Search results for: standardization artificial intelligence
1070 Cobb Angle Measurement from Coronal X-Rays Using Artificial Neural Networks
Authors: Andrew N. Saylor, James R. Peters
Abstract:
Scoliosis is a complex 3D deformity of the thoracic and lumbar spines, clinically diagnosed by measurement of a Cobb angle of 10 degrees or more on a coronal X-ray. The Cobb angle is the angle made by the lines drawn along the proximal and distal endplates of the respective proximal and distal vertebrae comprising the curve. Traditionally, Cobb angles are measured manually using either a marker, straight edge, and protractor or image measurement software. The task of measuring the Cobb angle can also be represented by a function taking the spine geometry rendered using X-ray imaging as input and returning the approximate angle. Although the form of such a function may be unknown, it can be approximated using artificial neural networks (ANNs). The performance of ANNs is affected by many factors, including the choice of activation function and network architecture; however, the effects of these parameters on the accuracy of scoliotic deformity measurements are poorly understood. Therefore, the objective of this study was to systematically investigate the effect of ANN architecture and activation function on Cobb angle measurement from the coronal X-rays of scoliotic subjects. The data set for this study consisted of 609 coronal chest X-rays of scoliotic subjects divided into 481 training images and 128 test images. These data, which included labeled Cobb angle measurements, were obtained from the SpineWeb online database. In order to normalize the input data, each image was resized using bi-linear interpolation to a size of 500 × 187 pixels, and the pixel intensities were scaled to be between 0 and 1. A fully connected (dense) ANN with a fixed cost function (mean squared error), batch size (10), and learning rate (0.01) was developed using Python Version 3.7.3 and TensorFlow 1.13.1. The activation functions (sigmoid, hyperbolic tangent [tanh], or rectified linear units [ReLU]), number of hidden layers (1, 3, 5, or 10), and number of neurons per layer (10, 100, or 1000) were varied systematically to generate a total of 36 network conditions. Stochastic gradient descent with early stopping was used to train each network. Three trials were run per condition, and the final mean squared errors and mean absolute errors were averaged to quantify the network response for each condition. The network that performed the best used ReLU neurons had three hidden layers, and 100 neurons per layer. The average mean squared error of this network was 222.28 ± 30 degrees2, and the average mean absolute error was 11.96 ± 0.64 degrees. It is also notable that while most of the networks performed similarly, the networks using ReLU neurons, 10 hidden layers, and 1000 neurons per layer, and those using Tanh neurons, one hidden layer, and 10 neurons per layer performed markedly worse with average mean squared errors greater than 400 degrees2 and average mean absolute errors greater than 16 degrees. From the results of this study, it can be seen that the choice of ANN architecture and activation function has a clear impact on Cobb angle inference from coronal X-rays of scoliotic subjects.Keywords: scoliosis, artificial neural networks, cobb angle, medical imaging
Procedia PDF Downloads 1291069 Landslide Susceptibility Mapping Using Soft Computing in Amhara Saint
Authors: Semachew M. Kassa, Africa M Geremew, Tezera F. Azmatch, Nandyala Darga Kumar
Abstract:
Frequency ratio (FR) and analytical hierarchy process (AHP) methods are developed based on past landslide failure points to identify the landslide susceptibility mapping because landslides can seriously harm both the environment and society. However, it is still difficult to select the most efficient method and correctly identify the main driving factors for particular regions. In this study, we used fourteen landslide conditioning factors (LCFs) and five soft computing algorithms, including Random Forest (RF), Support Vector Machine (SVM), Logistic Regression (LR), Artificial Neural Network (ANN), and Naïve Bayes (NB), to predict the landslide susceptibility at 12.5 m spatial scale. The performance of the RF (F1-score: 0.88, AUC: 0.94), ANN (F1-score: 0.85, AUC: 0.92), and SVM (F1-score: 0.82, AUC: 0.86) methods was significantly better than the LR (F1-score: 0.75, AUC: 0.76) and NB (F1-score: 0.73, AUC: 0.75) method, according to the classification results based on inventory landslide points. The findings also showed that around 35% of the study region was made up of places with high and very high landslide risk (susceptibility greater than 0.5). The very high-risk locations were primarily found in the western and southeastern regions, and all five models showed good agreement and similar geographic distribution patterns in landslide susceptibility. The towns with the highest landslide risk include Amhara Saint Town's western part, the Northern part, and St. Gebreal Church villages, with mean susceptibility values greater than 0.5. However, rainfall, distance to road, and slope were typically among the top leading factors for most villages. The primary contributing factors to landslide vulnerability were slightly varied for the five models. Decision-makers and policy planners can use the information from our study to make informed decisions and establish policies. It also suggests that various places should take different safeguards to reduce or prevent serious damage from landslide events.Keywords: artificial neural network, logistic regression, landslide susceptibility, naïve Bayes, random forest, support vector machine
Procedia PDF Downloads 821068 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs
Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye
Abstract:
This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label
Procedia PDF Downloads 1291067 Technological Development of a Biostimulant Bioproduct for Fruit Seedlings: An Engineering Overview
Authors: Andres Diaz Garcia
Abstract:
The successful technological development of any bioproduct, including those of the biostimulant type, requires to adequately completion of a series of stages allied to different disciplines that are related to microbiological, engineering, pharmaceutical chemistry, legal and market components, among others. Engineering as a discipline has a key contribution in different aspects of fermentation processes such as the design and optimization of culture media, the standardization of operating conditions within the bioreactor and the scaling of the production process of the active ingredient that it will be used in unit operations downstream. However, all aspects mentioned must take into account many biological factors of the microorganism such as the growth rate, the level of assimilation to various organic and inorganic sources and the mechanisms of action associated with its biological activity. This paper focuses on the practical experience within the Colombian Corporation for Agricultural Research (Agrosavia), which led to the development of a biostimulant bioproduct based on native rhizobacteria Bacillus amyloliquefaciens, oriented mainly to plant growth promotion in cape gooseberry nurseries and fruit crops in Colombia, and the challenges that were overcome from the expertise in the area of engineering. Through the application of strategies and engineering tools, a culture medium was optimized to obtain concentrations higher than 1E09 CFU (colony form units)/ml in liquid fermentation, the process of biomass production was standardized and a scale-up strategy was generated based on geometric (H/D of bioreactor relationships), and operational criteria based on a minimum dissolved oxygen concentration and that took into account the differences in the capacity of control of the process in the laboratory and pilot scales. Currently, the bioproduct obtained through this technological process is in stages of registration in Colombia for cape gooseberry fruits for export.Keywords: biochemical engineering, liquid fermentation, plant growth promoting, scale-up process
Procedia PDF Downloads 1121066 Global and Domestic Response to Boko Haram Terrorism on Cameroon 2014-2018
Authors: David Nchinda Keming
Abstract:
