Search results for: high precision geometric positioning
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21531

Search results for: high precision geometric positioning

19731 Flame Volume Prediction and Validation for Lean Blowout of Gas Turbine Combustor

Authors: Ejaz Ahmed, Huang Yong

Abstract:

The operation of aero engines has a critical importance in the vicinity of lean blowout (LBO) limits. Lefebvre’s model of LBO based on empirical correlation has been extended to flame volume concept by the authors. The flame volume takes into account the effects of geometric configuration, the complex spatial interaction of mixing, turbulence, heat transfer and combustion processes inside the gas turbine combustion chamber. For these reasons, flame volume based LBO predictions are more accurate. Although LBO prediction accuracy has improved, it poses a challenge associated with Vf estimation in real gas turbine combustors. This work extends the approach of flame volume prediction previously based on fuel iterative approximation with cold flow simulations to reactive flow simulations. Flame volume for 11 combustor configurations has been simulated and validated against experimental data. To make prediction methodology robust as required in the preliminary design stage, reactive flow simulations were carried out with the combination of probability density function (PDF) and discrete phase model (DPM) in FLUENT 15.0. The criterion for flame identification was defined. Two important parameters i.e. critical injection diameter (Dp,crit) and critical temperature (Tcrit) were identified, and their influence on reactive flow simulation was studied for Vf estimation. Obtained results exhibit ±15% error in Vf estimation with experimental data.

Keywords: CFD, combustion, gas turbine combustor, lean blowout

Procedia PDF Downloads 269
19730 Estimation Atmospheric parameters for Weather Study and Forecast over Equatorial Regions Using Ground-Based Global Position System

Authors: Asmamaw Yehun, Tsegaye Kassa, Addisu Hunegnaw, Martin Vermeer

Abstract:

There are various models to estimate the neutral atmospheric parameter values, such as in-suite and reanalysis datasets from numerical models. Accurate estimated values of the atmospheric parameters are useful for weather forecasting and, climate modeling and monitoring of climate change. Recently, Global Navigation Satellite System (GNSS) measurements have been applied for atmospheric sounding due to its robust data quality and wide horizontal and vertical coverage. The Global Positioning System (GPS) solutions that includes tropospheric parameters constitute a reliable set of data to be assimilated into climate models. The objective of this paper is, to estimate the neutral atmospheric parameters such as Wet Zenith Delay (WZD), Precipitable Water Vapour (PWV) and Total Zenith Delay (TZD) using six selected GPS stations in the equatorial regions, more precisely, the Ethiopian GPS stations from 2012 to 2015 observational data. Based on historic estimated GPS-derived values of PWV, we forecasted the PWV from 2015 to 2030. During data processing and analysis, we applied GAMIT-GLOBK software packages to estimate the atmospheric parameters. In the result, we found that the annual averaged minimum values of PWV are 9.72 mm for IISC and maximum 50.37 mm for BJCO stations. The annual averaged minimum values of WZD are 6 cm for IISC and maximum 31 cm for BDMT stations. In the long series of observations (from 2012 to 2015), we also found that there is a trend and cyclic patterns of WZD, PWV and TZD for all stations.

Keywords: atmosphere, GNSS, neutral atmosphere, precipitable water vapour

Procedia PDF Downloads 66
19729 The Design of PFM Mode DC-DC Converter with DT-CMOS Switch

Authors: Jae-Chang Kwak, Yong-Seo Koo

Abstract:

The high efficiency power management IC (PMIC) with switching device is presented in this paper. PMIC is controlled with PFM control method in order to have high power efficiency at high current level. Dynamic Threshold voltage CMOS (DT-CMOS) with low on-resistance is designed to decrease conduction loss. The threshold voltage of DT-CMOS drops as the gate voltage increase, resulting in a much higher current handling capability than standard MOSFET. PFM control circuits consist of a generator, AND gate and comparator. The generator is made to have 1.2MHz oscillation voltage. The DC-DC converter based on PFM control circuit and low on-resistance switching device is presented in this paper.

Keywords: DT-CMOS, PMIC, PFM, DC-DC converter

Procedia PDF Downloads 453
19728 Effect of Irregularities on Seismic Performance of Building

Authors: Snehal Mevada, Darshana Bhatt, Aryan Kalthiya, Neel Parmar, Vishal Baraiya, Dhruvit Bhanderi, Tisha Patel

Abstract:

In multi-storeyed framed buildings, damage occurring from earthquake ground motion generally initiates at locations of structural weaknesses present in the lateral load-resisting frame. In some cases, these weaknesses may be created by discontinuities in stiffness, mass, plan, and torsion. Such discontinuity between storeys is often associated with sudden variations in the vertical geometric irregularities and plan irregularities. Vertical irregularities are structures with a soft storey that can further be broken down into the different types of irregularities as well as their severity for a more refined assessment tool pushover analysis which is one of the methods available for evaluating building against earthquake loads. So, it is very necessary to analyse and understand the seismic performance of the irregular structure in order to reduce the damage which occurs during an earthquake. In this project, a multi-storey (G+4) RCC building with four irregularities (stiffness, mass, plan, torsion) is studied for earthquake loads using the response spectrum method (dynamic analysis) and STADD PRO. All analyses have been done for seismic zone IV and for Medium Soil. In this study effects of different irregularities are analysed based on storey displacement, storey drift, and storey shear.

Keywords: comparison of regular and irregular structure, dynamic analysis, mass irregularity, plan irregularity, response spectrum method, stiffness irregularity, seismic performance, torsional irregularity, STAAD PRO

Procedia PDF Downloads 80
19727 High Resolution Image Generation Algorithm for Archaeology Drawings

Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu

Abstract:

Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.

