widely used and researched proteins in the food industry. Due to soy allergies among consumers, however, alternative legume proteins having similar functional properties have been studied in recent years. These alternative proteins are also expected to have a price advantage over soy proteins. One such protein that has shown good potential for food applications is pea protein. Besides the favorable functional properties of pea protein, it also contains fewer anti-nutritional substances than soy protein. However, a comparison of the physicochemical properties of pea protein isolate (PPI)-starch nanocomplexes and soy protein isolate (SPI)-starch nanocomplexes treated by ultrasound has not been well documented. This study was undertaken to investigate the effects of ultrasound treatment on the physicochemical properties of PPI-starch and SPI-starch nanocomplexes. Pea protein isolate (85% pea protein) provided by Roquette (Geneva, IL, USA) and soy protein isolate (SPI, Pro-Fam® 955) obtained from the Archer Daniels Midland Company were adjusted to different pH levels (2-12) and treated with 5 minutes of ultrasonication (100% amplitude) to form complexes with starch. The soluble protein content was determined by the Bradford method using BSA as the standard. The turbidity of the samples was measured using a spectrophotometer (Lambda 1050 UV/VIS/NIR Spectrometer, PerkinElmer, Waltham, MA, USA). The volume-weighted mean diameters (D4, 3) of the soluble proteins were determined by dynamic light scattering (DLS). The emulsifying properties of the proteins were evaluated by the emulsion stability index (ESI) and emulsion activity index (EAI). Both the soy and pea protein isolates showed a U-shaped solubility curve as a function of pH, with a high solubility above the isoelectric point and a low one below it. Increasing the pH from 2 to 12 resulted in increased solubility for both the SPI and PPI-starch complexes. The pea nanocomplexes showed greater solubility than the soy ones. The SPI-starch nanocomplexes showed better emulsifying properties determined by the emulsion stability index (ESI) and emulsion activity index (EAI) due to SPI’s high solubility and high protein content. The PPI had similar or better emulsifying properties at certain pH values than the SPI. The ultrasound treatment significantly decreased the particle sizes of both kinds of nanocomplex. For all pH levels with both proteins, the droplet sizes were found to be lower than 300 nm. The present study clearly demonstrated that applying ultrasonication under different pH conditions significantly improved the solubility and emulsify¬ing properties of the SPI and PPI. The PPI exhibited better solubility and emulsifying properties than the SPI at certain pH levels

Keywords: emulsifying properties, pea protein isolate, soy protein isolate, ultrasonication

Procedia PDF Downloads 319
2083 Dimensional Accuracy of CNTs/PMMA Parts and Holes Produced by Laser Cutting

Authors: A. Karimzad Ghavidel, M. Zadshakouyan

Abstract:

Laser cutting is a very common production method for cutting 2D polymeric parts. Developing of polymer composites with nano-fibers makes important their other properties like laser workability. The aim of this research is investigation of the influence different laser cutting conditions on the dimensional accuracy of parts and holes from poly methyl methacrylate (PMMA)/carbon nanotubes (CNTs) material. Experiments were carried out by considering of CNTs (in four level 0,0.5, 1 and 1.5% wt.%), laser power (60, 80, and 100 watt) and cutting speed 20, 30, and 40 mm/s as input variable factors. The results reveal that CNTs adding improves the laser workability of PMMA and the increasing of power has a significant effect on the part and hole size. The findings also show cutting speed is effective parameter on the size accuracy. Eventually, the statistical analysis of results was done, and calculated mathematical equations by the regression are presented for determining relation between input and output factor.

Keywords: dimensional accuracy, PMMA, CNTs, laser cutting

Procedia PDF Downloads 307
2082 The Effect of a Multidisciplinary Spine Clinic on Treatment Rates and Lead Times to Care

Authors: Ishan Naidu, Jessica Ryvlin, Devin Videlefsky

Abstract:

Introduction: Back pain is a leading cause of years lived with disability and economic burden, exceeding over $20 billion in healthcare costs not including indirect costs such as absence from work and caregiving. The multifactorial nature of back pain leads to treatment modalities administered by a variety of specialists, which are often disjointed. Multiple studies have found that patients receiving delayed physical therapy for lower back pain had higher medical-related costs from increased health service utilization as well as a reduced improvement in pain severity compared to early management. Uncoordinated health care delivery can exacerbate the physical and economic toll of the chronic condition, thus improvements in interdisciplinary, shared decision-making may improve outcomes. Objective: To assess whether a multidisciplinary spine clinic (MSC), consisting of orthopedic surgery, neurosurgery, pain medicine, and physiatry, alters interventional and non-interventional planning and treatment compared to a traditional unidisciplinary spine clinic (USC) including only orthopedic surgery. Methods: We conducted a retrospective cohort study with patients initially presenting for spine care to orthopedic surgeons between July 1, 2018 to June 30, 2019. Time to treatment recommendation, time to treatment and rates of treatment recommendations were assessed, including physical therapy, injections and surgery. Treatment rates were compared between MSC and USC using Pearson’s chi-square test logistic regression. Time to treatment recommendation and time to treatment were compared using log-rank test and Cox proportional hazard regression. All analyses were repeated for the propensity score (PS) matched subsample. Results: This study included 1,764 patients, with 692 at MSC and 1,072 at USC. Patients in MSC were more likely to be recommended injection when compared to USC (8.5% vs. 5.4%, p=0.01). When adjusted for confounders, the likelihood of injection recommendation remained greater in MSC than USC (Odds ratio [OR]=2.22, 95% CI: (1.39, 3.53), p=0.001). MSC was also associated with a shorter time to receiving injection recommendation versus USC (median: 21 vs. 32 days, log-rank: p<0.001; hazard ratio [HR]=1.90, 95% CI: (1.25, 2.90), p=0.003). MSC was associated with a higher likelihood of injection treatment (OR=2.27, 95% CI: (1.39, 3.73), p=0.001) and shorter lead time (HR=1.98, 95% CI: (1.27, 3.09), p=0.003). PS-matched analyses yielded similar conclusions. Conclusions: Care delivered at a multidisciplinary spine clinic was associated with a higher likelihood of recommending injection and a shorter lead time to injection administration when compared to a traditional unidisciplinary spine surgery clinic. Multidisciplinary clinics may facilitate coordinated care amongst different specialties resulting in increased utilization of less invasive treatment modalities while also improving care efficiency. The multidisciplinary clinic model is an important advancement in care delivery and communication, which can be used as a powerful method of improving patient outcomes as treatment guidelines evolve.

Keywords: coordinated care, epidural steroid injection, multi-disciplinary, non-invasive

Procedia PDF Downloads 140
2081 Impacts of Racialization: Exploring the Relationships between Racial Discrimination, Racial Identity, and Activism

Authors: Brianna Z. Ross, Jonathan N. Livingston

Abstract:

Given that discussions of racism and racial tensions have become more salient, there is a need to evaluate the impacts of racialization among Black individuals. Racial discrimination has become one of the most common experiences within the Black American population. Likewise, Black individuals have indicated a need to address their racial identities at an earlier age than their non-Black peers. Further, Black individuals have been found at the forefront of multiple social and political movements, including but not limited to the Civil Rights Movement, Black Lives Matter, MeToo, and Say Her Name. Moreover, the present study sought to explore the predictive relationships that exist between racial discrimination, racial identity, and activism in the Black community. The results of standard and hierarchical regression analyses revealed that racial discrimination and racial identity significantly predict each other, but only racial discrimination is a significant predictor for the relationship to activism. Nonetheless, the results from this study will provide a basis for social scientists to better understand the impacts of racialization on the Black American population.

Keywords: activism, racialization, racial discrimination, racial identity

Procedia PDF Downloads 152
2080 Dataset Quality Index:Development of Composite Indicator Based on Standard Data Quality Indicators

Authors: Sakda Loetpiparwanich, Preecha Vichitthamaros

Abstract:

Nowadays, poor data quality is considered one of the majority costs for a data project. The data project with data quality awareness almost as much time to data quality processes while data project without data quality awareness negatively impacts financial resources, efficiency, productivity, and credibility. One of the processes that take a long time is defining the expectations and measurements of data quality because the expectation is different up to the purpose of each data project. Especially, big data project that maybe involves with many datasets and stakeholders, that take a long time to discuss and define quality expectations and measurements. Therefore, this study aimed at developing meaningful indicators to describe overall data quality for each dataset to quick comparison and priority. The objectives of this study were to: (1) Develop a practical data quality indicators and measurements, (2) Develop data quality dimensions based on statistical characteristics and (3) Develop Composite Indicator that can describe overall data quality for each dataset. The sample consisted of more than 500 datasets from public sources obtained by random sampling. After datasets were collected, there are five steps to develop the Dataset Quality Index (SDQI). First, we define standard data quality expectations. Second, we find any indicators that can measure directly to data within datasets. Thirdly, each indicator aggregates to dimension using factor analysis. Next, the indicators and dimensions were weighted by an effort for data preparing process and usability. Finally, the dimensions aggregate to Composite Indicator. The results of these analyses showed that: (1) The developed useful indicators and measurements contained ten indicators. (2) the developed data quality dimension based on statistical characteristics, we found that ten indicators can be reduced to 4 dimensions. (3) The developed Composite Indicator, we found that the SDQI can describe overall datasets quality of each dataset and can separate into 3 Level as Good Quality, Acceptable Quality, and Poor Quality. The conclusion, the SDQI provide an overall description of data quality within datasets and meaningful composition. We can use SQDI to assess for all data in the data project, effort estimation, and priority. The SDQI also work well with Agile Method by using SDQI to assessment in the first sprint. After passing the initial evaluation, we can add more specific data quality indicators into the next sprint.

Keywords: data quality, dataset quality, data quality management, composite indicator, factor analysis, principal component analysis

Procedia PDF Downloads 139