The present study is focused on both the national and international collective fight against Boko Haram terrorism on Cameroon and the rule played by the Lake Chad Basin Countries (LCBCs) and the global community to suffocate the sect’s activities in the region. Although countries of the Lake Chad Basin include: Cameroon, Chad, Nigeria and Niger others like Benin also joined the course. The justification for the internationalisation of the fight against Boko Haram could be explained by the ecological and international climatic importance of the Lake Chad and the danger posed by the sect not only to the Lake Chad member countries but to global armed, civil servants and the international political economy. The study, therefore, kick start with Cameroon’s reaction to Boko Haram’s terrorist attacks on its territory. It further expounds on Cameroon’s request on bilateral diplomacy from members of the UN Security Council for an international collective support to staple the winds of the challenging sect. The study relies on the hypothesis that Boko Haram advanced terrorism on Cameroon was more challenging to the domestic military intelligence thus forcing the government to seek for bilateral and multilateral international collective support to secure its territory from the powerful sect. This premise is tested internationally via (multilateral cooperation, bilateral response, regional cooperation) and domestically through (solidarity parade, religious discourse, political manifestations, war efforts, the vigilantes and the way forward). To accomplish our study, we made used of the mixed research methodologies to interpret the primary, secondary and tertiary sources consulted. Our results reveal that the collective response was effectively positive justified by the drastic drop in the sect’s operations in Cameroon and the whole LCBCs. Although the sect was incapacitated, terrorism remains an international malaise and Cameroon hosts a fertile ground for terrorists’ activism. Boko Haram was just weakened and not completely defeated and could reappear someday even under a different appellation. Therefore, to absolutely eradicate terrorism in general and Boko Haram in particular, LCBCs must improve their military intelligence on terrorism and continue to collaborate with advanced experienced countries in fighting terrorism.Keywords: Boko Haram, terrorism, domestic, international, response
Procedia PDF Downloads 1541065 Predicting Provider Service Time in Outpatient Clinics Using Artificial Intelligence-Based Models
Authors: Haya Salah, Srinivas Sharan
Abstract:
Healthcare facilities use appointment systems to schedule their appointments and to manage access to their medical services. With the growing demand for outpatient care, it is now imperative to manage physician's time effectively. However, high variation in consultation duration affects the clinical scheduler's ability to estimate the appointment duration and allocate provider time appropriately. Underestimating consultation times can lead to physician's burnout, misdiagnosis, and patient dissatisfaction. On the other hand, appointment durations that are longer than required lead to doctor idle time and fewer patient visits. Therefore, a good estimation of consultation duration has the potential to improve timely access to care, resource utilization, quality of care, and patient satisfaction. Although the literature on factors influencing consultation length abound, little work has done to predict it using based data-driven approaches. Therefore, this study aims to predict consultation duration using supervised machine learning algorithms (ML), which predicts an outcome variable (e.g., consultation) based on potential features that influence the outcome. In particular, ML algorithms learn from a historical dataset without explicitly being programmed and uncover the relationship between the features and outcome variable. A subset of the data used in this study has been obtained from the electronic medical records (EMR) of four different outpatient clinics located in central Pennsylvania, USA. Also, publicly available information on doctor's characteristics such as gender and experience has been extracted from online sources. This research develops three popular ML algorithms (deep learning, random forest, gradient boosting machine) to predict the treatment time required for a patient and conducts a comparative analysis of these algorithms with respect to predictive performance. The findings of this study indicate that ML algorithms have the potential to predict the provider service time with superior accuracy. While the current approach of experience-based appointment duration estimation adopted by the clinic resulted in a mean absolute percentage error of 25.8%, the Deep learning algorithm developed in this study yielded the best performance with a MAPE of 12.24%, followed by gradient boosting machine (13.26%) and random forests (14.71%). Besides, this research also identified the critical variables affecting consultation duration to be patient type (new vs. established), doctor's experience, zip code, appointment day, and doctor's specialty. Moreover, several practical insights are obtained based on the comparative analysis of the ML algorithms. The machine learning approach presented in this study can serve as a decision support tool and could be integrated into the appointment system for effectively managing patient scheduling.Keywords: clinical decision support system, machine learning algorithms, patient scheduling, prediction models, provider service time
Procedia PDF Downloads 1211064 Isolation and Culture of Keratinocytes and Fibroblasts to Develop Artificial Skin Equivalent in Cats
Authors: Lavrentiadou S. N., Angelou V., Chatzimisios K., Papazoglou L.
Abstract:
The aim of this study was the isolation and culture of keratinocytes and fibroblasts from feline skin to ultimately create an artificial engineered skin (including dermis and epidermis) useful for the effective treatment of large cutaneous deficits in cats. Epidermal keratinocytes and dermal fibroblasts were freshly isolated from skin biopsies using an 8 mm biopsy punch obtained from 8 healthy cats that had undergone ovariohysterectomy. The owner’s consent was obtained. All cats had a complete blood count and a serum biochemical analysis and were screened for feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) preoperatively. The samples were cut into small pieces and incubated with collagenase (2 mg/ml) for 5-6 hours. Following digestion, cutaneous cells were filtered through a 100 μm cell strainer, washed with DMEM, and grown in DMEM supplemented with 10% FBS. The undigested epidermis was washed with DMEM and incubated with 0.05% Trypsin/0.02% EDTA (TE) solution. Keratinocytes recovered in the TE solution were filtered through a 100 μm and a 40 μm cell strainer and, following washing, were grown on a collagen type I matrix in DMEM: F12 (3:1) medium supplemented with 10% FΒS, 1 μm hydrocortisone, 1 μm isoproterenol and 0.1 μm insulin. Both fibroblasts and keratinocytes were grown in a humidified atmosphere with 5% CO2 at 37oC. The medium was changed twice a week and cells were cultured up to passage 4. Cells were grown to 70-85% confluency, at which point they were trypsinized and subcultured in a 1:4 dilution. The majority of the cells in each passage were transferred to a freezing medium and stored at -80oC. Fibroblasts were frozen in DMEM supplemented with 30% FBS and 10% DMSO, whereas keratinocytes were frozen in a complete keratinocyte growth medium supplemented with 10% DMSO. Both cell types were thawed and successfully grown as described above. Therefore, we can create a bank of fibroblasts and keratinocytes, from which we can recover cells for further culture and use for the generation of skin equivalent in vitro. In conclusion, cutaneous cell isolation and cell culture and expansion were successfully developed. To the authors’ best knowledge, this is the first study reporting isolation and culture of keratinocytes and fibroblasts from feline skin. However, these are preliminary results and thus, the development of autologous-engineered feline skin is still in process.Keywords: cat, fibroblasts, keratinocytes, skin equivalent, wound
Procedia PDF Downloads 1081063 Navigating AI in Higher Education: Exploring Graduate Students’ Perspectives on Teacher-Provided AI Guidelines
Authors: Mamunur Rashid, Jialin Yan
Abstract:
The current years have witnessed a rapid evolution and integration of artificial intelligence (AI) in various fields, prominently influencing the education industry. Acknowledging this transformative wave, AI tools like ChatGPT and Grammarly have undeniably introduced perspectives and skills, enriching the educational experiences of higher education students. The prevalence of AI utilization in higher education also drives an increasing number of researchers' attention in various dimensions. Departments, offices, and professors in universities also designed and released a set of policies and guidelines on using AI effectively. In regard to this, the study targets exploring and analyzing graduate students' perspectives regarding AI guidelines set by teachers. A mixed-methods study will be mainly conducted in this study, employing in-depth interviews and focus groups to investigate and collect students' perspectives. Relevant materials, such as syllabi and course instructions, will also be analyzed through the documentary analysis to facilitate understanding of the study. Surveys will also be used for data collection and students' background statistics. The integration of both interviews and surveys will provide a comprehensive array of student perspectives across various academic disciplines. The study is anchored in the theoretical framework of self-determination theory (SDT), which emphasizes and explains the students' perspective under the AI guidelines through three core needs: autonomy, competence, and relatedness. This framework is instrumental in understanding how AI guidelines influence students' intrinsic motivation and sense of empowerment in their learning environments. Through qualitative analysis, the study reveals a sense of confusion and uncertainty among students regarding the appropriate application and ethical considerations of AI tools, indicating potential challenges in meeting their needs for competence and autonomy. The quantitative data further elucidates these findings, highlighting a significant communication gap between students and educators in the formulation and implementation of AI guidelines. The critical findings of this study mainly come from two aspects: First, the majority of graduate students are uncertain and confused about relevant AI guidelines given by teachers. Second, this study also demonstrates that the design and effectiveness of course materials, such as the syllabi and instructions, also need to adapt in regard to AI policies. It indicates that certain of the existing guidelines provided by teachers lack consideration of students' perspectives, leading to a misalignment with students' needs for autonomy, competence, and relatedness. More emphasize and efforts need to be dedicated to both teacher and student training on AI policies and ethical considerations. To conclude, in this study, graduate students' perspectives on teacher-provided AI guidelines are explored and reflected upon, calling for additional training and strategies to improve how these guidelines can be better disseminated for their effective integration and adoption. Although AI guidelines provided by teachers may be helpful and provide new insights for students, educational institutions should take a more anchoring role to foster a motivating, empowering, and student-centered learning environment. The study also provides some relevant recommendations, including guidance for students on the ethical use of AI and AI policy training for teachers in higher education.Keywords: higher education policy, graduate students’ perspectives, higher education teacher, AI guidelines, AI in education
Procedia PDF Downloads 741062 Digital Skepticism In A Legal Philosophical Approach
Authors: dr. Bendes Ákos
Abstract:
Digital skepticism, a critical stance towards digital technology and its pervasive influence on society, presents significant challenges when analyzed from a legal philosophical perspective. This abstract aims to explore the intersection of digital skepticism and legal philosophy, emphasizing the implications for justice, rights, and the rule of law in the digital age. Digital skepticism arises from concerns about privacy, security, and the ethical implications of digital technology. It questions the extent to which digital advancements enhance or undermine fundamental human values. Legal philosophy, which interrogates the foundations and purposes of law, provides a framework for examining these concerns critically. One key area where digital skepticism and legal philosophy intersect is in the realm of privacy. Digital technologies, particularly data collection and surveillance mechanisms, pose substantial threats to individual privacy. Legal philosophers must grapple with questions about the limits of state power and the protection of personal autonomy. They must consider how traditional legal principles, such as the right to privacy, can be adapted or reinterpreted in light of new technological realities. Security is another critical concern. Digital skepticism highlights vulnerabilities in cybersecurity and the potential for malicious activities, such as hacking and cybercrime, to disrupt legal systems and societal order. Legal philosophy must address how laws can evolve to protect against these new forms of threats while balancing security with civil liberties. Ethics plays a central role in this discourse. Digital technologies raise ethical dilemmas, such as the development and use of artificial intelligence and machine learning algorithms that may perpetuate biases or make decisions without human oversight. Legal philosophers must evaluate the moral responsibilities of those who design and implement these technologies and consider the implications for justice and fairness. Furthermore, digital skepticism prompts a reevaluation of the concept of the rule of law. In an increasingly digital world, maintaining transparency, accountability, and fairness becomes more complex. Legal philosophers must explore how legal frameworks can ensure that digital technologies serve the public good and do not entrench power imbalances or erode democratic principles. Finally, the intersection of digital skepticism and legal philosophy has practical implications for policy-making. Legal scholars and practitioners must work collaboratively to develop regulations and guidelines that address the challenges posed by digital technology. This includes crafting laws that protect individual rights, ensure security, and promote ethical standards in technology development and deployment. In conclusion, digital skepticism provides a crucial lens for examining the impact of digital technology on law and society. A legal philosophical approach offers valuable insights into how legal systems can adapt to protect fundamental values in the digital age. By addressing privacy, security, ethics, and the rule of law, legal philosophers can help shape a future where digital advancements enhance, rather than undermine, justice and human dignity.Keywords: legal philosophy, privacy, security, ethics, digital skepticism
Procedia PDF Downloads 431061 Destination Management Organization in the Digital Era: A Data Framework to Leverage Collective Intelligence
Authors: Alfredo Fortunato, Carmelofrancesco Origlia, Sara Laurita, Rossella Nicoletti
Abstract:
In the post-pandemic recovery phase of tourism, the role of a Destination Management Organization (DMO) as a coordinated management system of all the elements that make up a destination (attractions, access, marketing, human resources, brand, pricing, etc.) is also becoming relevant for local territories. The objective of a DMO is to maximize the visitor's perception of value and quality while ensuring the competitiveness and sustainability of the destination, as well as the long-term preservation of its natural and cultural assets, and to catalyze benefits for the local economy and residents. In carrying out the multiple functions to which it is called, the DMO can leverage a collective intelligence that comes from the ability to pool information, explicit and tacit knowledge, and relationships of the various stakeholders: policymakers, public managers and officials, entrepreneurs in the tourism supply chain, researchers, data journalists, schools, associations and committees, citizens, etc. The DMO potentially has at its disposal large volumes of data and many of them at low cost, that need to be properly processed to produce value. Based on these assumptions, the paper presents a conceptual framework for building an information system to support the DMO in the intelligent management of a tourist destination tested in an area of southern Italy. The approach adopted is data-informed and consists of four phases: (1) formulation of the knowledge problem (analysis of policy documents and industry reports; focus