Keywords: archaeology drawings, digital heritage, image generation, deep learning

Procedia PDF Downloads 64
19726 A Review of the Potential Impact of Employer Branding on Employee

Authors: K. V. N. K. C. Sharma

Abstract:

Globalization, coupled with increase in competition is compelling organizations to adopt innovative strategies and identify core competencies in order to distinguish themselves from the competition. The capability of an organization is no longer determined by their products or services alone. The intellectual assets and quality of the human resource are fast emerging as key differentiators. Corporations are now positioning themselves as ‘brands’ not solely to market their products and services, but also to lure and to retain the best talent in the business. This paper identifies leadership as the ‘key element’ in developing an organization’s brand, which has a significant influence on the employee’s eventual perception of this external brand as portrayed by the organization. External branding incorporates innovation, consumer concern, trust, quality and sustainability. The paper contends that employees are indeed an organization’s ‘brand ambassadors. Internal branding involves taking care of these ambassadors of corporate brand i.e. human resource. If employees of an organization are not exposed to the organization’s branding (an ongoing process that functionally aligns, motivates and empower employees at all levels to consistently provide a satisfying customer experience), the external brand could be jeopardized. Internal branding, on the other hand, refers to employee’s perception of the organization’s brand. The current business environment can at best, be termed as volatile. Employees with the right technical and behavioral skills remain a scarce resource and the employers need to be ready to capture the attention, interest and commitment of the best and brightest candidates. This paper attempts to review and understand the relationship between employer branding and employee retention. The paper also seeks to identify potential impact of employer branding across all the factors affecting employees.

Keywords: external branding, organisation personnel, internal branding, leadership

Procedia PDF Downloads 242
19725 The Impact of Anxiety on the Access to Phonological Representations in Beginning Readers and Writers

Authors: Regis Pochon, Nicolas Stefaniak, Veronique Baltazart, Pamela Gobin

Abstract:

Anxiety is known to have an impact on working memory. In reasoning or memory tasks, individuals with anxiety tend to show longer response times and poorer performance. Furthermore, there is a memory bias for negative information in anxiety. Given the crucial role of working memory in lexical learning, anxious students may encounter more difficulties in learning to read and spell. Anxiety could even affect an earlier learning, that is the activation of phonological representations, which are decisive for the learning of reading and writing. The aim of this study is to compare the access to phonological representations of beginning readers and writers according to their level of anxiety, using an auditory lexical decision task. Eighty students of 6- to 9-years-old completed the French version of the Revised Children's Manifest Anxiety Scale and were then divided into four anxiety groups according to their total score (Low, Median-Low, Median-High and High). Two set of eighty-one stimuli (words and non-words) have been auditory presented to these students by means of a laptop computer. Stimuli words were selected according to their emotional valence (positive, negative, neutral). Students had to decide as quickly and accurately as possible whether the presented stimulus was a real word or not (lexical decision). Response times and accuracy were recorded automatically on each trial. It was anticipated a) longer response times for the Median-High and High anxiety groups in comparison with the two others groups, b) faster response times for negative-valence words in comparison with positive and neutral-valence words only for the Median-High and High anxiety groups, c) lower response accuracy for Median-High and High anxiety groups in comparison with the two others groups, d) better response accuracy for negative-valence words in comparison with positive and neutral-valence words only for the Median-High and High anxiety groups. Concerning the response times, our results showed no difference between the four groups. Furthermore, inside each group, the average response times was very close regardless the emotional valence. Otherwise, group differences appear when considering the error rates. Median-High and High anxiety groups made significantly more errors in lexical decision than Median-Low and Low groups. Better response accuracy, however, is not found for negative-valence words in comparison with positive and neutral-valence words in the Median-High and High anxiety groups. Thus, these results showed a lower response accuracy for above-median anxiety groups than below-median groups but without specificity for the negative-valence words. This study suggests that anxiety can negatively impact the lexical processing in young students. Although the lexical processing speed seems preserved, the accuracy of this processing may be altered in students with moderate or high level of anxiety. This finding has important implication for the prevention of reading and spelling difficulties. Indeed, during these learnings, if anxiety affects the access to phonological representations, anxious students could be disturbed when they have to match phonological representations with new orthographic representations, because of less efficient lexical representations. This study should be continued in order to precise the impact of anxiety on basic school learning.

Keywords: anxiety, emotional valence, childhood, lexical access

Procedia PDF Downloads 288
19724 Research on High Dielectric HfO₂ Stack Structure Applied to Field Effect Transistors

Authors: Kuan Yu Lin, Shih Chih Chen

Abstract:

This study focuses on the Al/HfO₂/Si/Al structure to explore the electrical properties of the structure. This experiment uses a radio frequency magnetron sputtering system to deposit high dielectric materials on p-type silicon substrates of 1~10 Ω-cm (100). Consider the hafnium dioxide film as a dielectric layer. Post-deposition annealing at 750°C in nitrogen atmosphere. Electron beam evaporation of metallic aluminum is then used to complete the top/bottom electrodes. The metal is post-annealed at 450°C for 20 minutes in a nitrogen environment to complete the MOS component. Its dielectric constant, equivalent oxide layer thickness, oxide layer defects, and leakage current mechanism are discussed. At PDA 750°C-5s, the maximum k value was found to be 21.2, and the EOT was 3.68nm.