groups and co-design with stakeholders; definition of information needs and key questions); (2) research and metadatation of relevant sources (reconnaissance of official sources, administrative archives and internal DMO sources); (3) gap analysis and identification of unconventional information sources (evaluation of traditional sources with respect to the level of consistency with information needs, the freshness of information and granularity of data; enrichment of the information base by identifying and studying web sources such as Wikipedia, Google Trends, Booking.com, Tripadvisor, websites of accommodation facilities and online newspapers); (4) definition of the set of indicators and construction of the information base (specific definition of indicators and procedures for data acquisition, transformation, and analysis). The framework derived consists of 6 thematic areas (accommodation supply, cultural heritage, flows, value, sustainability, and enabling factors), each of which is divided into three domains that gather a specific information need to be represented by a scheme of questions to be answered through the analysis of available indicators. The framework is characterized by a high degree of flexibility in the European context, given that it can be customized for each destination by adapting the part related to internal sources. Application to the case study led to the creation of a decision support system that allows: •integration of data from heterogeneous sources, including through the execution of automated web crawling procedures for data ingestion of social and web information; •reading and interpretation of data and metadata through guided navigation paths in the key of digital story-telling; •implementation of complex analysis capabilities through the use of data mining algorithms such as for the prediction of tourist flows.Keywords: collective intelligence, data framework, destination management, smart tourism
Procedia PDF Downloads 1211060 Analysis of Friction Stir Welding Process for Joining Aluminum Alloy
Authors: A. M. Khourshid, I. Sabry
Abstract:
Friction Stir Welding (FSW), a solid state joining technique, is widely being used for joining Al alloys for aerospace, marine automotive and many other applications of commercial importance. FSW were carried out using a vertical milling machine on Al 5083 alloy pipe. These pipe sections are relatively small in diameter, 5mm, and relatively thin walled, 2 mm. In this study, 5083 aluminum alloy pipe were welded as similar alloy joints using (FSW) process in order to investigate mechanical and microstructural properties .rotation speed 1400 r.p.m and weld speed 10,40,70 mm/min. In order to investigate the effect of welding speeds on mechanical properties, metallographic and mechanical tests were carried out on the welded areas. Vickers hardness profile and tensile tests of the joints as a metallurgical feasibility of friction stir welding for joining Al 6061 aluminum alloy welding was performed on pipe with different thickness 2, 3 and 4 mm,five rotational speeds (485,710,910,1120 and 1400) rpm and a traverse speed (4, 8 and 10)mm/min was applied. This work focuses on two methods such as artificial neural networks using software (pythia) and response surface methodology (RSM) to predict the tensile strength, the percentage of elongation and hardness of friction stir welded 6061 aluminum alloy. An artificial neural network (ANN) model was developed for the analysis of the friction stir welding parameters of 6061 pipe. The tensile strength, the percentage of elongation and hardness of weld joints were predicted by taking the parameters Tool rotation speed, material thickness and travel speed as a function. A comparison was made between measured and predicted data. Response surface methodology (RSM) also developed and the values obtained for the response Tensile strengths, the percentage of elongation and hardness are compared with measured values. The effect of FSW process parameter on mechanical properties of 6061 aluminum alloy has been analyzed in detail.Keywords: friction stir welding (FSW), al alloys, mechanical properties, microstructure
Procedia PDF Downloads 4621059 Hybrid Approach for Country’s Performance Evaluation
Authors: C. Slim
Abstract:
This paper presents an integrated model, which hybridized data envelopment analysis (DEA) and support vector machine (SVM) together, to class countries according to their efficiency and performance. This model takes into account aspects of multi-dimensional indicators, decision-making hierarchy and relativity of measurement. Starting from a set of indicators of performance as exhaustive as possible, a process of successive aggregations has been developed to attain an overall evaluation of a country’s competitiveness.Keywords: Artificial Neural Networks (ANN), Support vector machine (SVM), Data Envelopment Analysis (DEA), Aggregations, indicators of performance
Procedia PDF Downloads 3381058 Application of Groundwater Level Data Mining in Aquifer Identification
Authors: Liang Cheng Chang, Wei Ju Huang, You Cheng Chen
Abstract:
Investigation and research are keys for conjunctive use of surface and groundwater resources. The hydrogeological structure is an important base for groundwater analysis and simulation. Traditionally, the hydrogeological structure is artificially determined based on geological drill logs, the structure of wells, groundwater levels, and so on. In Taiwan, groundwater observation network has been built and a large amount of groundwater-level observation data are available. The groundwater level is the state variable of the groundwater system, which reflects the system response combining hydrogeological structure, groundwater injection, and extraction. This study applies analytical tools to the observation database to develop a methodology for the identification of confined and unconfined aquifers. These tools include frequency analysis, cross-correlation analysis between rainfall and groundwater level, groundwater regression curve analysis, and decision tree. The developed methodology is then applied to groundwater layer identification of two groundwater systems: Zhuoshui River alluvial fan and Pingtung Plain. The abovementioned frequency analysis uses Fourier Transform processing time-series groundwater level observation data and analyzing daily frequency amplitude of groundwater level caused by artificial groundwater extraction. The cross-correlation analysis between rainfall and groundwater level is used to obtain the groundwater replenishment time between infiltration and the peak groundwater level during wet seasons. The groundwater regression curve, the average rate of groundwater regression, is used to analyze the internal flux in the groundwater system and the flux caused by artificial behaviors. The decision tree uses the information obtained from the above mentioned analytical tools and optimizes the best estimation of the hydrogeological structure. The developed method reaches training accuracy of 92.31% and verification accuracy 93.75% on Zhuoshui River alluvial fan and training accuracy 95.55%, and verification accuracy 100% on Pingtung Plain. This extraordinary accuracy indicates that the developed methodology is a great tool for identifying hydrogeological structures.Keywords: aquifer identification, decision tree, groundwater, Fourier transform
Procedia PDF Downloads 1571057 Regional Flood Frequency Analysis in Narmada Basin: A Case Study
Authors: Ankit Shah, R. K. Shrivastava
Abstract:
Flood and drought are two main features of hydrology which affect the human life. Floods are natural disasters which cause millions of rupees’ worth of damage each year in India and the whole world. Flood causes destruction in form of life and property. An accurate estimate of the flood damage potential is a key element to an effective, nationwide flood damage abatement program. Also, the increase in demand of water due to increase in population, industrial and agricultural growth, has let us know that though being a renewable resource it cannot be taken for granted. We have to optimize the use of water according to circumstances and conditions and need to harness it which can be done by construction of hydraulic structures. For their safe and proper functioning of hydraulic structures, we need to predict the flood magnitude and its impact. Hydraulic structures play a key role in harnessing and optimization of flood water which in turn results in safe and maximum use of water available. Mainly hydraulic structures are constructed on ungauged sites. There are two methods by which we can estimate flood viz. generation of Unit Hydrographs and Flood Frequency Analysis. In this study, Regional Flood Frequency Analysis has been employed. There are many methods for estimating the ‘Regional Flood Frequency Analysis’ viz. Index Flood Method. National Environmental and Research Council (NERC Methods), Multiple Regression Method, etc. However, none of the methods can be considered universal for every situation and location. The Narmada basin is located in Central India. It is drained by most of the tributaries, most of which are ungauged. Therefore it is very difficult to estimate flood on these tributaries and in the main river. As mentioned above Artificial Neural Network (ANN)s and Multiple Regression Method is used for determination of Regional flood Frequency. The annual peak flood data of 20 sites gauging sites of Narmada Basin is used in the present study to determine the Regional Flood relationships. Homogeneity of the considered sites is determined by using the Index Flood Method. Flood relationships obtained by both the methods are compared with each other, and it is found that ANN is more reliable than Multiple Regression Method for the present study area.Keywords: artificial neural network, index flood method, multi layer perceptrons, multiple regression, Narmada basin, regional flood frequency
Procedia PDF Downloads 4191056 The Promotion of Andalusian Heritage through Tourism in the Medina of Marrakech
Authors: Nour Eddine Nachouane, Aicha Knidiri
Abstract:
The Hispano-Moorish art was born in 786 when Abd ar-Rahman built the first mosque in Cordoba. It is a still-living art in the trades of the big Moroccan cities. Everyone agrees that the different artistic forms of Arab-Muslim art find their full development in traditional Moroccan architecture, and this heritage allows artists and artisans to create magnificent masterpieces. Marrakech, by way of example, constitutes a symbolic city, which represents the reflection of a rich history of this art carried by a long artisanal tradition that is still living nowadays. Despite its ratification by UNESCO as intangible cultural heritage, and beyond official speeches, several of those craft trades are endangered, and with them the whole history of millennial savoir-faire. From the empirical study of the old historic center, 'the medina' of Marrakech, we explore in this article the opportunity offered by the tourism industry in order to protect these craft trades. We question artisans on the evolution of the sector and the challenges of the transmission of this heritage. We evoke the case of Spanish cities like Granada in a comparative reflection on the strategies and perceptions of the public administrations of a part, and, on the other hand, on the shared experience of artisans and tourists. In an interdisciplinary approach mixing anthropology, history, sociology, and even geography, we question the capacity of heritage processes to mobilize and involve a set of actors and activate a trajectory for the safeguarding of Andalusian arts and techniques. The basic assumption of this research is that the promotion of traditional craft trades through tourism and based on good scientific knowledge can present an original offer to cope with globalization and guarantee the transmission of that savoir-faire to new generations. Research in the field of Islamic arts does not constitute a retreat into the nationalist identity or a fixation on the past but an opening towards cultural diversity, free from any standardization.Keywords: heritage, art andalusi, handcraft, tourism
Procedia PDF Downloads 1631055 Cloud Design for Storing Large Amount of Data
Authors: M. Strémy, P. Závacký, P. Cuninka, M. Juhás
Abstract:
Main goal of this paper is to introduce our design of private cloud for storing large amount of data, especially pictures, and to provide good technological backend for data analysis based on parallel processing and business intelligence. We have tested hypervisors, cloud management tools, storage for storing all data and Hadoop to provide data analysis on unstructured data. Providing high availability, virtual network management, logical separation of projects and also rapid deployment of physical servers to our environment was also needed.Keywords: cloud, glusterfs, hadoop, juju, kvm, maas, openstack, virtualization
Procedia PDF Downloads 3531054 Case-Based Reasoning for Modelling Random Variables in the Reliability Assessment of Existing Structures
Authors: Francesca Marsili
Abstract:
The reliability assessment of existing structures with probabilistic methods is becoming an increasingly important and frequent engineering task. However probabilistic reliability methods are based on an exhaustive knowledge of the stochastic modeling of the variables involved in the assessment; at the moment standards for the modeling of variables are absent, representing an obstacle to the dissemination of probabilistic methods. The framework according to probability distribution functions (PDFs) are established is represented by the Bayesian statistics, which uses Bayes Theorem: a prior PDF for the considered parameter is established based on information derived from the design stage and qualitative judgments based on the engineer past experience; then, the prior model is updated with the results of investigation carried out on the considered structure, such as material testing, determination of action and structural properties. The application of Bayesian statistics arises two different kind of problems: 1. The results of the updating depend on the engineer previous experience; 2. The updating of the prior PDF can be performed only if the structure has been tested, and quantitative data that can be statistically manipulated have been collected; performing tests is always an expensive and time consuming operation; furthermore, if the considered structure is an ancient building, destructive tests could compromise its cultural value and therefore should be avoided. In order to solve those problems, an interesting research path is represented by investigating Artificial Intelligence (AI) techniques that can be useful for the automation of the modeling of variables and for the updating of material parameters without performing destructive tests. Among the others, one that raises particular attention in relation to the object of this study is constituted by Case-Based Reasoning (CBR). In this application, cases will be represented by existing buildings where material tests have already been carried out and an updated PDFs for the material mechanical parameters has been computed through a Bayesian analysis. Then each case will be composed by a qualitative description of the material under assessment and the posterior PDFs that describe its material properties. The problem that will be solved is the definition of PDFs for material parameters involved in the reliability assessment of the considered structure. A CBR system represent a good candi¬date in automating the modelling of variables because: 1. Engineers already draw an estimation of the material properties based on the experience collected during the assessment of similar structures, or based on similar cases collected in literature or in data-bases; 2. Material tests carried out on structure can be easily collected from laboratory database or from literature; 3. The system will provide the user of a reliable probabilistic description of the variables involved in the assessment that will also serve as a tool in support of the engineer’s qualitative judgments. Automated modeling of variables can help in spreading probabilistic reliability assessment of existing buildings in the common engineering practice, and target at the best intervention and further tests on the structure; CBR represents a technique which may help to achieve this.Keywords: reliability assessment of existing buildings, Bayesian analysis, case-based reasoning, historical structures
Procedia PDF Downloads 3371053 Women Entrepreneurs’ in Nigeria: Issues and Challenges
Authors: Mohammed Mainoma, Abubakar Tijanni, Mohammed Aliyu
Abstract:
Globalization has brought a structural change in industry. It is the breaking of artificial boundaries and given way to new product, new service, new market, and new technology among others. It leads to the realization that men entrepreneurs’ alone cannot meet the demand of the teeming population. Therefore there is a need for the participation, involvement, and engagement of females in the production and distribution of goods and services. This will enhance growth and development of a nation. It is in line with the above that this paper attempt to discuss meaning of women entrepreneurs, roles, types, problems, and prospects. Also, on the basis of conclusion the paper recommended that entrepreneurship education should be introduced in all Tertiary Institutions in Nigeria.Keywords: women, entrepreneurs, issues, challenges
Procedia PDF Downloads 5181052 Development and Adaptation of a LGBM Machine Learning Model, with a Suitable Concept Drift Detection and Adaptation Technique, for Barcelona Household Electric Load Forecasting During Covid-19 Pandemic Periods (Pre-Pandemic and Strict Lockdown)
Authors: Eric Pla Erra, Mariana Jimenez Martinez
Abstract:
While aggregated loads at a community level tend to be easier to predict, individual household load forecasting present more challenges with higher volatility and uncertainty. Furthermore, the drastic changes that our behavior patterns have suffered due to the COVID-19 pandemic have modified our daily electrical consumption curves and, therefore, further complicated the forecasting methods used to predict short-term electric load. Load forecasting is vital for the smooth and optimized planning and operation of our electric grids, but it also plays a crucial role for individual domestic consumers that rely on a HEMS (Home Energy Management Systems) to optimize their energy usage through self-generation, storage, or smart appliances management. An accurate forecasting leads to higher energy savings and overall energy efficiency of the household when paired with a proper HEMS. In order to study how COVID-19 has affected the accuracy of forecasting methods, an evaluation of the performance of a state-of-the-art LGBM (Light Gradient Boosting Model) will be conducted during the transition between pre-pandemic and lockdowns periods, considering day-ahead electric load forecasting. LGBM improves the capabilities of standard Decision Tree models in both speed and reduction of memory consumption, but it still offers a high accuracy. Even though LGBM has complex non-linear modelling capabilities, it has proven to be a competitive method under challenging forecasting scenarios such as short series, heterogeneous series, or data patterns with minimal prior knowledge. An adaptation of the LGBM model – called “resilient LGBM” – will be also tested, incorporating a concept drift detection technique for time series analysis, with the purpose to evaluate its capabilities to improve the model’s accuracy during extreme events such as COVID-19 lockdowns. The results for the LGBM and resilient LGBM will be compared using standard RMSE (Root Mean Squared Error) as the main performance metric. The models’ performance will be evaluated over a set of real households’ hourly electricity consumption data measured before and during the COVID-19 pandemic. All households are located in the city of Barcelona, Spain, and present different consumption profiles. This study is carried out under the ComMit-20 project, financed by AGAUR (Agència de Gestiód’AjutsUniversitaris), which aims to determine the short and long-term impacts of the COVID-19 pandemic on building energy consumption, incrementing the resilience of electrical systems through the use of tools such as HEMS and artificial intelligence.Keywords: concept drift, forecasting, home energy management system (HEMS), light gradient boosting model (LGBM)
Procedia PDF Downloads 1051051 Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines
Authors: Alexander Guzman Urbina, Atsushi Aoyama
Abstract:
The sustainability of traditional technologies employed in energy and chemical infrastructure brings a big challenge for our society. Making decisions related with safety of industrial infrastructure, the values of accidental risk are becoming relevant points for discussion. However, the challenge is the reliability of the models employed to get the risk data. Such models usually involve large number of variables and with large amounts of uncertainty. The most efficient techniques to overcome those problems are built using Artificial Intelligence (AI), and more specifically using hybrid systems such as Neuro-Fuzzy algorithms. Therefore, this paper aims to introduce a hybrid algorithm for risk assessment trained using near-miss accident data. As mentioned above the sustainability of traditional technologies related with energy and chemical infrastructure constitutes one of the major challenges that today’s societies and firms are facing. Besides that, the adaptation of those technologies to the effects of the climate change in sensible environments represents a critical concern for safety and risk management. Regarding this issue argue that social consequences of catastrophic risks are increasing rapidly, due mainly to the concentration of people and energy infrastructure in hazard-prone areas, aggravated by the lack of knowledge about the risks. Additional to the social consequences described above, and considering the industrial sector as critical infrastructure due to its large impact to the economy in case of a failure the relevance of industrial safety has become a critical issue for the current society. Then, regarding the safety concern, pipeline operators and regulators have been performing risk assessments in attempts to evaluate accurately probabilities of failure of the infrastructure, and consequences associated with those failures. However, estimating accidental risks in critical infrastructure involves a substantial effort and costs due to number of variables involved, complexity and lack of information. Therefore, this paper aims to introduce a well trained algorithm for risk assessment using deep learning, which could be capable to deal efficiently with the complexity and uncertainty. The advantage point of the deep learning using near-miss accidents data is that it could be employed in risk assessment as an efficient engineering tool to treat the uncertainty of the risk values in complex environments. The basic idea of using a Near-Miss Deep Learning Approach for Neuro-Fuzzy Risk Assessment in Pipelines is focused in the objective of improve the validity of the risk values learning from near-miss accidents and imitating the human expertise scoring risks and setting tolerance levels. In summary, the method of Deep Learning for Neuro-Fuzzy Risk Assessment involves a regression analysis called group method of data handling (GMDH), which consists in the determination of the optimal configuration of the risk assessment model and its parameters employing polynomial theory.Keywords: deep learning, risk assessment, neuro fuzzy, pipelines
Procedia PDF Downloads 2921050 Basic Examination of Easily Distinguishable Tactile Symbols Attached to Containers and Packaging
Authors: T. Nishimura, K. Doi, H. Fujimoto, Y. Hoshikawa, T. Wada
Abstract:
In Japan, it is expected that reasonable accommodation for persons with disabilities will progress further. In particular, there is an urgent need to enhance information support for visually impaired persons who have difficulty accessing information. Recently, tactile symbols have been attached to various surfaces, such as the content labels of containers and packaging of various everyday products. The advantage of tactile symbols is that they are useful for visually impaired persons who cannot read Braille. The method of displaying tactile symbols is prescribed by the International Organization for Standardization (ISO). However, the quantitative data on the shapes and dimensions of tactile symbols is insufficient. In this study, through an evaluation experiments, we examine the easy-to-distinguish shapes and dimensions of tactile symbols used for various applications, including the content labels on containers and packaging. Visually impaired persons participated in the experiments. They used tactile symbols on a daily basis. The details and processes of the experiments were orally explained to the participants prior to the experiments, and the informed consent of the participants was obtained. They were instructed to touch the test pieces of tactile symbols freely with both hands. These tactile symbols were selected because they were likely to be easily distinguishable symbols on the content labels of top surfaces of containers and packaging based on a hearing survey that involved employees of an organization of visually impaired and a social welfare corporation, as well as academic experts of support technology for visually impaired. The participants then answered questions related to ease of distinguishing of tactile symbols on a scale of 5 (where 1 corresponded to ‘difficult to distinguish’ and 5 corresponded to ‘easy to distinguish’). Hearing surveys were also performed in an oral free answer manner with the participants after the experiments. This study revealed the shapes and dimensions regarding easily distinguishable tactile symbols attached to containers and packaging. We expect that this knowledge contributes to improvement of the quality of life of visually impaired persons.Keywords: visual impairment, accessible design, tactile symbol, containers and packaging