Keywords: high-k gate dielectrics, HfO₂, post deposition annealing, RF magnetic

Procedia PDF Downloads 61
19723 Synthesising Smart City and Smart Port Concepts: A Conceptualization for Small and Medium-Sized Port City Ecosystems

Authors: Christopher Meyer, Laima Gerlitz

Abstract:

European Ports are about to take an important step towards their future economic development. Existing legislatives such as the European Green Deal are changing the perspective on ports as individual logistic institutions and demand a more holistic view on ports in their characteristic as ecosystem involving several different actors in an interdisciplinary and multilevel approach. A special role is taken by small and medium-sized ports facing the same political restriction and future goals - such as reducing environmental impacts with 2030 and 2050 as targets - while suffering from low financing capacity, outdated infrastructure, low innovation measures and missing political support. In contrast, they are playing a key role in regional economic development and cross-border logistics as well as facilitator for the regional hinterland. Also, in comparison to their big counterparts, small and medium-sized ports are often located within or close to city areas. This does not only bear more challenges especially when it comes to the environmental performance, but can also carry out growth potentials by putting the city as a key actor into the port ecosystem. For city development, the Smart City concept is one of the key strategies currently applied mostly on demonstration level in selected cities. Hence, the basic idea behind is par to the Smart Port concept. Thus, this paper is analysing potential synergetic effects resulting from the application of Smart City and Smart Port concepts for small and medium-sized ports' ecosystems closely located to cities with focus on innovation application, greening measurements and economic performances as well as strategic positioning of the ports in Smart City initiatives.

Keywords: port-city ecosystems, regional development, sustainability transition, innovation policy

Procedia PDF Downloads 84
19722 The Analysis of Defects Prediction in Injection Molding

Authors: Mehdi Moayyedian, Kazem Abhary, Romeo Marian

Abstract:

This paper presents an evaluation of a plastic defect in injection molding before it occurs in the process; it is known as the short shot defect. The evaluation of different parameters which affect the possibility of short shot defect is the aim of this paper. The analysis of short shot possibility is conducted via SolidWorks Plastics and Taguchi method to determine the most significant parameters. Finite Element Method (FEM) is employed to analyze two circular flat polypropylene plates of 1 mm thickness. Filling time, part cooling time, pressure holding time, melt temperature and gate type are chosen as process and geometric parameters, respectively. A methodology is presented herein to predict the possibility of the short-shot occurrence. The analysis determined melt temperature is the most influential parameter affecting the possibility of short shot defect with a contribution of 74.25%, and filling time with a contribution of 22%, followed by gate type with a contribution of 3.69%. It was also determined the optimum level of each parameter leading to a reduction in the possibility of short shot are gate type at level 1, filling time at level 3 and melt temperature at level 3. Finally, the most significant parameters affecting the possibility of short shot were determined to be melt temperature, filling time, and gate type.

Keywords: injection molding, plastic defects, short shot, Taguchi method

Procedia PDF Downloads 220
19721 Design and Development of Power Sources for Plasma Actuators to Control Flow Separation

Authors: Himanshu J. Bahirat, Apoorva S. Janawlekar

Abstract:

Plasma actuators are essential for aerodynamic flow separation control due to their lack of mechanical parts, lightweight, and high response frequency, which have numerous applications in hypersonic or supersonic aircraft. The working of these actuators is based on the formation of a low-temperature plasma between a pair of parallel electrodes by the application of a high-voltage AC signal across the electrodes, after which air molecules from the air surrounding the electrodes are ionized and accelerated through the electric field. The high-frequency operation is required in dielectric discharge barriers to ensure plasma stability. To carry out flow separation control in a hypersonic flow, the optimal design and construction of a power supply to generate dielectric barrier discharges is carried out in this paper. In this paper, it is aspired to construct a simplified circuit topology to emulate the dielectric barrier discharge and study its various frequency responses. The power supply can generate high voltage pulses up to 20kV at the repetitive frequency range of 20-50kHz with an input power of 500W. The power supply has been designed to be short circuit proof and can endure variable plasma load conditions. Its general outline is to charge a capacitor through a half-bridge converter and then later discharge it through a step-up transformer at a high frequency in order to generate high voltage pulses. After simulating the circuit, the PCB design and, eventually, lab tests are carried out to study its effectiveness in controlling flow separation.

Keywords: aircraft propulsion, dielectric barrier discharge, flow separation control, power source

Procedia PDF Downloads 133
19720 How Different Are We After All: A Cross-Cultural Study Using the International Affective Picture System

Authors: Manish Kumar Asthana, Alicia Bundis, Zahn Xu, Braj Bhushan

Abstract:

Despite ample cross-cultural studies with emotional valence, it is unclear if the emotions are universal or particular. Previous studies have shown that the individualist culture favors high-valence emotions compared to low-valence emotions. In contrast, collectivist culture favors low-valence emotions compared to high-valence emotions. In this current study, Chinese, Mexicans, and Indians reported valence and semantic-contingency. In total, 120 healthy participants were selected by ethnicity and matched for age and education. Each participant was presented 45 non-chromatic pictures, which were converted from chromatic pictures selected from International Affective Picture Database (IAPS) belonging to five-categories, i.e. (i) less pleasant, (ii) high pleasant, (iii) less unpleasant (iv) high unpleasant (v) neutral. The valence scores assigned to neutral, less-unpleasant, and high-pleasant pictures differed significantly between Chinese, Indian, and Mexicans participants. Significant effects demonstrated from the two-way ANOVAs, confirmed main significant effects of valence (F(1,117) = 24.83, p =0.000) and valence x country (F(2,117) = 2.74, p = 0.035). Significant effects emerging from the one-way ANOVAs were followed up through Bonferroni’s test post-hoc comparisons (p < 0.01). This analysis showed significant effect of neutral (F(2,119) = 6.50, p =0.002), less-unpleasant (F(2,119) = 13.79, p =0.000), and high-unpleasant (F(2,119) = 5.99, p =0.003). There were no significant differences in valence scores for the less-pleasant and more-pleasant between participants from three countries. The IAPS norms require modification for their appropriate application in individualist and collectivist cultures.