Procedia PDF Downloads 2191049 Stereotypes and Glass Ceiling Barriers for Young Women’s Leadership
Authors: Amna Khaliq
Abstract:
In this article, the phenomena of common stereotypes and glass ceiling barriers in women’s career advancement in men dominating society are explored. A brief background is provided on the misconception for women as soft, delicate, polite and compassionate at a workplace in the place of strong head and go-getter. Then, the literature review supports that stereotypes and glass ceiling barriers are still in existence for young women’s leadership. Increased encouragement, emotional intelligence, and better communication skills are recommended to parents, educators, and employers to prepare young women for senior leadership roles. Young women need mentorship from other women with no competition.Keywords: Gender inequality, Glass ceiling, Stereotypes, Leadership
Procedia PDF Downloads 1661048 Development of a Mechanical Ventilator Using A Manual Artificial Respiration Unit
Authors: Isomar Lima da Silva, Alcilene Batalha Pontes, Aristeu Jonatas Leite de Oliveira, Roberto Maia Augusto
Abstract:
Context: Mechanical ventilators are medical devices that help provide oxygen and ventilation to patients with respiratory difficulties. This equipment consists of a manual breathing unit that can be operated by a doctor or nurse and a mechanical ventilator that controls the airflow and pressure in the patient's respiratory system. This type of ventilator is commonly used in emergencies and intensive care units where it is necessary to provide breathing support to critically ill or injured patients. Objective: In this context, this work aims to develop a reliable and low-cost mechanical ventilator to meet the demand of hospitals in treating people affected by Covid-19 and other severe respiratory diseases, offering a chance of treatment as an alternative to mechanical ventilators currently available in the market. Method: The project presents the development of a low-cost auxiliary ventilator with a controlled ventilatory system assisted by integrated hardware and firmware for respiratory cycle control in non-invasive mechanical ventilation treatments using a manual artificial respiration unit. The hardware includes pressure sensors capable of identifying positive expiratory pressure, peak inspiratory flow, and injected air volume. The embedded system controls the data sent by the sensors. It ensures efficient patient breathing through the operation of the sensors, microcontroller, and actuator, providing patient data information to the healthcare professional (system operator) through the graphical interface and enabling clinical parameter adjustments as needed. Results: The test data of the developed mechanical ventilator presented satisfactory results in terms of performance and reliability, showing that the equipment developed can be a viable alternative to commercial mechanical ventilators currently available, offering a low-cost solution to meet the increasing demand for respiratory support equipment.Keywords: mechanical fans, breathing, medical equipment, COVID-19, intensive care units
Procedia PDF Downloads 701047 The Effect of Artificial Intelligence on Mobile Phones and Communication Systems
Authors: Ibram Khalafalla Roshdy Shokry
Abstract:
This paper gives service feel multiple get entry to (CSMA) verbal exchange model based totally totally on SoC format method. Such model can be used to guide the modelling of the complex c084d04ddacadd4b971ae3d98fecfb2a communique systems, consequently use of such communication version is an crucial method in the creation of excessive general overall performance conversation. SystemC has been selected as it gives a homogeneous format drift for complicated designs (i.e. SoC and IP based format). We use a swarm device to validate CSMA designed version and to expose how advantages of incorporating communication early within the layout process. The wireless conversation created via the modeling of CSMA protocol that may be used to attain conversation among all of the retailers and to coordinate get proper of entry to to the shared medium (channel).The device of automobiles with wi-fiwireless communique abilities is expected to be the important thing to the evolution to next era intelligent transportation systems (ITS). The IEEE network has been continuously operating at the development of an wireless vehicular communication protocol for the enhancement of wi-fi get admission to in Vehicular surroundings (WAVE). Vehicular verbal exchange systems, known as V2X, help car to car (V2V) and automobile to infrastructure (V2I) communications. The wi-ficiencywireless of such communication systems relies upon on several elements, amongst which the encircling surroundings and mobility are prominent. as a result, this observe makes a speciality of the evaluation of the actual performance of vehicular verbal exchange with unique cognizance on the effects of the actual surroundings and mobility on V2X verbal exchange. It begins by wi-fi the actual most range that such conversation can guide and then evaluates V2I and V2V performances. The Arada LocoMate OBU transmission device changed into used to check and evaluate the effect of the transmission range in V2X verbal exchange. The evaluation of V2I and V2V communique takes the real effects of low and excessive mobility on transmission under consideration.Multiagent systems have received sizeable attention in numerous wi-fields, which include robotics, independent automobiles, and allotted computing, where a couple of retailers cooperate and speak to reap complicated duties. wi-figreen communication among retailers is a critical thing of these systems, because it directly influences their usual performance and scalability. This scholarly work gives an exploration of essential communication factors and conducts a comparative assessment of diverse protocols utilized in multiagent systems. The emphasis lies in scrutinizing the strengths, weaknesses, and applicability of those protocols across diverse situations. The studies additionally sheds light on rising tendencies within verbal exchange protocols for multiagent systems, together with the incorporation of device mastering strategies and the adoption of blockchain-based totally solutions to make sure comfy communique. those developments offer valuable insights into the evolving landscape of multiagent structures and their verbal exchange protocols.Keywords: communication, multi-agent systems, protocols, consensussystemC, modelling, simulation, CSMA
Procedia PDF Downloads 251046 Challenges over Two Semantic Repositories - OWLIM and AllegroGraph
Authors: Paria Tajabor, Azin Azarbani
Abstract:
The purpose of this research study is exploring two kind of semantic repositories with regards to various factors to find the best approaches that an artificial manager can use to produce ontology in a system based on their interaction, association and research. To this end, as the best way to evaluate each system and comparing with others is analysis, several benchmarking over these two repositories were examined. These two semantic repositories: OWLIM and AllegroGraph will be the main core of this study. The general objective of this study is to be able to create an efficient and cost-effective manner reports which is required to support decision making in any large enterprise.Keywords: OWLIM, allegrograph, RDF, reasoning, semantic repository, semantic-web, SPARQL, ontology, query
Procedia PDF Downloads 2621045 Standardization of a Methodology for Quantification of Antimicrobials Used for the Treatment of Multi-Resistant Bacteria Using Two Types of Biosensors and Production of Anti-Antimicrobial Antibodies
Authors: Garzon V., Bustos R., Salvador J. P., Marco M. P., Pinacho D. G.