Keywords: cultural difference, affective processing, valence, non-chromatic, international affective picture system (IAPS)

Procedia PDF Downloads 143
19719 Analysis of Performance Improvement Factors in Supply Chain Manufacturing Using Analytic Network Process and Kaizen

Authors: Juliza Hidayati, Yesie M. Sinuhaji, Sawarni Hasibuan

Abstract:

A company producing drinking water through many incompatibility issues that affect supply chain performance. The study was conducted to determine the factors that affect the performance of the supply chain and improve it. To obtain the dominant factors affecting the performance of the supply chain used Analytic Network Process, while to improve performance is done by using Kaizen. Factors affecting the performance of the supply chain to be a reference to identify the cause of the non-conformance. Results weighting using ANP indicates that the dominant factor affecting the level of performance is the precision of the number of shipments (15%), the ability of the fulfillment of the booking amount (12%), and the number of rejected products when signing (12%). Incompatibility of the factors that affect the performance of the supply chain are identified, so that found the root cause of the problem is most dominant. Based on the weight of Risk Priority Number (RPN) gained the most dominant root cause of the problem, namely the poorly maintained engine, the engine worked for three shifts, machine parts that are not contained in the plant. Improvements then performed using the Kaizen method of systematic and sustainable.

Keywords: analytic network process, booking amount, risk priority number, supply chain performance

Procedia PDF Downloads 298
19718 A Comparative Study Mechanical Properties of Polytetrafluoroethylene Materials Synthesized by Non-Conventional and Conventional Techniques

Authors: H. Lahlali F. El Haouzi, A.M.Al-Baradi, I. El Aboudi, M. El Azhari, A. Mdarhri

Abstract:

Polytetrafluoroethylene (PTFE) is a high performance thermoplastic polymer with exceptional physical and chemical properties, such as a high melting temperature, high thermal stability, and very good chemical resistance. Nevertheless, manufacturing PTFE is problematic due to its high melt viscosity (10 12 Pa.s). In practice, it is by now well established that this property presents a serious problem when the classical methods are used to synthesized the dense PTFE materials in particularly hot pressing, high temperature extrusion. In this framework, we use here a new process namely spark plasma sintering (SPS) to elaborate PTFE samples from the micro metric particles powder. It consists in applying simultaneous electric current and pressure directly on the sample powder. By controlling the processing parameters of this technique, a series of PTFE samples are easy obtained and associated to remarkably short time as is reported in an early work. Our central goal in the present study is to understand how the non conventional SPS affects the mechanical properties at room temperature. For this end, a second commercially series of PTFE synthesized by using the extrusion method is investigated. The first data according to the tensile mechanical properties are found to be superior for the first set samples (SPS). However, this trend is not observed for the results obtained from the compression testing. The observed macro-behaviors are correlated to some physical properties of the two series of samples such as their crystallinity or density. Upon a close examination of these properties, we believe the SPS technique can be seen as a promising way to elaborate the polymer having high molecular mass without compromising their mechanical properties.

Keywords: PTFE, extrusion, Spark Plasma Sintering, physical properties, mechanical behavior

Procedia PDF Downloads 310
19717 Evaluation of Structural Behavior of Wide Sleepers on Asphalt Trackbed Due to Embedded Shear Keys

Authors: Seong Hyeok Lee, Jin Wook Lee, Bu Seog Ju, Woo Young Jung

Abstract:

Korea Train eXpress (KTX) is now being operated, which allows Korea being one of the countries that operates the high-speed rail system. The high-speed rail has its advantage of short time transportation of population and materials, which lead to many researches performed in this matter. In the case of high speed classical trackbed system, the maintenance and usability of gravel ballast system is costly. Recently, the concrete trackbed structure has been introduced as a replacement of classical trackbed system. In this case, the sleeper plays a critical role. Current study investigated to develop the track sleepers readily applicable to the top of the asphalt trackbed, as part of the trcakbed study utilizing the asphalt material. Among many possible shapes and design of sleepers, current study proposed two types of wide-sleepers according to the shear-key installation method. The structural behavior analysis and safety evaluation on each case was conducted using Korean design standard.

Keywords: wide sleepers, asphalt, high-speed railway, shear-key

Procedia PDF Downloads 435
19716 Movement of Metallic Inclusions in the Volume of Synthetic Diamonds at High Pressure and High Temperature in the Temperature Gradient Field

Authors: P. I. Yachevskaya, S. A. Terentiev, M. S. Kuznetsov

Abstract:

Several synthetic HPHT diamonds with metal inclusions have been studied. To have possibility of investigate the movement and transformation of the inclusions in the volume of the diamond the samples parallele-piped like shape has been made out of diamond crystals. The calculated value of temperature gradient in the samples of diamond which was placed in high-pressure cell was about 5-10 grad/mm. Duration of the experiments was in range 2-16 hours. All samples were treated several times. It has been found that the volume (dimensions) of inclusions, temperature, temperature gradient and the crystallographic orientation of the samples in the temperature field affects the movement speed of inclusions. Maximum speed of inclusions’ movement reached a value 150 µm/h.