Abstract:
Bacterial resistance to antimicrobial treatment has increased significantly in recent years, making it a public health problem. Large numbers of bacteria are resistant to all or nearly all known antimicrobials, creating the need for the development of new types of antimicrobials or the use of “last line” antimicrobial drug therapies for the treatment of multi-resistant bacteria. Some of the chemical groups of antimicrobials most used for the treatment of infections caused by multiresistant bacteria in the clinic are Glycopeptide (Vancomycin), Polymyxin (Colistin), Lipopeptide (Daptomycin) and Carbapenem (Meropenem). Molecules that require therapeutic drug monitoring (TDM). Due to the above, a methodology based on nanobiotechnology based on an optical and electrochemical biosensor is being developed, which allows the evaluation of the plasmatic levels of some antimicrobials such as glycopeptide, polymyxin, lipopeptide and carbapenem quickly, at a low cost, with a high specificity and sensitivity and that can be implemented in the future in public and private health hospitals. For this, the project was divided into five steps i) Design of specific anti-drug antibodies, produced in rabbits for each of the types of antimicrobials, evaluating the results by means of an immunoassay analysis (ELISA); ii) quantification by means of an electrochemical biosensor that allows quantification with high sensitivity and selectivity of the reference antimicrobials; iii) Comparison of antimicrobial quantification with an optical type biosensor; iv) Validation of the methodologies used with biosensor by means of an immunoassay. Finding as a result that it is possible to quantify antibiotics by means of the optical and electrochemical biosensor at concentrations on average of 1,000ng/mL, the antibodies being sensitive and specific for each of the antibiotic molecules, results that were compared with immunoassays and HPLC chromatography. Thus, contributing to the safe use of these drugs commonly used in clinical practice and new antimicrobial drugs.Keywords: antibiotics, electrochemical biosensor, optical biosensor, therapeutic drug monitoring
Procedia PDF Downloads 821044 Studies on the Emergence Pattern of Cercariae from Fresh Water Snails (Mollusca: Gastropoda)
Authors: V. R. Kakulte, K. N. Gaikwad
Abstract:
The emergence pattern of different types of cercariae form three snail hosts Melania tuberculata, Lymnea auricularia Viviparous bengalensis has been studied in detail. In natural emerging method the snails (2 to 3 at a time) were kept in separate test tube. This was constant source of living cercariae naturally emerging from the snails. The sunlight and artificial light play an important positive role in stimulating the emergence of cercariae has been observed. The effect of light and dark on the emission pattern of cercariae has been studied.Keywords: cercariae, snail host, emergence pattern, gastropoda
Procedia PDF Downloads 3171043 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study
Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa
Abstract:
The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity
Procedia PDF Downloads 4151042 Knowledge Based Software Model for the Management and Treatment of Malaria Patients: A Case of Kalisizo General Hospital
Authors: Mbonigaba Swale
Abstract:
Malaria is an infection or disease caused by parasites (Plasmodium Falciparum — causes severe Malaria, plasmodium Vivax, Plasmodium Ovale, and Plasmodium Malariae), transmitted by bites of infected anopheles (female) mosquitoes to humans. These vectors comprise of two types in Africa, particularly in Uganda, i.e. anopheles fenestus and Anopheles gambaie (‘example Anopheles arabiensis,,); feeds on man inside the house mainly at dusk, mid-night and dawn and rests indoors and makes them effective transmitters (vectors) of the disease. People in both urban and rural areas have consistently become prone to repetitive attacks of malaria, causing a lot of deaths and significantly increasing the poverty levels of the rural poor. Malaria is a national problem; it causes a lot of maternal pre-natal and antenatal disorders, anemia in pregnant mothers, low birth weights for the newly born, convulsions and epilepsy among the infants. Cumulatively, it kills about one million children every year in sub-Saharan Africa. It has been estimated to account for 25-35% of all outpatient visits, 20-45% of acute hospital admissions and 15-35% of hospital deaths. Uganda is the leading victim country, for which Rakai and Masaka districts are the most affected. So, it is not clear whether these abhorrent situations and episodes of recurrences and failure to cure from the disease are a result of poor diagnosis, prescription and dosing, treatment habits and compliance of the patients to the drugs or the ethical domain of the stake holders in relation to the main stream methodology of malaria management. The research is aimed at offering an alternative approach to manage and deal absolutely with problem by using a knowledge based software model of Artificial Intelligence (Al) that is capable of performing common-sense and cognitive reasoning so as to take decisions like the human brain would do to provide instantaneous expert solutions so as to avoid speculative simulation of the problem during differential diagnosis in the most accurate and literal inferential aspect. This system will assist physicians in many kinds of medical diagnosis, prescribing treatments and doses, and in monitoring patient responses, basing on the body weight and age group of the patient, it will be able to provide instantaneous and timely information options, alternative ways and approaches to influence decision making during case analysis. The computerized system approach, a new model in Uganda termed as “Software Aided Treatment” (SAT) will try to change the moral and ethical approach and influence conduct so as to improve the skills, experience and values (social and ethical) in the administration and management of the disease and drugs (combination therapy and generics) by both the patient and the health worker.Keywords: knowledge based software, management, treatment, diagnosis
Procedia PDF Downloads 571041 Review of Different Machine Learning Algorithms
Authors: Syed Romat Ali Shah, Bilal Shoaib, Saleem Akhtar, Munib Ahmad, Shahan Sadiqui
Abstract:
Classification is a data mining technique, which is recognizedon Machine Learning (ML) algorithm. It is used to classifythe individual articlein a knownofinformation into a set of predefinemodules or group. Web mining is also a portion of that sympathetic of data mining methods. The main purpose of this paper to analysis and compare the performance of Naïve Bayse Algorithm, Decision Tree, K-Nearest Neighbor (KNN), Artificial Neural Network (ANN)and Support Vector Machine (SVM). This paper consists of different ML algorithm and their advantages and disadvantages and also define research issues.Keywords: Data Mining, Web Mining, classification, ML Algorithms
Procedia PDF Downloads 303