Keywords: diamond, inclusions, temperature gradient, HPHT

Procedia PDF Downloads 514
19715 Dissipation of Tebuconazole in Cropland Soils as Affected by Soil Factors

Authors: Bipul Behari Saha, Sunil Kumar Singh, P. Padmaja, Kamlesh Vishwakarma

Abstract:

Dissipation study of tebuconazole in alluvial, black and deep-black clayey soils collected from paddy, mango and peanut cropland of tropical agro-climatic zone of India at three concentration levels were carried out for monitoring the water contamination through persisted residual toxicity. The soil-slurry samples were analyzed by capillary GC-NPD methods followed by ultrasound-assisted extraction (UAE) technique and cleanup process. An excellent linear relationship between peak area and concentration obtained in the range 1 to 50 μgkg-1. The detection (S/N, 3 ± 0.5) and quantification (S/N, 7.5 ± 2.5) limits were 3 and 10 μgkg-1 respectively. Well spiked recoveries were achieved from 96.28 to 99.33 % at levels 5 and 20 μgkg-1 and method precision (% RSD) was ≤ 5%. The soils dissipation of tebuconazole was fitted in first order kinetic-model with half-life between 34.48 to 48.13 days. The soil organic-carbon (SOC) content correlated well with the dissipation rate constants (DRC) of the fungicide Tebuconazole. An increase in the SOC content resulted in faster dissipation. The results indicate that the soil organic carbon and tebuconazole concentrations plays dominant role in dissipation processes. The initial concentration illustrated that the degradation rate of tebuconazole in soils was concentration dependent.

Keywords: cropland soil, dissipation, laboratory incubation, tebuconazole

Procedia PDF Downloads 255
19714 Estimation of Normalized Glandular Doses Using a Three-Layer Mammographic Phantom

Authors: Kuan-Jen Lai, Fang-Yi Lin, Shang-Rong Huang, Yun-Zheng Zeng, Po-Chieh Hsu, Jay Wu

Abstract:

The normalized glandular dose (DgN) estimates the energy deposition of mammography in clinical practice. The Monte Carlo simulations frequently use uniformly mixed phantom for calculating the conversion factor. However, breast tissues are not uniformly distributed, leading to errors of conversion factor estimation. This study constructed a three-layer phantom to estimated more accurate of normalized glandular dose. In this study, MCNP code (Monte Carlo N-Particles code) was used to create the geometric structure. We simulated three types of target/filter combinations (Mo/Mo, Mo/Rh, Rh/Rh), six voltages (25 ~ 35 kVp), six HVL parameters and nine breast phantom thicknesses (2 ~ 10 cm) for the three-layer mammographic phantom. The conversion factor for 25%, 50% and 75% glandularity was calculated. The error of conversion factors compared with the results of the American College of Radiology (ACR) was within 6%. For Rh/Rh, the difference was within 9%. The difference between the 50% average glandularity and the uniform phantom was 7.1% ~ -6.7% for the Mo/Mo combination, voltage of 27 kVp, half value layer of 0.34 mmAl, and breast thickness of 4 cm. According to the simulation results, the regression analysis found that the three-layer mammographic phantom at 0% ~ 100% glandularity can be used to accurately calculate the conversion factors. The difference in glandular tissue distribution leads to errors of conversion factor calculation. The three-layer mammographic phantom can provide accurate estimates of glandular dose in clinical practice.

Keywords: Monte Carlo simulation, mammography, normalized glandular dose, glandularity

Procedia PDF Downloads 192
19713 Dose Profiler: A Tracking Device for Online Range Monitoring in Particle Therapy

Authors: G. Battistoni, F. Collamati, E. De Lucia, R. Faccini, C. Mancini-Terracciano, M. Marafini, I. Mattei, S. Muraro, V. Patera, A. Sarti, A. Sciubba, E. Solfaroli Camillocci, M. Toppi, G. Traini, S. M. Valle, C. Voena

Abstract:

Accelerated charged particles, mainly protons and carbon ions, are presently used in Particle Therapy (PT) to treat solid tumors. The precision of PT exploiting the charged particle high localized dose deposition in tissues and biological effectiveness in killing cancer cells demands for an online dose monitoring technique, crucial to improve the quality assurance of treatments: possible patient mis-positionings and biological changes with respect to the CT scan could negatively affect the therapy outcome. In PT the beam range confined in the irradiated target can be monitored thanks to the secondary radiation produced by the interaction of the projectiles with the patient tissue. The Dose Profiler (DP) is a novel device designed to track charged secondary particles and reconstruct their longitudinal emission distribution, correlated to the Bragg peak position. The feasibility of this approach has been demonstrated by dedicated experimental measurements. The DP has been developed in the framework of the INSIDE project, MIUR, INFN and Centro Fermi, Museo Storico della Fisica e Centro Studi e Ricerche 'E. Fermi', Roma, Italy and will be tested at the Proton Therapy center of Trento (Italy) within the end of 2017. The DP combines a tracker, made of six layers of two-view scintillating fibers with square cross section (0.5 x 0.5 mm2) with two layers of two-view scintillating bars (section 12.0 x 0.6 mm2). The electronic readout is performed by silicon photomultipliers. The sensitive area of the tracking planes is 20 x 20 cm2. To optimize the detector layout, a Monte Carlo (MC) simulation based on the FLUKA code has been developed. The complete DP geometry and the track reconstruction code have been fully implemented in the MC. In this contribution, the DP hardware will be described. The expected detector performance computed using a dedicated simulation of a 220 MeV/u carbon ion beam impinging on a PMMA target will be presented, and the result will be discussed in the standard clinical application framework. A possible procedure for real-time beam range monitoring is proposed, following the expectations in actual clinical operation.

Keywords: online range monitoring, particle therapy, quality assurance, tracking detector

Procedia PDF Downloads 242
19712 Impact of Chimerism on Y-STR DNA Determination: Sex Mismatch Analysis

Authors: Anupuma Raina, Ajay P. Balayan, Prateek Pandya, Pankaj Shrivastava, Uma Kanga, Tulika Seth

Abstract:

DNA fingerprinting analysis aids in personal identification for forensic purposes and has always been a driving motivation for law enforcement agencies in almost all countries since its inception. The introduction of DNA markers (Y-STR) has allowed for greater precision and higher discriminatory power in forensic testing. A criminal/ person committing crime after bone marrow transplantation is a rare situation but not an impossible one. Keeping such a situation in mind, a study was carried out to find out the best biological sample to be used for personal identification, especially in forensic situation. We choose a female patient (recipient) and a male donor. The pre transplant sample (blood) and post transplant samples (blood, buccal swab, hair roots) were collected from the recipient (patient). The same were compared with the blood sample of the donor using DNA FP technique. Post transplant samples were collected at different interval of time (15, 30, 60, and 90 days). The study was carried out using Y-STR kit at 23 loci. The results determined discusses the phenomenon of chimerism and its impact on Y-STR. Hair sample was found the most suitable sample which had no donor DNA profiling up to 90 days.

Keywords: bone marrow transplantation, chimerism, DNA profiling, Y-STR

Procedia PDF Downloads 152
19711 Methodology and Credibility of Unmanned Aerial Vehicle-Based Cadastral Mapping

Authors: Ajibola Isola, Shattri Mansor, Ojogbane Sani, Olugbemi Tope

Abstract:

The cadastral map is the rationale behind city management planning and development. For years, cadastral maps have been produced by ground and photogrammetry platforms. Recent evolution in photogrammetry and remote sensing sensors ignites the use of Unmanned Aerial Vehicle systems (UAVs) for cadastral mapping. Despite the time-saving and multi-dimensional cost-effectiveness of the UAV platform, issues related to cadastral map accuracy are a hindrance to the wide applicability of UAVs' cadastral mapping. This study aims to present an approach leading to the generation and assessing the credibility of UAV cadastral mapping. Different sets of Red, Green, and Blue (RGB) photos were obtained from the Tarot 680-hexacopter UAV platform flown over the Universiti Putra Malaysia campus sports complex at an altitude range of 70 m, 100 m, and 250. Before flying the UAV, twenty-eight ground control points were evenly established in the study area with a real-time kinematic differential global positioning system. The second phase of the study utilizes an image-matching algorithm for photos alignment wherein camera calibration parameters and ten of the established ground control points were used for estimating the inner, relative, and absolute orientations of the photos. The resulting orthoimages are exported to ArcGIS software for digitization. Visual, tabular, and graphical assessments of the resulting cadastral maps showed a different level of accuracy. The results of the study show a gradual approach for generating UAV cadastral mapping and that the cadastral map acquired at 70 m altitude produced better results.

Keywords: aerial mapping, orthomosaic, cadastral map, flying altitude, image processing

Procedia PDF Downloads 89
19710 Titanium Nitride @ Nitrogen-doped Carbon Nanocage as High-performance Cathodes for Aqueous Zn-ion Hybrid Supercapacitors

Authors: Ye Ling, Ruan Haihui

Abstract:

Aqueous Zn-ion hybrid supercapacitors (AZHSCs) pertain to a new type of electrochemical energy storage device that has received considerable attention. They integrate the advantages of high-energy Zn-ion batteries and high-power supercapacitors to meet the demand for low-cost, long-term durability, and high safety. Nevertheless, the challenge caused by the finite ion adsorption/desorption capacity of carbon electrodes gravely limits their energy densities. This work describes titanium nitride@nitrogen-doped carbon nanocage (TiN@NCNC) composite cathodes for AZHSCs to achieve a greatly improved energy density, and the composites can be facile synthesized based on the calcination of a mixture of tetrabutyl titanate and zeolitic imidazolate framework-8 in argon atmosphere. The resulting composites are featured by the ultra-fine TiN particles dispersed uniformly on the NCNC surfaces, enhancing the Zn2+ storage capabilities. Using TiN@NCNC cathodes, the AZHSCs can operate stably with a high energy density of 154 Wh kg-¹ at a specific power of 270 W kg-¹ and achieve a remarkable capacity retention of 88.9% after 104 cycles at 5 A g-¹. At an extreme specific power of 8.7 kW kg-1, the AZHSCs can retain an energy density of 97.2 Wh kg-1. With these results, we stress that the TiN@NCNC cathodes render high-performance AZHSCs, and the facile one-pot method can easily be scaled up, which enables AZHSCs a new energy-storage component for managing intermitted renewable energy sources.

Keywords: Zn-ion hybrid supercapacitors, ion absorption/desorption reactions, titanium nitride, zeolitic imidazolate framework-8

Procedia PDF Downloads 55
19709 Stochastic Richelieu River Flood Modeling and Comparison of Flood Propagation Models: WMS (1D) and SRH (2D)

Authors: Maryam Safrai, Tewfik Mahdi

Abstract:

This article presents the stochastic modeling of the Richelieu River flood in Quebec, Canada, occurred in the spring of 2011. With the aid of the one-dimensional Watershed Modeling System (WMS (v.10.1) and HEC-RAS (v.4.1) as a flood simulator, the delineation of the probabilistic flooded areas was considered. Based on the Monte Carlo method, WMS (v.10.1) delineated the probabilistic flooded areas with corresponding occurrence percentages. Furthermore, results of this one-dimensional model were compared with the results of two-dimensional model (SRH-2D) for the evaluation of efficiency and precision of each applied model. Based on this comparison, computational process in two-dimensional model is longer and more complicated versus brief one-dimensional one. Although, two-dimensional models are more accurate than one-dimensional method, but according to existing modellers, delineation of probabilistic flooded areas based on Monte Carlo method is achievable via one-dimensional modeler. The applied software in this case study greatly responded to verify the research objectives. As a result, flood risk maps of the Richelieu River with the two applied models (1d, 2d) could elucidate the flood risk factors in hydrological, hydraulic, and managerial terms.

Keywords: flood modeling, HEC-RAS, model comparison, Monte Carlo simulation, probabilistic flooded area, SRH-2D, WMS

Procedia PDF Downloads 147
19708 Black-Box-Optimization Approach for High Precision Multi-Axes Forward-Feed Design

Authors: Sebastian Kehne, Alexander Epple, Werner Herfs

Abstract:

A new method for optimal selection of components for multi-axes forward-feed drive systems is proposed in which the choice of motors, gear boxes and ball screw drives is optimized. Essential is here the synchronization of electrical and mechanical frequency behavior of all axes because even advanced controls (like H∞-controls) can only control a small part of the mechanical modes – namely only those of observable and controllable states whose value can be derived from the positions of extern linear length measurement systems and/or rotary encoders on the motor or gear box shafts. Further problems are the unknown processing forces like cutting forces in machine tools during normal operation which make the estimation and control via an observer even more difficult. To start with, the open source Modelica Feed Drive Library which was developed at the Laboratory for Machine Tools, and Production Engineering (WZL) is extended from one axis design to the multi axes design. It is capable to simulate the mechanical, electrical and thermal behavior of permanent magnet synchronous machines with inverters, different gear boxes and ball screw drives in a mechanical system. To keep the calculation time down analytical equations are used for field and torque producing equivalent circuit, heat dissipation and mechanical torque at the shaft. As a first step, a small machine tool with a working area of 635 x 315 x 420 mm is taken apart, and the mechanical transfer behavior is measured with an impulse hammer and acceleration sensors. With the frequency transfer functions, a mechanical finite element model is built up which is reduced with substructure coupling to a mass-damper system which models the most important modes of the axes. The model is modelled with Modelica Feed Drive Library and validated by further relative measurements between machine table and spindle holder with a piezo actor and acceleration sensors. In a next step, the choice of possible components in motor catalogues is limited by derived analytical formulas which are based on well-known metrics to gain effective power and torque of the components. The simulation in Modelica is run with different permanent magnet synchronous motors, gear boxes and ball screw drives from different suppliers. To speed up the optimization different black-box optimization methods (Surrogate-based, gradient-based and evolutionary) are tested on the case. The objective that was chosen is to minimize the integral of the deviations if a step is given on the position controls of the different axes. Small values are good measures for a high dynamic axes. In each iteration (evaluation of one set of components) the control variables are adjusted automatically to have an overshoot less than 1%. It is obtained that the order of the components in optimization problem has a deep impact on the speed of the black-box optimization. An approach to do efficient black-box optimization for multi-axes design is presented in the last part. The authors would like to thank the German Research Foundation DFG for financial support of the project “Optimierung des mechatronischen Entwurfs von mehrachsigen Antriebssystemen (HE 5386/14-1 | 6954/4-1)” (English: Optimization of the Mechatronic Design of Multi-Axes Drive Systems).

Keywords: ball screw drive design, discrete optimization, forward feed drives, gear box design, linear drives, machine tools, motor design, multi-axes design

Procedia PDF Downloads 290
19707 Method Validation for Determining Platinum and Palladium in Catalysts Using Inductively Coupled Plasma Optical Emission Spectrometry

Authors: Marin Senila, Oana Cadar, Thorsten Janisch, Patrick Lacroix-Desmazes

Abstract:

The study presents the analytical capability and validation of a method based on microwave-assisted acid digestion for quantitative determination of platinum and palladium in catalysts using inductively coupled plasma optical emission spectrometry (ICP-OES). In order to validate the method, the main figures of merit such as limit of detection and limit of quantification, precision and accuracy were considered and the measurement uncertainty was estimated based on the bottom-up approach according to the international guidelines of ISO/IEC 17025. Limit of detections, estimated from blank signal using 3 s criterion, were 3.0 mg/kg for Pt and respectively 3.6 mg/kg for Pd, while limits of quantification were 9.0 mg/kg for Pt and respectively 10.8 mg/kg for Pd. Precisions, evaluated as standard deviations of repeatability (n=5 parallel samples), were less than 10% for both precious metals. Accuracies of the method, verified by recovery estimation certified reference material NIST SRM 2557 - pulverized recycled monolith, were 99.4 % for Pt and 101% for Pd. The obtained limit of quantifications and accuracy were satisfactory for the intended purpose. The paper offers all the steps necessary to validate the determination method for Pt and Pd in catalysts using inductively coupled plasma optical emission spectrometry.

Keywords: catalyst analysis, ICP-OES, method validation, platinum, palladium

Procedia PDF Downloads 172
19706 Investigating the Feasibility of Berry Production in Central Oregon under Protected and Unprotected Culture

Authors: Clare S. Sullivan

Abstract:

The high desert of central Oregon, USA is a challenging growing environment: short growing season (70-100 days); average annual precipitation of 280 mm; drastic swings in diurnal temperatures; possibility of frost any time of year; and sandy soils low in organic matter. Despite strong demand, there is almost no fruit grown in central Oregon due to potential yield loss caused by early and late frosts. Elsewhere in the USA, protected culture (i.e., high tunnels) has been used to extend fruit production seasons and improve yields. In central Oregon, high tunnels are used to grow multiple high-value vegetable crops, and farmers are unlikely to plant a perennial crop in a high tunnel unless proven profitable. In May 2019, two berry trials were established on a farm in Alfalfa, OR, to evaluate raspberry and strawberry yield, season length, and fruit quality in protected (high tunnels) vs. unprotected culture (open field). The main objective was to determine whether high tunnel berry production is a viable enterprise for the region. Each trial was arranged using a split-plot design. The main factor was the production system (high tunnel vs. open field), and the replicated, subplot factor was berry variety. Four day-neutral strawberry varieties and four primocane-bearing raspberry varieties were planted for the study and were managed using organic practices. Berries were harvested once a week early in the season, and twice a week as production increased. Harvested berries were separated into ‘marketable’ and ‘unmarketable’ in order to calculate percent cull. First-year results revealed berry yield and quality differences between varieties and production systems. Strawberry marketable yield and berry fruit size increased significantly in the high tunnel compared to the field; percent yield increase ranged from 7-46% by variety. Evie 2 was the highest yielding strawberry, although berry quality was lower than other berries. Raspberry marketable yield and berry fruit size tended to increase in the high tunnel compared to the field, although variety had a more significant effect. Joan J was the highest yielding raspberry and out-yielded the other varieties by 250% outdoor and 350% indoor. Overall, strawberry and raspberry yields tended to improve in high tunnels as compared to the field, but data from a second year will help determine whether high tunnel investment is worthwhile. It is expected that the production system will have more of an effect on berry yield and season length for second-year plants in 2020.

Keywords: berries, high tunnel, local food, organic

Procedia PDF Downloads 122
19705 Design of an Instrumentation Setup and Data Acquisition System for a GAS Turbine Engine Using Suitable DAQ Software

Authors: Syed Nauman Bin Asghar Bukhari, Mohtashim Mansoor, Mohammad Nouman

Abstract:

Engine test-Bed system is a fundamental tool to measure dynamic parameters, economic performance, and reliability of an aircraft Engine, and its automation and accuracy directly influences the precision of acquired and analysed data. In this paper, we present the design of digital Data Acquisition (DAQ) system for a vintage aircraft engine test bed that lacks the capability of displaying all the analyzed parameters at one convenient location (one panel-one screen). Recording such measurements in the vintage test bed is not only time consuming but also prone to human errors. Digitizing such measurement system requires a Data Acquisition (DAQ) system capable of recording these parameters and displaying them on one screen-one panel monitor. The challenge in designing upgrade to the vintage systems arises with a need to build and integrate digital measurement system from scratch with a minimal budget and modifications to the existing vintage system. The proposed design not only displays all the key performance / maintenance parameters of the gas turbine engines for operator as well as quality inspector on separate screens but also records the data for further processing / archiving.

Keywords: Gas turbine engine, engine test cell, data acquisition, instrumentation

Procedia PDF Downloads 128
19704 High-Efficiency Comparator for Low-Power Application

Authors: M. Yousefi, N. Nasirzadeh

Abstract:

In this paper, dynamic comparator structure employing two methods for power consumption reduction with applications in low-power high-speed analog-to-digital converters have been presented. The proposed comparator has low consumption thanks to power reduction methods. They have the ability for offset adjustment. The comparator consumes 14.3 μW at 100 MHz which is equal to 11.8 fJ. The comparator has been designed and simulated in 180 nm CMOS. Layouts occupy 210 μm2.

Keywords: efficiency, comparator, power, low

Procedia PDF Downloads 363
19703 A Review of the Axial Capacity of Circular High Strength Concrete-Filled Steel Tube Columns

Authors: Mustafa Gülen, Eylem Güzel, Soner Guler

Abstract:

The concrete filled steel tube (CFST) columns are commonly used in construction applications such as high-rise buildings and bridges owing to its lots of remarkable benefits. The use of concrete filled steel tube columns provides large areas by reduction in cross-sectional area of columns. The main aim of this study is to examine the axial load capacities of circular high strength concrete filled steel tube columns according to Eurocode 4 (EC4) and Chinese Code (DL/T). The results showed that the predictions of EC4 and Chinese Code DL/T are unsafe for all specimens.

Keywords: concrete-filled steel tube column, axial load capacity, Chinese code, Australian Standard

Procedia PDF Downloads 417
19702 Improvement of Heat Dissipation Ability of Polyimide Composite Film

Authors: Jinyoung Kim, Jinuk Kwon, Haksoo Han

Abstract:

Polyimide is widely used in electronic industries, and heat dissipation of polyimide film is important for its application in electric devices for high-temperature resistance heat dissipation film. In this study, we demonstrated a new way to increase heat dissipating rate by adding carbon black as filler. This type of polyimide composite film was produced by pyromellitic dianhydride (PMDA) and 4,4’-oxydianiline (ODA). Carbon black (CB) is added in different loading, shows increasing heat dissipation rate for increase of Carbon black. The polyimide-carbon black composite film is synthesized with high dissipation rate to ~8W∙m−1K−1. Its high thermal decomposition temperature and glass transition temperature were maintained with carbon filler verified by thermogravimetric analysis (TGA) and differential scanning calorimetric (DSC), the polyimidization reaction of polyi(amide-mide) was confirmed by Fourier transform infrared spectroscopy (FT-IR). The polyimide composite film with carbon black with high heat dissipating rate could be used in various applications such as computers, mobile phone industries, integrated circuits, coating materials, semiconductor etc.

Keywords: polyimide, heat dissipation, electric device, filler

Procedia PDF Downloads 682